Enhanced in Situ Reductive Dechlorination for Groundwater

Total Page:16

File Type:pdf, Size:1020Kb

Enhanced in Situ Reductive Dechlorination for Groundwater Enhanced In Situ Reductive Dechlorination for Groundwater On this page: Schematic Introduction Other Technology Names Description Development Status Applicability Cost Duration Implementability Considerations Resources Schematic Enhanced In Situ Bioremediation Introduction https://frtr.gov/matrix/Enhanced-In-Situ-Reductive-Dechlorinated-for-Groundwater/ 1/18 8/3/2020 Technology Screening Matrix | Federal Remediation Technologies Roundtable Enhanced in situ reductive dechlorination (ERD) is the process of modifying chemical, physical, and biological conditions in the aquifer to stimulate the microbial degradation of contaminants under anaerobic conditions to harmless end products (e.g., carbon dioxide [CO2 ] or ethene). It is used to remediate volatile organic compounds (CVOCs) (e.g., trichloroethylene [TCE]) and certain pesticides and other chlorinated organic contaminants. ERD commonly is used to treat dissolved phase plumes downgradient of source areas, but also can be designed to treat CVOC source areas including those that contain dense non- aqueous phase liquid (DNAPL). Other Technology Names Biostimulation Bioaugmentation Enhanced anaerobic bioremediation Enhanced Natural Attenuation Halorespiration Dehalorespiration Description ERD is the process through which chlorine atoms attached to an organic compound are sequentially removed under anoxic (no oxygen) conditions. Application of ERD is comprised of biostimulation and sometimes bioaugmentation to modify existing geochemical and biological conditions in an aquifer to facilitate degradation of contaminants (AFCEC, NAVFAC, ESTCP, 2004). Biostimulation refers to the introduction of an electron donor (carbon source) into the aquifer for stimulating microbial growth. The carbon source is used as food by native microbes, which in turn, produce hydrogen through fermentation reactions. This process depletes the aquifer of dissolved oxygen (DO) and other electron accepters including nitrate, sulfate, and ferric iron, which lowers the oxidation-reduction potential (ORP), thereby creating the conditions for reductive dechlorination to occur (EPA, CLU-IN, 2016; NAVFAC, 2007a). Bioaugmentation refers to the introduction of microbes, which may be required at some sites to accelerate the acclimation and biodegradation process if the existing microbial population is not adequate at the onset of treatment (ITRC, 2002; ITRC, 2008b). At many sites, microbes capable of dechlorinating cis-1,2- https://frtr.gov/matrix/Enhanced-In-Situ-Reductive-Dechlorinated-for-Groundwater/ 2/18 8/3/2020 Technology Screening Matrix | Federal Remediation Technologies Roundtable dichloroethene (cis-1,2-DCE) and vinyl chloride (VC) are not present in suicient quantities resulting in a condition referred to as "cis-1,2-DCE and VC stall" (NAVFAC, 2007b). In those cases, bioaugmentation can be used in combination with biostimulation to achieve the necessary conditions to overcome stall and promote complete reductive dechlorination (NAVFAC, 2013). Under the right conditions, ERD has been proven successful as a remedial strategy to treat chlorinated solvent source areas, including those that contain low to moderate levels of DNAPL mass (ITRC, 2007; ITRC, 2008a). However, ERD is more commonly used to treat dissolved phase plumes downgradient of the source area, or to create reactive barriers to prevent further migration of a plume. Reaction Mechanisms ERD can occur through several reaction (degradation) mechanisms including: Direct Anaerobic Reductive Dechlorination is a biological process where microbes receive energy and grow through sequential reductive dechlorination. In this reaction, chlorinated compounds serve as the terminal electron acceptor, and hydrogen (sometimes acetate as well) serves as the electron donor. Hydrogen is produced by fermenting populations that utilize the added organic substrate. Anaerobic reductive dechlorination can also be referred to as halorespiration or dehalorespiration. A common anaerobic dechlorination pathway is the degradation of tetrachloroethene (PCE) to TCE to cis-1,2-DCE and small amounts of trans-DCE to VC to ethene (Lorenz and Loler, 2016). The chlorinated ethene molecule is the electron acceptor in this reaction. Although fermentation products such as acetate may