Immobilization of Mercury and Arsenic Through Covalent Thiolate Bonding for the Purpose of Environmental Remediation

Total Page:16

File Type:pdf, Size:1020Kb

Immobilization of Mercury and Arsenic Through Covalent Thiolate Bonding for the Purpose of Environmental Remediation University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2010 IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATION Lisa Y. Blue University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Blue, Lisa Y., "IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATION" (2010). University of Kentucky Doctoral Dissertations. 785. https://uknowledge.uky.edu/gradschool_diss/785 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Lisa Y. Blue The Graduate School University of Kentucky 2010 IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATION ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Lisa Y. Blue Lexington, Kentucky Director: Dr. David A. Atwood, Professor of Chemistry Lexington, Kentucky 2010 Copyright © Lisa Y. Blue 2010 ABSTRACT OF DISSERTATION IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATION Mercury and arsenic are widespread contaminants in aqueous environments throughout the world. The elements arise from multiple sources including mercury from coal-fired power plants and wells placed in natural geological deposits of arsenic- containing minerals. Both elements have significant negative health impacts on humans as they are cumulative toxins that bind to the sulfhydryl groups in proteins, disrupting many biological functions. There are currently no effective, economical techniques for removing either mercury or arsenic from aqueous sources. This thesis will demonstrate a superior removal method for both elements by formation of covalent bonds with the sulfur atoms in N,N’-Bis(2-mercaptoethyl)isophthalamide (commonly called “B9”). That B9 can precipitate both elements from water is unusual since aqueous mercury exists primarily as a metal(II) dication while aqueous arsenic exists as As(III) and As(V) oxyanions. KEYWORDS: Arsenic, Covalent Bonding, Mercury, Remediation, Sulfur Lisa Y Blue November 30, 2009 IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATION By Lisa Y. Blue Dr. David Atwood Director of Dissertation Dr. Mark Meier Director of Graduate Studies November 30, 2009 RULES FOR USE OF DISSERTATIONS Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgements. Extensive copying or publication of the dissertation in whole or in part also requires the written consent of the Dean of the Graduate School of the University of Kentucky. A library which borrows this dissertation for use by its patrons is expected to secure the signature of each user. Name Date ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ DISSERTATION Lisa Y. Blue The Graduate School University of Kentucky 2010 IMMOBILIZATION OF MERCURY AND ARSENIC THROUGH COVALENT THIOLATE BONDING FOR THE PURPOSE OF ENVIRONMENTAL REMEDIATION DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Lisa Y. Blue Lexington, Kentucky Director: Dr. David A. Atwood, Professor of Chemistry Lexington, Kentucky 2010 Copyright © Lisa Y. Blue 2010 This work is dedicated to my boys: Spencer and Benjamin, I hope to one day inspire you as much as you’ve inspired me. Jesse, thanks for being my rock. Education is not the filling of a pail, but the lighting of a fire. —William Butler Yeats ACKNOWLEDGEMENTS David, I must start my acknowledgements by thanking you for encouraging me to pursue every project and opportunity that has ever piqued my interest and for hanging in there with me while I followed a rather non-linear path to a Ph.D. under your guidance. I’ve always appreciated your indefatigable optimism and the freedoms allowed to me while in your group. You’ve taught me an incredible amount of self-reliance in research. Gail, first of all, I must thank you for the quote underneath the signature line of your emails. Those few words have bothered me and goaded me into action more than I would have thought possible, especially on the tough days, when I hear that quote resounding in my head and find the courage to keep moving. Thank you, too, for serving as the reality check I needed, even when I was not necessarily receptive to said reality check. Thanks for creating a wonderful learning environment in the lab and for allowing me to participate so fully in the ERTL mission. Thanks, too, for the bracing insight into my future aspirations and potential career paths. You have inspired me for a lifetime. The main thrust of my research efforts were supported by the fine folks at ERTL, especially Tricia Coakley, John May, James Ward and Katy Ward. These four were in the trenches with me almost from the beginning and I am in their debt for the endless constructive critiques of experimental methods, results, and written research products, for training on various instruments and techniques, for their friendship, and for their constant encouragement. These four quickly became personally invested in my success as a doctoral candidate and it was always a pleasure to share my triumphs with them. I must also thank each of you charged with the duty of serving on my doctoral committee for your support during this process. Chris, I still swear that all I ever knew about soil chemistry I learned from you. Thanks for such a solid grounding in soil chemistry which I continue to build upon today. Who knew I could get so much mileage out of a single course? Dr. Bramwell, I appreciate your support, your professionalism and your kind words of encouragement before my qualifying exam when it was delayed. Dr. Lovell, thanks for coming in so late in the game to see me to the finish line. In the Atwood lab, I’d