Role of Zinc Oxide in Sulfur Crosslinking by Gina Butuc, Arne Janssen, Kees the Physical Appearance of This Product Van Leerdam, Auke Talma Is of a Viscous Liquid

Total Page:16

File Type:pdf, Size:1020Kb

Role of Zinc Oxide in Sulfur Crosslinking by Gina Butuc, Arne Janssen, Kees the Physical Appearance of This Product Van Leerdam, Auke Talma Is of a Viscous Liquid 16 Rubber & Plastics News • February 10, 2020 www.rubbernews.com Technical Role of zinc oxide in sulfur crosslinking By Gina Butuc, Arne Janssen, Kees The physical appearance of this product van Leerdam, Auke Talma is of a viscous liquid. Nouryon Functional Chemicals Executive summary The EPDM is produced by Arlanxeo Sulfur crosslinking was discovered by Charles Goodyear and Thomas Han- and commercialized under the trade and Anke Blume cock more than 150 years ago and led to the development of a new material name of Keltan 2450. This elastomer has University of Twente science application—rubber. Since the first discovery of ways of vulcanizing a low Mooney viscosity ML (1+4) @ 125C Either naturally derived or syntheti- rubber for improved dimensional stability, mechanical properties and chemical of 28, and a relatively high ethylene con- cally produced elastomers need to be resistance, sulfur continued to be analyzed to elucidate its role in the crosslink- tent of 48 percent, while the ethylene subject to further chemical processing ing process. norbornene content is of 4.1 percent. to achieve the dimensional stability re- Although the discovery of sulfur crosslinking was in itself a game changer, it Crosslinking agents are as follows: quired by rubber applications—and this was determined that vulcanization was too slow for commercial purposes and • Dicumyl peroxide (40 wt.%) on clay process is known as vulcanization. Sul- as such methods to expedite the crosslinking reaction were studied. Zinc oxide produced by Nouryon and commercial- fur crosslinking or vulcanization is the in combination with stearic acid were discovered as the best ways for improved ized under the trade name of Perkadox most common way of achieving the me- sulfur reactivity in the vulcanization process. Zinc ions combine with stearic BC-40K-pd, in powder form; chanical strength required in rubber acid and cyclic tetrasulfide (acting as a sulfur accelerator) to form an active • ZnO technical grade by Spectrum applications.1-4 complex which catalyzes the vulcanization process. Chemicals; and It is seldom that elemental sulfur is Because the mechanism of reaction is complex, analyzing the structure at the •Stearic acid technical grade by Spec- used as the sole crosslinking agent. Usu- nano level could yield an insight into the process. This paper is focusing on trum Chemicals. ally there are other sulfur compounds transmission electron microscopy (TEM) and energy-dispersive X-ray spectros- Compound mixing equipment was copy (EDX) for an in-depth analysis of the process, with an emphasis on ZnO performed in a Brabender internal mix- TECHNICAL NOTEBOOK crystallography/surface chemistry and its influence on sulfur crosslink process. er with a capacity of 0.5L and intermesh Edited by John Dick rotors. playing an important role in rubber In this research, the role played by the Mechanical properties were measured called accelerators that are helping in compounds, particularly in the sulfur ZnO as crosslinking facilitator was in- using a tensile tester by Instron, model the vulcanization process. Although the related vulcanization. Interestingly, in vestigated in a novel polymeric material 4500 series with a load cell of 5kN. process of vulcanization has been known the early years of rubber vulcanization, blend with increased resistance to Stress strain tests were performed ac- for more than 100 years, the mechanism ZnO only was used as an inorganic rein- non-polar hydrocarbon solvents. The cording to ASTM D1708 at a crosshead of reactions is still yet to be fully under- forcing filler. It was not until the 1920s novelty polymer-oligomer mixture for speed of 50 cm/min. stood. The main reason for this knowl- that it was proven that sulfur vulcaniza- rubber applications is based primarily The fluid immersion test was per- edge gap is the complexity of rubber tion process can be expedited using ZnO on EPDM. formed according to ASTM D471 at compounds, which often contain more in combination with stearic acid.10,11 The curative system for the blend is room temperature and atmospheric than five ingredients involved in the The role of ZnO and stearic acid was dual organic peroxide and sulfur, and pressure. The hydrocarbon fluid used vulcanization itself, therefore the full not fully understood and it is only in re- the focus of this investigation is on the for immersion is IRM 903, which com- mechanism of crosslinking is not fully cent years that scientists started study- role ZnO plays in the polysulfides cure. prises 45 percent normal paraffin, 50 understood. ing the chemical process by using both Dual cure is getting an increased atten- percent iso paraffin, and 5 percent aro- The mechanism of sulfur crosslinking