serve as an electron donor, hydrogen is recognized as the predominant electron donor for anaerobic dechlorination of CVOCs. Following similar degradation pathways, chloroethanes and chloromethanes may also be sequentially reduced by anaerobic dechlorination. For chloroethanes, 1,1,1- trichloroethane (TCA) is reduced to 1,1-dichloroethane (DCA) then chloroethane (CA) and finally to ethane. For chloromethanes, carbon tetrachloride (CT) can be reduced to chloroform (CF) then methylene chloride (MC) to chloromethane (CM) and finally to methane (Stroo, Lesson et al., 2013; ITRC, 2002). Cometabolic Anaerobic Reductive Dechlorination is a process where chlorinated compounds are reduced by non-specific enzymes or co-factors that are generated for metabolism by another compound (i.e., the primary substrate) in an anaerobic environment. Cometabolism does not produce energy for or benefit the microbe producing the non-specific enzyme or co- factor. To sustain the cometabolic process, suicient primary substrate is required to support the microbe producing the non-specific enzyme or co- https://frtr.gov/matrix/Enhanced-In-Situ-Reductive-Dechlorinated-for-Groundwater/ 3/18 8/3/2020 Technology Screening Matrix | Federal Remediation Technologies Roundtable factor (Stroo and Ward, 2010; ITRC, 2008b). Reliance on this indirect strategy can lead to the accumulation of toxic end products such as cis-dichloroethene (cDCE) and vinyl chloride (VC) as cometabolism has slower reaction rates than direct reductive dechlorination (ITRC, 2002). Abiotic Reductive Dechlorination is a chemical degradation reaction where a chlorinated hydrocarbon is degraded (i.e., reduced) by reactive compounds, such as metal sulfides. By definition, the reaction is not microbially mediated. Adding organic substrate to an aquifer lowers the redox environment and can produce ferrous iron and hydrogen sulfide through biologically-mediated iron and sulfate reduction, respectively. It is the reactive compounds that abiotically reduce the chlorinated solvents (Stroo, Lesson et al., 2013; Stroo and Ward, 2010). More information is provided in the In Situ Biogeochemical Transformation Processes profile. Distinguishing between the various pathways at sites is diicult and oen not possible given all the variables in the subsurface. As such, all three pathways are recognized to concurrently contribute to enhanced anaerobic degradation. Common Amendments All of the above processes generally require the introduction of an electron donor to produce the necessary conditions for biodegradation to occur (AFCEC, NAVFAC et al., 2010; Borden, 2006). These electron donors/carbon sources can be separated into three principal groups based on their physical characteristics including: Aqueous (soluble): Aqueous compounds are highly soluble and can be more readily distributed across large areas by groundwater flow/advection, assuming reasonable flow velocity. However, they also are readily bioavailable, and, therefore, are consumed in a relatively short time. Examples of soluble substrates include lactate and fatty acids, butyrate, methanol, ethanol, benzoate, molasses, and high fructose corn syrup. Slow-Release: Slow release compounds tend to have low solubility limits and greater viscosities than their aqueous counterparts, making them more diicult to emplace in the aquifer. However, because they are less soluble (and less bioavailable), they persist much longer. This slow-release aspect allows these substrates to serve as long-lasting sources of electron donor and minimize the number of substrate injections performed at a site. Their properties enables the substrate to remain relatively immobile in the subsurface. Viscous fluid substrates, including emulsified and neat vegetable oils and hydrogen release compounds, are included in this category (ESTCP, 2009). https://frtr.gov/matrix/Enhanced-In-Situ-Reductive-Dechlorinated-for-Groundwater/ 4/18 8/3/2020 Technology Screening Matrix | Federal Remediation Technologies Roundtable Solid Substrates: Typical solid phase substrates, consisting of materials such as mulch, compost and chitin, are used either as a one-time amendment or in biobarrier construction. Degradation of the substrate by microbial processes provides a number of breakdown products, including metabolic and humic acids, which act as secondary fermentable substrates. At many sites, the aquifer is bioaugmented with commercially available microbial