like to thank all of my predecessors for laying the groundwork for the research described in this dissertation. I’d like to thank my contemporaries in the group, especially Eduardo Santillán-Jiménez and Christopher iii Preece for the excellent discussions of inorganic chemistry, uranium, zinc, arsenic, mercury, and all things graduate school. I was also fortunate enough to work with many wonderfully talented undergraduate researchers including Railey White and Kristen Bird, with whom I worked most extensively, and several others including J. David Clem, Shaun Masters, Kyle Slone, Laura Fletcher, Chrissy Minton, Crystal Holcomb, Jared Daughetry and Kateland Beals. This group was affectionately known as the “Blue Crew” and the semester that I had nine of them in the lab was one of the most amazing and productive times I can recall. Thanks for the fun, Blue Crew! You are sorely missed. I must extend thanks to all of my collaborators on various projects throughout my research career at the University of Kentucky. On the arsenic in poultry litter amended soils project, E. Glynn Beck of the Kentucky Geological Survey in western Kentucky and Greg Henson from the McLean County Extension office were a great help for coordination of the field work, the selection of fields, sample collection, sample transportation to the lab, and enlightened discussions concerning the project. It was a pleasure working on the thimerosal in vaccines project with Dr. Laura Hewiston of the Magee Women’s Research Institute in Pittsburgh and Dr. Andy Wakefield from the Thoughtful House for Children based in Austin, Texas. I appreciate the use of Dr. Boyd Haley’s instrument for analysis of the project’s samples as well. I’m very appreciative for Abhijit Mukerjee and Alan Fryar testing my arsenic remediation columns in West Bengal. I also appreciate the hospitality of Evan Granite when visiting him at the Pittsburgh DOE NETL laboratory to discuss his research on gas phase mercury capture and the possibility of testing our compounds in his lab-scale simulated coal-fired power plant
Recommended publications
  • Understanding Lead Uptake and Effects Across Species Lines: a Conservation Medicine Based Approach
    UNDERSTANDING LEAD UPTAKE AND EFFECTS ACROSS SPECIES LINES: A CONSERVATION MEDICINE BASED APPROACH MARK A. POKRAS AND MICHELLE R. KNEELAND Center for Conservation Medicine, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, USA. E-mail: [email protected] ABSTRACT.—Conservation medicine examines the linkages among the health of people, animals and the environment. Few issues illustrate this approach better than an examination of lead (Pb) toxicity. We briefly review the current state of knowledge on the toxicity of lead and its effects on wildlife, humans, and domestic animals. Lead is cheap and there is a long tradition of its use. But the toxic effects of Pb have also been recognized for centuries. As a result, western societies have greatly reduced many traditional uses of Pb, including many paints, gasoline and solders because of threats to the health of humans and the environment. Legisla- tion in several countries has eliminated the use of lead shot for hunting waterfowl. Despite these advances, a great many Pb products continue to be readily available. Conservationists recognize that hunting, angling and shooting sports deposit thousands of tons of Pb into the environment each year. Because of our concerns for human health and over 100 years of focused research, we know the most about lead poisoning in people. Even today, our knowledge of the long-term sublethal effects of Pb on human health continues to grow dramatically. Our knowledge about lead poisoning in domestic animals is signifi- cantly less. For wild animals, our understanding of lead poisoning is roughly where our knowledge about humans was in the mid-1800s when Tanquerel Des Planches made his famous medical observations (Tan- querel Des Planches 1850).
    [Show full text]
  • By Dr. Jay Davidson
    HEAVY METAL TOXICITY A Modern Day Epidemic Not Being Addressed By Dr. Jay Davidson HEAVY METAL TOXICITY | By Dr. Jay Davidson Heavy metal toxicity is a modern day epidemic that is not being appropriately addressed by traditional medicine and even most natural health practitioners. Heavy metals promote low oxygen levels and a low body temperature, which allow pathogens to thrive. Mercury Mercury is often talked about in reference to eating fish, vaccines, and dental fillings. Amalgam tooth fillings are made of 50% mercury along with 35% silver, 13% tin, 2% copper and a trace amount of zinc.1 Research has shown that the amount of mercury in your brain is proportional to the amount of mercury in your teeth.2 Moreover, people with amalgam fillings have been shown to have twice as much mercury in their urine as people who do not have amalgam fillings.3 And it’s not just having the fillings in your body - just being in a mercury rich environment has an adverse effect on your body. Research has shown that dentists have 4 times higher mercury urine levels than the average American.4 Mercury is 1,000 times more toxic than lead and the methyl-mercury vapor emitted from tooth fillings is 100 times more toxic than elemental mercury! To make matters worse having another metal in your mouth like gold for a crown or nickel in a retainer wire increases the amount of mercury that is released. This process is called galvanism, which happens when two metals get in contact with an acid. In this case, the acid is your saliva, which leaches mercury 10 times faster than normal.5 Before you schedule an appointment with your dentist to take out your toxic fillings, there are steps you need to take to protect yourself.