small-angle neutron scattering and X-ray tion recently because it has the advan- matic hydrocarbon. has been elucidated in the case of ele- techniques, suggesting that an interme- tage of imparting best properties derived For imaging a scanning electron mi- mental sulfur, both radical or ionic initi- diate structure of ZnO/stearic acid is from each type of curative.16 For EPDM, croscope, (SEM) Zeiss CrossBeam 540 ated process.5-6 However, a large number formed.12,13 this kind of dual cure system could lead was used, equipped with an Oxford In- of sulfur crosslinking applications in- Aging of elastomer compounds is to improved scorch time during curing, struments X-MaxN 150 silicon drift de- volve crosslinking through sulfur accel- caused mainly by free sulfur resulted improved mechanical properties such as tector (SDD) for EDX (using Aztec soft- erators, and for these reactions it is gen- from polysulfic bonds cleavage into di- higher elongation at break and increased ware), and Atlas 5, a correlative workflow erally understood that the mechanism is sulfide or even monosulfide bridges. Be- tear strength, as well as better heat software for large area imaging and specific to each type of accelerator.7,8 sides participating in the crosslinking stability of the resulting compound and slice-and-view experiments for tomogra- In recent years, special attention is process, ZnO plays an important role in improved compression set. phy. SEM-EDX Spectrum Images (SI) given to polymeric sulfur either as is or reducing the rubber hardening as an In this complex system, the role of ZnO and large area SEM maps were acquired in the form of sulfur organic copolymers undesired side effect of oxidative aging is unclear, but with the help of analytical at a primary electron beam energy of 6 acting as vulcanization agents because occurring in sulfur cured compounds, techniques such as scanning electron keV at a beam current of 300 pA. they present the advantage of improved particularly in SBR. In this type of sys- microscopy (SEM) and transmission Cross-sections of the rubber samples solubility of sulfur species in the poly- tem, the main role of ZnO is to activate electron microscopy (TEM), both coupled for SEM were prepared either by cutting meric matrix.9 the sulfur cure having ZnS as a by-prod- with energy dispersive X-ray spectrosco- with a razor blade perpendicular to the It already is known that zinc oxide is uct of the cure reaction.14,15 py (EDX), the role of ZnO and stearic acid surface or by using a Leica EM UC7 ul- in facilitating sulfur cure of a non-polar tramicrotome under cryogenic conditions. Fig. 1: CTS molecular structure. Fig. 2: EPDM molecular structure.16 elastomer, using a sulfur donor type sys- The cross-sections were attached with tem could be explained. Silver DAG (provided by agar scientific) onto Al based stubs. A Leica EM ACE600 Materials and experimental high vacuum sputter/coater was used to description coat the samples with 12 nm amorphous Cyclic tetrasulfide (CTS) is produced C to increase the electron conductivity. by Nouryon Functional Chemicals and Imaging at higher magnifications was commercialized under the trade name of performed on a Thermo Scientific Talos Thioplast CPS200; and is a low molecu- F200X S/TEM Transmission Electron lar weight oligomer, with a Mw ~5,000 Microscope. This microscope is equipped and a high sulfur content of 50 percent.17 with a high brightness X-FEG electron Table 1: EPDM-CTS elastomer composition. Fig. 3: Mechanical properties of EPDM-CTS compounds. www.rubbernews.com Rubber & Plastics News • February 10, 2020 17 Technical The authors dam holds a doctorate in applied physics torate in organic chemistry, from Gronin- tember 1996 as a member of the product on surface analysis from the Eindhoven gen State University and a post-doctorate development group silica in the Applied Gina Butuc is a doctoral candidate University of Technology, and a mas- from the University of Twente. Technology Department of Degussa at the University of Twente, faculty ter’s degree in chemistry on catalysis Anke Blume studied chemistry at A.G. She worked there in different posi- of Engineering Technology, Depart- from Utrecht University. the university of Hanover Germany tions, always related to the development ment of Elastomer Technology and Auke Talma has been working for from October 1988 until July 1993. In of silica and silane for use in rubber. Engineering, and a technical devel- AkzoNobel/Nouryon for the past 35 the last year of her study, she came in Degussa changed owners several times opment manager years, in various functions ranging the first contact with rubber during and now is known as Evonik Resource for crosslinking from scientist to research and develop- her master thesis. Consequently, she Efficiency GmbH. Since August 2011, peroxides and ment director for basic and applied re- carried out her doctoral thesis at the Blume has been an IP manager for silica polymer additives search of additives for the rubber industry, German Institute for Rubber Technol- and silane for rubber applications.