consortia consisting of one or more of Dehalococcoides (DHC), Dehalobacter, sulfate reducers, methanogens, and fermentative microbes, which can degrade chlorinated ethene, chlorinated ethane, and mixed plumes. It has been found that the microbial population must also contain necessary functional genes to facilitate the ERD process. For example, DHC must contain the function gene vinyl chloride reductase (vcrA) to degrade VC or a "stall" condition will occur (Stroo, Lesson et al., 2013; Lorenz and Loler, 2016). Microbial cultures should be added only aer the necessary redox conditions have been achieved in the aquifer. DCE and VC require stronger anaerobic conditions (i.e., low redox conditions) than TCE for the ERD process to proceed to completion (e.g. to ethene) or a "stall" condition may occur (NAVFAC, 2007b). The cost
Recommended publications
  • Chlorinated Solvent Bioremediation: Fundamentals and Practical Application for Remedial Project Managers Presented By: Christopher Marks, Ph.D
    Chlorinated Solvent Bioremediation: Fundamentals and Practical Application for Remedial Project Managers Presented by: Christopher Marks, Ph.D. & Carolyn Acheson, Ph.D. US Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory CLU-IN Webinar Nov. 14, 2018 Source: Accelerated Bioremediation of Chlorinated Solvents, Interstate Technology and Regulatory Council and Remediation and Technology Development Forum, 2003 1 Bioremediation of Chlorinated Solvents Source: Accelerated Bioremediation of Chlorinated Solvents, Interstate Technology and Regulatory Council and Remediation and Technology 2 Development Forum, 2003 Part I: Introduction to Chlorinated Solvent Properties and Anaerobic Reductive Dechlorination 3 Terminology • Anaerobic: Microbial metabolic processes occurring in the absence of oxygen. • Anaerobic Reductive Dechlorination: The biological removal of a chlorine atom from an organic compound and replacement with a hydrogen atom in a reducing environment. • Biodegradation aka biotransformation: Biologically mediated reactions which convert one chemical to another. For example, PCE is converted to TCE when anaerobic reductive reactions remove a chlorine molecule. • Bioremediation: The engineered approaches using microorganisms to biodegrade contaminants. • Biostimulation: The addition of organic electron donors and nutrients to enhance the rate of reductive dechlorination by the native microflora. • Bioaugmentation: The addition of beneficial microorganisms to enhance the capacity
    [Show full text]
  • Overview of in Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones
    INTERSTATE TECHNOLOGY & REGULATORY COUNCIL Warning! This document has not been amended since publication. Some content may be out of date and may no longer apply. INTERSTATE TECHNOLOGY & REGULATORY COUNCIL Technology Overview Overview of In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones October 2005 Prepared by The Interstate Technology & Regulatory Council Bioremediation of DNAPLs Team ABOUT ITRC Established in 1995, the Interstate Technology & Regulatory Council (ITRC) is a state-led, national coalition of personnel from the environmental regulatory agencies of more than 40 states and the District of Columbia, three federal agencies, tribes, and public and industry stakeholders. The organization is devoted to reducing barriers to and speeding interstate deployment of, better, more cost-effective, innovative environmental techniques. ITRC operates as a committee of the Environmental Research Institute of the States (ERIS), a Section 501(c)(3) public charity that supports the Environmental Council of the States (ECOS) through its educational and research activities aimed at improving the environment in the United States and providing a forum for state environmental policy makers. More information about ITRC and its available products and services can be found on the Internet at www.itrcweb.org. DISCLAIMER This document is designed to help regulators and others develop a consistent approach to their evaluation, regulatory approval, and deployment of specific technologies at specific sites. Although the information in this document is believed to be reliable and accurate, this document and all material set forth herein are provided without warranties of any kind, either express or implied, including but not limited to warranties of the accuracy or completeness of information contained in the document.