    [Show full text]
  • Environmental Risk Assessment of Chemicals
    Society of Environmental Toxicology and Chemistry Technical Issue Paper Environmental Risk Assessment of Chemicals Environmental Risk exposure to a chemical for organisms, such as animals, plants, or microbes, in the environment, which could be Assessment of Chemicals water, soil, or air. Effects can be assessed at different levels of biological organization, which is to say in Environmental risk assessment determines the single cells, individuals, populations, ecosystems, or nature and likelihood of harmful effects occurring landscapes. to organisms such as humans, animals, plants, or microbes, due to their exposure to stressors. A stressor can be a chemical (such as road salt runoff to a lake), Applications of Environmental exotic species (such as a foreign plant), or a change Risk Assessment of Chemicals in physical conditions (such as dredging a channel). Here, we focus on risk assessment of chemicals. The Environmental risk assessments of chemicals can be chemicals can be something that is found in nature, used at many scales. They can take place at the small- such as copper, or something created by humans, such scale site level (such as a release at a manufacturing as pharmaceuticals. Depending on whether humans plant), at the field-scale level (for example, spraying or other organisms or ecosystems are exposed, a plant protection products or pesticides on crops), risk assessment is called either a “human health” or at a regional level (such as a river catchment or an “ecological” risk assessment. Here, the term or bay). Policy makers, including government “environmental risk assessment” is used to include both. agencies, and industries use risk assessments to support environmental management decisions.
    [Show full text]
  • A Toxicology Curriculum for Communities
    A Toxicology Curriculum For Communities 43 Module One Introduction to Toxicology 44 Objectives Upon completion of this module, the learner will be able to: Define toxicology and commonly associated terms Differentiate the sub-disciplines of toxicology Describe the classifications of toxic agents Describe the field of toxicology Understand the roles of various agencies Identify potential sources for additional information 45 What is Toxicology? 46 Toxicology Involves all aspects of the adverse effects of chemicals on living systems. 47 General Toxicology Questions 48 What are Harmful or Adverse Effects? Those effects which are damaging to either the survival or normal function of the individual 49 What is Toxicity? The term “toxicity”is used to describe the nature of adverse effects produced and the conditions necessary for their production. Before toxicity can develop, a substance must come into contact with a body surface such as skin, eye or mucosa of the alimentary or respiratory tract. 50 What is Toxic? This term relates to poisonous or deadly effects on the body 51 What is a Toxicant? The term “toxicant” refers to toxic substances that are produced by or are a by- product of human-made activities. 52 What is a Toxin? The term “toxin” refers to toxic substances that are produced naturally. 53 What is a Toxic Symptom? What is a Toxic Effect ? A toxic symptom is any feeling or sign indicating the presence of a poison in the system. Toxic effects refers to the health effects that occur due to exposure to a toxic substance. 54 What is Selective Toxicity? This means that a chemical will produce injury to one kind of living matter without harming another form of life, even though the two may exist close together.
    [Show full text]
  • Introduction to Environmental Toxicology
    Introduction to Toxicology WATER BIOLOGY PHC 6937; Section 4858 Andrew S. Kane, Ph.D. Department of Environmental & Global Health College of Public Health & Health Professions [email protected] ? “The problem with toxicology is not the practicing toxicologists, but chemists who can detect, precisely, toxicologically insignificant amounts of chemicals” Rene Truhaut, University of Paris (1909-1994) Toxicology………… • Is the study of the harmful effects of chemicals and physical agents on living organisms • Examines adverse effects ranging from acute to long-term chronic • Is used to assess the probability of hazards caused by adverse effects • Is used to predict effects on individuals, populations and ecosystems 1 An interdisciplinary field… Clinical Toxicology: Diagnosis and treatment of poisoning; evaluation of methods of detection and intoxication, mechanism of action in humans (human tox, pharmaceutical tox) and animals (veterinary tox). Integrates toxicology, clinical medicine, clinical biochemistry/pharmacology. Environmental Toxicology: Integrates toxicology with sub- disciplines such as ecology, wildlife and aquatic biology, environmental chemistry. Occupational Toxicology: Combines occupational medicine and occupational hygiene. An interdisciplinary field… Descriptive Toxicology: The science of toxicity testing to provide information for safety evaluation and regulatory requirements. Mechanistic Toxicology: Identification and understanding cellular, biochemical & molecular basis by which chemicals exert toxic effects. Regulatory Toxicology:
    [Show full text]
  • Mercury Study Report to Congress