Recommended publications
  • A Little Book About BIG Chemistry the Story of Man-Made Polymers
    SPRINGER BRIEFS IN MATERIALS Jim Massy A Little Book about BIG Chemistry The Story of Man-Made Polymers www.ebook3000.com SpringerBriefs in Materials The SpringerBriefs Series in Materials presents highly relevant, concise mono- graphs on a wide range of topics covering fundamental advances and new applications in the field. Areas of interest include topical information on innovative, structural and functional materials and composites as well as fundamental principles, physical properties, materials theory and design. SpringerBriefs present succinct summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Typical topics might include: • A timely report of state-of-the-art analytical techniques • A bridge between new research results, as published in journal articles, and a contextual literature review • A snapshot of a hot or emerging topic • An in-depth case study or clinical example • A presentation of core concepts that students must understand in order to make independent contributions Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guide- lines, and expedited production schedules. More information about this series at http://www.springer.com/series/10111 www.ebook3000.com Jim Massy A Little Book about BIG Chemistry The Story of Man-Made Polymers 123 Jim Massy Norwich, Norfolk UK ISSN 2192-1091 ISSN 2192-1105 (electronic) SpringerBriefs in Materials ISBN 978-3-319-54830-2 ISBN 978-3-319-54831-9 (eBook) DOI 10.1007/978-3-319-54831-9 Library of Congress Control Number: 2017934463 © The Author(s) 2017 This work is subject to copyright.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • Sulfur Safety Data Sheet SDS No: 6192 According to Federal Register / Vol
    Sulfur Safety Data Sheet SDS No: 6192 According To Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations Revision Date: 10/23/2018 Date of Issue: 08/30/2012 Version: 1.0 SECTION 1: IDENTIFICATION 1.1. Product Identifier Product Form: Mixture Product Name: Sulfur Synonyms: Brimstone, Sulfur 1.2. Intended Use of the Product Hydrogen sulfide may be present in trace quantities (by weight) in molten sulfur but may accumulate to toxic or flammable concentrations in enclosed spaces such as molten sulfur storage pits, tanks, or tanker/railcar headspaces. Hydrogen sulfide is not considered a hazard associated with solid sulfur. 1.3. Name, Address, and Telephone of the Responsible Party Customer Hess Tower 1501 McKinney Houston, TX 77010 T:(713) 496-4000 When calling the main operator ask for the EHS Safety Department. All Hess SDSs are also available via the Hess.com website. 1.4. Emergency Telephone Number Emergency Number : (800) 424-9300 CHEMTREC (24 hours) SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the Substance or Mixture GHS-US Classification Flam. Sol. 2 H228 Skin Irrit. 2 H315 Aquatic Acute 2 H401 Comb. Dust Full text of hazard classes and H-statements : see Section 16. 2.2. Label Elements GHS-US Labeling Hazard Pictograms (GHS-US) : GHS02 GHS07 Signal Word (GHS-US) : Warning Hazard Statements (GHS-US) : May form combustible dust concentrations in air. H228 - Flammable solid. H315 - Causes skin irritation. H401 - Toxic to aquatic life. Precautionary Statements (GHS-US) : P210 - Keep away from heat, sparks, open flames, hot surfaces. - No smoking. P240 - Ground/Bond container and receiving equipment.