    [Show full text]
  • Considerations for the Collection and Evaluation of Natural Attenuation Parameters at Sites Contaminated with Chlorinated Solvents
    CONSIDERATIONS FOR THE COLLECTION AND EVALUATION OF NATURAL ATTENUATION PARAMETERS AT SITES CONTAMINATED WITH CHLORINATED SOLVENTS Chlorine • Hydrogen • Carbon • Bond "\. ( . I Vinyl Chloride I . ~ I Cis-1,2-Dichloroethene I ITrichloroethene I .,. Source Area Biological Active Area DowngradientI Area Filure 3 Anaerobic Reductive Dechlorination ofa Trichloroethene Plnm.e Prepared by Florida Department of Environmental Protection (FDEP) Division of Waste Management Bureau of Waste Cleanup Hazardous Waste Cleanup Section April 1999 TABLE OF CONTENTS SECTION TITLE PAGE 1.0 IN'TR.ODUCTION ........................................................................................ 1 ~ 2.0 GENERAL OVERVIEW OF CHLORINATED ALIPHATIC HYDROCARBON BIODEGRADATION................................................. 2 2.1 Bacteria 2.2 Electron Acceptor Reactions 2.3 Electron Donor Reactions 2.4 Co-Metabolism 3.0 NATURAL ATTENUATION BY PHYSICAL PROCESSES ................... 4 4.0 METABOLIC BY-PRODUCTS AND REDOX PROCESSES IN GROUNDWATER SYSTEMS ................................................................... 4 S.O EVIDENCE USED TO SUPPORT NATURAL ATTENUATION•••••••••• S 5.1 Direct Evidence S.2 Examine Changes 5.3 Laboratory microcosm studies 6.0 METHODOLOGY USED FOR DATA REVIEW AND SITE EVALUATION........................................................................................... 6 7.0 NATURAL ATTENUATION SAMPLING AND DATA EVALUATION METHODOLOGY..................................................................................... 9 7.1 Monitor Well
    [Show full text]
  • Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents
    FINAL Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents August 2004 This page intentionally left blank PRINCIPLES AND PRACTICES OF ENHANCED ANAEROBIC BIOREMEDIATION OF CHLORINATED SOLVENTS August 2004 Prepared for: Air Force Center for Environmental Excellence Brooks City-Base, Texas Naval Facilities Engineering Service Center Port Hueneme, California and Environmental Security Technology Certification Program Arlington, Virginia This page intentionally left blank ACKNOWLEDGEMENTS The Parsons Corporation (Parsons) prepared this Principles and Practices document under contract to the Air Force Center for Environmental Excellence (AFCEE, Contract F41624-00- D-8024) and the Naval Facilities Engineering Service Center (NFESC, Contract N47408-98- D-7527). The NFESC contract was funded by the Environmental Security Technology Certification Program (ESTCP). The United States Army Corp of Engineers (USACE) assisted with technical review. This document is intended to assist AFCEE, NFESC, ESTCP, USACE and their United States (US) Department of Defense (DoD) technology-transition partners in evaluating and applying enhanced in situ anaerobic bioremediation for restoration of groundwater contaminated with chlorinated solvents. The authors acknowledge the assistance of numerous individuals who provided review services, and to several environmental contractors that provided case studies and information regarding respective areas of expertise. These individuals and their affiliations are listed in Appendix A. - i - 022/738863/28.doc DISCLAIMER In no event shall either the United States Government or Parsons have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein; nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.
    [Show full text]
  • Biochemistry and Physiology of Halorespiration by Desulfitobacterium Dehalogenans
    Biochemistry and Physiology of Halorespiration by Desulfitobacterium dehalogenans ..?.^TJ?*LE_ LANDBOUWCATALOGU S 0000 0807 1728 Promotor: Dr.W.M . deVo s hoogleraar in de microbiologie Co-promotoren: Dr.ir .A.J.M .Stam s universitair hoofddocent bij deleerstoelgroe p Microbiologie Dr.ir . G. Schraa universitair docent bij deleerstoelgroe p Microbiologie Stellingen 1. Halorespiratie is een weinig efficiente wijze van ademhalen. Dit proefschrift 2. Halorespiratie moet worden opgevat als verbreding en niet als specialisatie van het genus Desulfitobacterium. Dit proefschrift 3. Reductieve dehalogenases zijn geen nieuwe enzymen. 4. 16S-rRNA probes zijn minder geschikt voor het aantonen van specifieke metabole activiteiten in een complex ecosysteem. Loffler etal. (2000) AEM66 : 1369;Gottscha l &Kroonema n (2000)Bode m3 : 102 5. Het "twin-arginine" transportsysteem wordt niet goed genoeg begrepen om op basis van het voorkomen van het "twin-arginine" motief enzymen te lokaliseren. Berks etal. (2000)Mol .Microbiol .35 : 260 6. Asbesthoudende bodem is niet verontreinigd. 7. Biologische groente is een pleonasme. Stellingen behorende bij het proefschrift 'Biochemistry and physiology of halorespiration by Desulfitobacterium dehalogenans' van Bram A. van de Pas Wageningen, 6 december 2000 MJOQ^O \lZ°]0 ^ Biochemistry and Physiology of Halorespiration by Desulfitobacterium dehalogenans BramA. van de Pas Proefschrift ter verkrijging van de graad van doctor op gezag van derecto r magnificus van Wageningen Universiteit, dr. ir. L. Speelman, in het openbaar
    [Show full text]
  • The Influence of In-Situ Activated Carbon on Biodegradation of Chlorinated Solvents
    Clemson University TigerPrints All Theses Theses 8-2018 The nflueI nce of In-Situ Activated Carbon on Biodegradation of Chlorinated Solvents Kameryn McGee Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation McGee, Kameryn, "The nflueI nce of In-Situ Activated Carbon on Biodegradation of Chlorinated Solvents" (2018). All Theses. 2925. https://tigerprints.clemson.edu/all_theses/2925 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE INFLUENCE OF IN-SITU ACTIVATED CARBON ON BIODEGRADATION OF CHLORINATED SOLVENTS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Environmental Engineering and Earth Sciences by Kameryn McGee August 2018 Accepted by: Dr. Kevin Finneran, Committee Chair Dr. David Ladner Dr. Sudeep Popat ABSTRACT Chlorinated solvents have been a contaminant of interest in the remediation field for many years because they have been manufactured in large amounts and released into the environment due to improper storage and disposal. Since they are produced in such large quantities and there has been so many cases of uncontrolled releases, corrective actions are necessary and many remediation strategies have been explored. In- situ bioremediation of chlorinated solvents (TCE) is an intricate respiratory process which combines the addition of electron donors, chemical reactions, and the presence of microorganisms which directly access contaminants. Microbes metabolize the electron donor and utilize the energy for complete dechlorination of TCE to ethene.
    [Show full text]
  • Redutive Dehalogenation of Chlorinated Alkanes by Novel Bacteria at the Petroprocessor of Louisiana Inc
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Redutive Dehalogenation of Chlorinated Alkanes by Novel Bacteria at the PetroProcessor of Louisiana Inc. Superfund Site Jun Yan Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Civil and Environmental Engineering Commons Recommended Citation Yan, Jun, "Redutive Dehalogenation of Chlorinated Alkanes by Novel Bacteria at the PetroProcessor of Louisiana Inc. Superfund Site" (2008). LSU Doctoral Dissertations. 510. https://digitalcommons.lsu.edu/gradschool_dissertations/510 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REDUCTIVE DEHALOGENATION OF CHLORINATED ALKANES BY NOVEL BACTERIA AT THE PETROPROCESSOR OF LOUISIANA INC. SUPERFUND SITE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Civil and Environmental Engineering by Jun Yan B.S., Nanjing University, China, 2000 M.S., Nanjing University, China, 2003 May 2009 ACKNOWLEDGMENTS I would like to take this opportunity to express my sincere appreciation to my advisor, Dr. William M. Moe, for offering me such a great opportunity to complete my Ph.D. research under his direction. During my study at LSU, I have enjoyed my research on this project in Dr. Moe’s group. His insightful guidance and generous support always inspire my research and encourage me to pursue the accomplishments of my career.