    [Show full text]
  • On the Cycling of Sulfur and Mercury in the St. Louis River Watershed, Northeastern Minnesota
    Page 1 of 91 Final Report On the Cycling of Sulfur and Mercury in the St. Louis River Watershed, Northeastern Minnesota An Environmental and Natural Trust Fund Final Report August 15, 2012 Michael Berndt and Travis Bavin Minnesota Department of Natural Resources 500 Lafayette Rd. St. Paul, MN 55455 Page 2 of 91 Final Report Contents Summary .......................................................................................................................................... 3 Introduction ..................................................................................................................................... 4 Methods ........................................................................................................................................... 5 Sampling Site Selection ................................................................................................................ 5 Chemical Analysis ......................................................................................................................... 6 34 18 Sulfur and Oxygen Isotopes in Dissolved Sulfate (δ SSO4 and δ OSO4)........................................ 7 Stream Gaging .............................................................................................................................. 7 Results .............................................................................................................................................. 7 Watershed Survey .......................................................................................................................
    [Show full text]
  • Sodium Chlorite Sulfur Destruction
    ® Basic Chemicals Sodium Chlorite Sulfur Destruction Application Description: Advantages of Sodium Chlorite/Chlorine Reduced sulfur compounds are a broad Dioxide: class of oxy-sulfur compounds, such as = = sulfite (SO3 ) and thiosulfate (S2O3 ), that Chlorine dioxide reacts the most rapidly have an oxidant demand. These and does not form chlorinated organic compounds are found in the waste streams by-products. of the petroleum, steel, paper and most While chlorine is the least expensive chemical industries. Their high oxidant chemical, it cannot be used when demand can cause eutrophication of natural organic compounds are present due to waters and excessive chlorine demand in the formation of chlorinated organic by- wastewaters treated by POTWs (Publicly products. Owned Treatment Works). When chlorine can't be used, hydrogen peroxide has the lowest chemical costs. Chlorine dioxide effectively oxidizes these species to sulfate ions over a broad pH range (5-9). Below a pH of 4, sodium Affected Industries: chlorite may be used without the generation Chemicals, Food, Iron & Steel, Mining, Oil of chlorine dioxide. Since these compounds Refining, Plastics & Rubber, Pulp & Paper, are usually found in mixtures of various Textiles ratios the required chlorine dioxide dosage must be determined for each application. Further Information More detailed information on sodium Alternatives: chlorite applications is available upon Hydrogen peroxide solution is added by request through the OxyChem Technical a chemical dosing pump. Services Department. Call or write to: Chlorine gas is added by a vacuum eductor system, while sodium OxyChem hypochlorite solution is added by a Technical Service Department chemical dosing pump. PO Box 12283 Wichita, Kansas 67277-2283 800-733-1165 Ext.
    [Show full text]
  • Sulfur and Zinc Availability from Co-Granulated Zn-Enriched Elemental Sulfur Fertilizers † § § § ⊥ Edson M
    Article pubs.acs.org/JAFC Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers † § § § ⊥ Edson M. Mattiello,*, Rodrigo C. da Silva, Fien Degryse, Roslyn Baird, Vadakattu V. S. R. Gupta, § # and Michael J. McLaughlin , † Department of Soil Science, Universidade Federal de Vicosa,̧ Vicosa,̧ Minas Gerais 36570-900, Brazil § School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Waite Campus, Glen Osmond, SA 5064, Australia ⊥ CSIRO Agriculture and Food, PMB 2, Glen Osmond, SA 5064, Australia # CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia ABSTRACT: Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES−Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO4, and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl2-extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0−5 and 5−9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES−Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable- Zn concentrations were higher from the point of application in the acidic (62.9 mg dm−3) compared to the alkaline soil (5.5 mg dm−3).