    [Show full text]
  • Electron Donor and Acceptor Utilization by Halorespiring Bacteria'
    Electron donor andaccepto r utilizationb y halorespiring bacteria Maurice L.G.C. Luijten CENTRALS LANDBOUWCATALOGUS 0000 0950 9080 Promotoren Prof.dr .W.M . de Vos Hoogleraar ind eMicrobiologi c Wageningen Universiteit Prof.dr .ir .A.J.M .Stam s Persoonlijk hoogleraar bij hetlaboratoriu mvoo r Microbiologic Laboratorium voor Microbiologic, Wageningen Universiteit Copromotoren Dr.G .Schra a Universitair docent Laboratorium voor Microbiologic, Wageningen Universiteit Dr.A.A.M . Langenhoff Senior researcher/project leader Milieubiotechnologie, TNO-MEP Promotiecommissie Prof. E.J.Bouwe r John's Hopkins University, Baltimore, USA Prof.dr .C .Hollige r EPFL, Lausanne, Switzerland Dr.F .Volkerin g Tauw bv, Deventer, Nederland Prof. dr.ir .W.H . Rulkens Wageningen Universteit Dit onderzoek is uitgevoerd binnen de onderzoekschool SENSE (Netherlands Research School forth e Socio-Economic andNatura l Sciences ofth e Environment). LV''-:- v. •:-:::'.Ifir Electron donor and acceptor utilizationb y halorespiring bacteria Maurice L.G.C.Luijte n Proefschrift Terverkrijgin g van de graadva n doctor opgeza gva n derecto r magnificus van Wageningen Universiteit, prof. dr. ir. L. Speelman, inhe t openbaar te verdedigen opvrijda g 11 juni 2004 desnamiddag s te half twee in deAula . \ '\ i ocXi ^ Electron donor and acceptor utilization byhalorespirin g bacteria Maurice L.G.C. Luijten Ph.D.thesi sWageninge n University, Wageningen, The Netherlands 2004 ISBN 90-5804-067-1 Front cover: Modified EMpictur e ofSulfurospirillum halorespirans PCE-M2 — ry ' Stellingen 1.El k nadeel heb zijn voordeel. Dit proefschrift. 2. De ene volledige reductie van PCE is de andere nog niet. Dit proefschrift. 3. Sectorale communicatie reikt niet ver genoeg. HRH the Prince of Orange, Wat.
    [Show full text]
  • Detection of Dehalococcoides Spp. by Peptide Nucleic Acid Fluorescent in Situ Hybridization
    This article was published in Journal of Molecular Microbiology and Biotechnology, 24, 142- 149, 2014 http://dx.doi.org/10.1159/000362790 Detection of Dehalococcoides spp. by Peptide Nucleic Acid Fluorescent in situ Hybridization Anthony S. Dankoa, c Silvia J. Fonteneteb Daniel de Aquino Leiteb, e Patrícia O. Leitãoa,c Carina Almeidab, d Charles E. Schaeferf Simon Vainbergf Robert J. Steffanf Nuno F. Azevedob aCentro de Investigação em Geo-Ambiente e Recursos (CIGAR), Departamento de Engenharia de Minas, Faculdade de Engenharia, and bLaboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, cCentro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Lisboa, and dInstitute for Biotechnology and Bioengineering (IBB), Center of Biological Engineering, Universidade do Minho, Braga, Portugal; eLANASE, Departamento de Engenharia de Alimentos, Faculdade de Engenharia, Universidade Federal da Grande Dourados, Dourados, Brazil; fCB&I Federal Services, LLC., Lawrenceville, N.J., USA Abstract Chlorinated solvents including tetrachloroethene (perchloroethene and trichloroethene), are widely used industrial solvents. Improper use and disposal of these chemicals has led to a widespread contamination. Anaerobic treatment technologies that utilize Dehalococcoides spp. can be an effective tool to remediate these contaminated sites. There- fore, the aim of this study was to develop, optimize and validate peptide nucleic acid (PNA) probes for the detection of Dehalococcoides spp. in both pure and mixed cultures. PNA probes were designed by adapting previously published DNA probes targeting the region of the point mutations de- scribed for discriminating between the Dehalococcoides spp. strain CBDB1 and strain 195 lineages.