    [Show full text]
  • Zinc Complexes with 1,3-Diketones As Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black
    materials Article Zinc Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of Styrene-Butadiene Elastomer Filled with Carbon Black Magdalena Maciejewska * , Anna Sowi ´nska* and Agata Grocholewicz Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Street 12/16, 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] (M.M.); [email protected] (A.S.) Abstract: Zinc oxide nanoparticles (N-ZnO) and zinc complexes with 1,3-diketones of different structures were applied instead of microsized zinc oxide (M-ZnO) to activate the sulfur vulcanization of styrene-butadiene rubber (SBR). The influence of vulcanization activators on the cure characteristics of rubber compounds, as well as crosslink density and functional properties of SBR vulcanizates, such as tensile properties, hardness, damping behavior, thermal stability and resistance to thermo- oxidative aging was explored. Applying N-ZnO allowed to reduce the content of zinc by 40% compared to M-ZnO without detrimental influence on the cure characteristic and performance of SBR composites. The activity of zinc complexes in vulcanization seems to strongly depend on their structure, i.e., availability of zinc to react with curatives. The lower the steric hindrance of the substituents and thus the better the availability of zinc ions, the greater was the activity of the zinc complex and consequently the higher the crosslink density of the vulcanizates. Zinc complexes had no Citation: Maciejewska, M.; detrimental effect on the time and temperature of SBR vulcanization. Despite lower crosslink density, Sowi´nska,A.; Grocholewicz, A. Zinc most vulcanizates with zinc complexes demonstrated similar or improved functional properties in Complexes with 1,3-Diketones as Activators for Sulfur Vulcanization of comparison with SBR containing M-ZnO.
    [Show full text]
  • Why Nature Chose Selenium Hans J
    Reviews pubs.acs.org/acschemicalbiology Why Nature Chose Selenium Hans J. Reich*, ‡ and Robert J. Hondal*,† † University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States ‡ University of WisconsinMadison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States ABSTRACT: The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173−1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se−O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides.
    [Show full text]
  • ©2020 Yu Sun All Rights Reserved
    ©2020 YU SUN ALL RIGHTS RESERVED VULCANIZATION AND DEVULCANIZATION OF RUBBER A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy YU SUN August, 2020 VULCANIZATION AND DEVULCANIZATION OF RUBBER YU SUN Dissertation Approved: Accepted: _____________________________ _____________________________ Advisor Department Chair Dr. Li Jia Dr. Tianbo Liu _____________________________ _____________________________ Committee Chair Interim Dean of the College Dr. Toshikazu Miyoshi Dr. Ali Dhinojwala _____________________________ _____________________________ Committee Member Acting Dean of the Graduate School Dr. Gary R. Hamed Dr. Marnie Saunders _____________________________ _____________________________ Committee Member Date Dr. Junpeng Wang _____________________________ Committee Member Dr. Kevin Cavicchi ii ABSTRACT The research in this dissertation includes two parts: vulcanization of isobutylene- isoprene rubber (IIR) containing geminal vinylidene-acrylate groups and surface devulcanization of ground rubber particles (GRPs) for rubber recycling. In Chapter 2, EIIR was synthesized by grafting ethyl propiolate to IIR via EtAlCl2- catalyzed Alder-ene reaction. Methods for crosslinking EIIR using dicumyl peroxide (DCP) with m-Phenylene-N,N’-bismaleimide (BMI) as a coagent were investigated. The strength, extensibility, and overall toughness of the peroxide-cured EIIR significantly exceed those of previously reported peroxide-cured IIR derivatives. A wide range of stiffness can be realized without sacrificing the strength. The crosslinking density achieved using such curatives is indexed as a function of DCP/BMI ratio, and the curing efficiency of peroxide as a function of DCP/BMI ratio and DCP loading. The role of the geminal vinylidene-acrylate moiety in curing was studied by model reactions, which suggest that the geminal vinylidene-acrylate moiety undergoes both radical addition and hydrogen abstraction.
    [Show full text]
  • Mercury Cycling in Sulfur Rich Sediment from the Brunswick Estuary
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2017 Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary Travis William Nicolette Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Environmental Engineering Commons Recommended Citation Nicolette, Travis William, "Mercury Cycling in Sulfur Rich Sediment From The Brunswick Estuary" (2017). Electronic Theses and Dissertations. 1626. https://digitalcommons.georgiasouthern.edu/etd/1626 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. MERCURY CYCLING IN SULFUR RICH SEDIMENTS FROM THE BRUNSWICK ESTUARY by TRAVIS NICOLETTE (Under the direction of major professor Franciscan Cubas) ABSTRACT Mercury is potentially toxic to the environment. Mercury is absorbed into anaerobic sediments of surface waters, which may be converted to methylmercury, a toxic form of mercury that bio-accumulates in aquatic biota. Sources of mercury in the environment vary, but the production of methylmercury is common in sulfur-rich sediments containing mercury. In such environments, sulfur reducing bacteria (SRB) produce methylmercury as a by-product. The metabolic process uses energy from the reduction of sulfate to sulfide. This study focuses on determining the methylmercury production and release potential from sulfur-rich sediments extracted from different areas of the Brunswick Estuary. Previous studies note considerable levels of mercury in the Brunswick Estuary due to a local super fund site.
    [Show full text]
  • Sulfur Chloride Hazard Summary Identification
    Common Name: SULFUR CHLORIDE CAS Number: 10025-67-9 RTK Substance number: 1758 DOT Number: UN 1828 Date: October 1999 ----------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Sulfur Chloride can affect you when breathed in. * If you think you are experiencing any work-related health * Sulfur Chloride is a HIGHLY CORROSIVE problems, see a doctor trained to recognize occupational CHEMICAL and contact can severely irritate and burn the diseases. Take this Fact Sheet with you. skin and eyes with possible eye damage. * Breathing Sulfur Chloride can irritate the nose and throat. WORKPLACE EXPOSURE LIMITS * Breathing Sulfur Chloride can irritate the lungs causing OSHA: The legal airborne permissible exposure limit coughing and/or shortness of breath. Higher exposures (PEL) is 1 ppm averaged over an 8-hour can cause a build-up of fluid in the lungs (pulmonary workshift. edema), a medical emergency, with severe shortness of breath. NIOSH: The recommended airborne exposure limit is * Exposure to Sulfur Chloride can cause headache, nausea 1 ppm, which should not be exceeded at any and dizziness. time. * Repeated exposure to Sulfur Chloride can cause drying and cracking of the skin. ACGIH: The recommended airborne exposure limit is 1 ppm, which should not be exceeded at any IDENTIFICATION time. Sulfur Chloride is a light amber to yellowish red, fuming, oily liquid with a strong, nauseating and irritating odor. It is WAYS OF REDUCING EXPOSURE used as an intermediate and chlorinating agent in the * Where possible, enclose operations and use local exhaust manufacture of organic chemicals, sulfur dyes, insecticides, ventilation at the site of chemical release. If local exhaust and synthetic rubber.
    [Show full text]
  • Recent Developments in Chalcogen Chemistry
    RECENT DEVELOPMENTS IN CHALCOGEN CHEMISTRY Tristram Chivers Department of Chemistry, University of Calgary, Calgary, Alberta, Canada WHERE IS CALGARY? Lecture 1: Background / Introduction Outline • Chalcogens (O, S, Se, Te, Po) • Elemental Forms: Allotropes • Uses • Trends in Atomic Properties • Spin-active Nuclei; NMR Spectra • Halides as Reagents • Cation Formation and Stabilisation • Anions: Structures • Solutions of Chalcogens in Ionic Liquids • Oxides and Imides: Multiple Bonding 3 Elemental Forms: Sulfur Allotropes Sulfur S6 S7 S8 S10 S12 S20 4 Elemental Forms: Selenium and Tellurium Allotropes Selenium • Grey form - thermodynamically stable: helical structure cf. plastic sulfur. R. Keller, et al., Phys. Rev. B. 1977, 4404. • Red form - cyclic Cyclo-Se8 (cyclo-Se7 and -Se6 also known). Tellurium • Silvery-white, metallic lustre; helical structure, cf. grey Se. • Cyclic allotropes only known entrapped in solid-state structures e.g. Ru(Ten)Cl3 (n = 6, 8, 9) M. Ruck, Chem. Eur. J. 2011, 17, 6382 5 Uses – Sulfur Sulfur : Occurs naturally in underground deposits. • Recovered by Frasch process (superheated water). • H2S in sour gas (> 70%): Recovered by Klaus process: Klaus Process: 2 H S + SO 3/8 S + 2 H O 2 2 8 2 • Primary industrial use (70 %): H2SO4 in phosphate fertilizers 6 Uses – Selenium and Tellurium Selenium and Tellurium : Recovered during the refining of copper sulfide ores Selenium: • Photoreceptive properties – used in photocopiers (As2Se3) • Imparts red color in glasses Tellurium: • As an alloy with Cu, Fe, Pb and to harden
    [Show full text]