    [Show full text]
  • Recent Strategies for Environmental Remediation of Organochlorine Pesticides
    applied sciences Review Recent Strategies for Environmental Remediation of Organochlorine Pesticides Timothy O. Ajiboye 1,2 , Alex T. Kuvarega 3 and Damian C. Onwudiwe 1,2,* 1 Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; [email protected] 2 Department of Chemistry, School of Physical and chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa 3 Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida 1709, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-18-389-2545; Fax: +27-18-389-2420 Received: 29 June 2020; Accepted: 27 July 2020; Published: 10 September 2020 Abstract: The amount of organochlorine pesticides in soil and water continues to increase; their presence has surpassed maximum acceptable concentrations. Thus, the development of different removal strategies has stimulated a new research drive in environmental remediation. Different techniques such as adsorption, bioremediation, phytoremediation and ozonation have been explored. These techniques aim at either degrading or removal of the organochlorine pesticides from the environment but have different drawbacks. Heterogeneous photocatalysis is a relatively new technique that has become popular due to its ability to completely degrade different toxic pollutants—instead of transferring them from one medium to another. The process is driven by a renewable energy source, and semiconductor nanomaterials are used to construct the light energy harvesting assemblies due to their rich surface states, large surface areas and different morphologies compared to their corresponding bulk materials.
    [Show full text]
  • Evaluation of the Role of Dehalococcoides Organisms in the Natural Attenuation of Chlorinated Ethylenes in Ground Water
    Evaluation of the Role of Dehalococcoides Organisms in the Natural Attenuation of Chlorinated Ethylenes in Ground Water EPA/600/R-06/029 July 2006 Evaluation of the Role of Dehalococcoides Organisms in the Natural Attenuation of Chlorinated Ethylenes in Ground Water Xiaoxia Lu National Research Council Post Doctoral Associate tenable at the U.S. Environmental Protection Agency Office of Research and Development National Risk Management Laboratory Ada, Oklahoma 74820 Donald H. Kampbell, and John T. Wilson U.S. Environmental Protection Agency Office of Research and Development National Risk Management Laboratory Ada, Oklahoma 74820 Support from the U.S. Air Force Center for Environmental Excellence through Interagency Agreement # RW-57939566 Project Officer John T. Wilson Ground Water and Ecosystems Restoration Division National Risk Management Research Laboratory Ada, Oklahoma 74820 National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 Notice The U.S. Environmental Protection Agency through its Office of Research and Development funded the research described here. This work was conducted under in-house Task 3674, Monitored Natural Attenuation of Chlorinated Solvents, and in association with and with support from the U.S. Air Force Center for Environmental Excellence through Interagency Agreement # RW-57939566, Identification of Processes that Control Natural Attenuation at Chlorinated Solvent Spill Sites. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. All research projects making conclusions and recommendations based on environmentally related measurements and funded by the U.S. Environ- mental Protection Agency are required to participate in the Agency Quality Assurance Program.
    [Show full text]
  • Reductive, Dechlorination of Sediment-Sorbed Polychlorinated
    AN ABSTRACT OF THE THESIS OF Darin James Trobaugh for the degree of Master of Science in Civil Engineering presented on July 1, 1998. Title: Reductive Dechlorination of Sediment-Sorbed Polychlorinated Biphenyls by Vitamin B12s. Redacted for Privacy Abstract approved.:--- Sandra L. Woods The reductive dechlorination of chlorobiphenyls in sediment by titanium(III) citrate-reduced vitamin Bus was studied in batch reactors. Long term ampoule studies demonstrated reductive dechlorination of sediment-sorbed 2,3,4,5,6-pentachlorobiphenyl (2,3,4,5,6-PeCB) to tetra-, tri-, di-, and monochlorobiphenyl products. Over 50% chlorine removal was observed over 160 days. The results of the ampoule experiment were compared to previous experiments with aqueous PCBs, and both systems appeared to follow the same pathway. Theoretical product distributions based on free energies of formation were compared to product distributions for the ampoule experiments, and both aqueous and sediment-sorbed PCB reductive dechlorination followed the thermodynamically favored pathway. Although chlorines were removed from all positions, reductive dechlorination was generally preferred at the ortho position. Reductive Dechlorination of Sediment-Sorbed Polychlorinated Biphenyls by Vitamin B12s by Darin James Trobaugh A THESIS submitted to Oregon State University In partial fulfillment of the requirements for the degree of Master of Science Presented July 1, 1998 Commencement June 1999 Master of Science thesis of Darin James Trobaugh presented on July 1, 1998 APPROVED: Redacted for Privacy ajor Professor, representing Civil Engineering Redacted for Privacy Chair of Department of Civil, Construction, and Environmental Engineering Redacted for Privacy Dean of Grad e School I understand that my thesis will become part of the permanent collection of Oregon State University libraries.
    [Show full text]