    United States EPA-452/R-97-007 Environmental Protection December 1997 Agency Air Mercury Study Report to Congress Volume V: Health Effects of Mercury and Mercury Compounds Office of Air Quality Planning & Standards and Office of Research and Development c7o032-1-1 MERCURY STUDY REPORT TO CONGRESS VOLUME V: HEALTH EFFECTS OF MERCURY AND MERCURY COMPOUNDS December 1997 Office of Air Quality Planning and Standards and Office of Research and Development U.S. Environmental Protection Agency TABLE OF CONTENTS Page U.S. EPA AUTHORS ............................................................... iv SCIENTIFIC PEER REVIEWERS ...................................................... v WORK GROUP AND U.S. EPA/ORD REVIEWERS ......................................viii LIST OF TABLES...................................................................ix LIST OF FIGURES ................................................................. xii LIST OF SYMBOLS, UNITS AND ACRONYMS ........................................xiii EXECUTIVE SUMMARY ......................................................... ES-1 1. INTRODUCTION ...........................................................1-1 2. TOXICOKINETICS ..........................................................2-1 2.1 Absorption ...........................................................2-1 2.1.1 Elemental Mercury ..............................................2-1 2.1.2 Inorganic Mercury ..............................................2-2 2.1.3 Methylmercury .................................................2-3 2.2 Distribution
    [Show full text]
  • Survey of Mercury and Mercury Compounds
    Survey of mercury and mercury compounds Part of the LOUS-review Environmental Project No. 1544, 2014 Title: Authors and contributors: Survey of mercury and mercury compounds Jakob Maag Jesper Kjølholt Sonja Hagen Mikkelsen Christian Nyander Jeppesen Anna Juliana Clausen and Mie Ostenfeldt COWI A/S, Denmark Published by: The Danish Environmental Protection Agency Strandgade 29 1401 Copenhagen K Denmark www.mst.dk/english Year: ISBN no. 2014 978-87-93026-98-8 Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. While the information provided in this report is believed to be accurate, the Danish Environmental Protection Agency disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Neither the Danish Environmental Protection Agency nor COWI or any individual involved in the preparation of this publication shall be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. Sources must be acknowledged. 2 Survey of mercury and mercury compounds Contents Preface ...................................................................................................................... 5 Summary and conclusions ......................................................................................... 7 Sammenfatning og konklusion ................................................................................ 14 1.
    [Show full text]
  • By Steven Wm. Fowkes
    The BHT Book: 200302 Steven Wm. Fowkes page 1 of 84 by Steven Wm. Fowkes E-mail: [email protected] [email protected] or [email protected] Web: www.ceri.com www.projectwellbeing.com/steve YouTube: www.youtube.com/user/swfowkes/videos (9-part series on Alzheimer’s reversal and two Google talks) Quora: www.quora.com/profile/Steven-Fowkes A Q&A website, answers covering widely varying topics. Street: 21821 Monte Court, Cupertino, California, 95014-1144 USA. Author: Wipe Out Herpes with BHT (1983) The BHT Toxicology Report (1984-5, 1987, 1991-2, 1997, 1999) The Wisdom of the Chinese Proverb (1990) STOP the FDA: Save Your Health Freedom (1992) Smart Drugs II (1993) GHB (1997) The BHT Book (2008, 2009, 2010, 2011, 2012, 2014, 2016, 2017, 2020) Skype: swfowkes (call or email first, I do not leave Skype resident) Phone: 650-321-2374 (spells CERI on the pad) This book is an evolving work. Organizational and editing suggestions are welcome. Personal stories are invited. Copyright © 2008-12, 2014, 2016-17, 2020 by Steven Wm. Fowkes. All rights reserved. page 1 The BHT Book: 200302 Steven Wm. Fowkes page 2 of 84 About-the-Title Preface This book offers a biologically sustainable solution to chronic viral disease. That solution involves shifting your metabolism (i.e., correcting a metabolic imbalance that makes you vulnerable to viruses) by 1) taking a drug, BHT (butylated hydroxytoluene), an FDA-approved food preservative, and/or 2) using a “natural” combination of foods, supplements, hormones, and/or lifestyle factors. The metabolic shift is experientially subtle.
    [Show full text]
  • Kentucky Water Resources Research Institute Annual Technical Report FY 2010 Digital Object Identifier
    University of Kentucky UKnowledge KWRRI Annual Technical Reports Kentucky Water Resources Research Institute 2011 Kentucky Water Resources Research Institute Annual Technical Report FY 2010 Digital Object Identifier: https://doi.org/10.13023/kwrri.katr.2010 Kentucky Water Resources Research Institute, University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kwrri_technicalreports Part of the Engineering Commons, Life Sciences Commons, and the Physical Sciences and Mathematics Commons Repository Citation Kentucky Water Resources Research Institute, University of Kentucky, "Kentucky Water Resources Research Institute Annual Technical Report FY 2010" (2011). KWRRI Annual Technical Reports. 8. https://uknowledge.uky.edu/kwrri_technicalreports/8 This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for inclusion in KWRRI Annual Technical Reports by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Kentucky Water Resources Research Institute Annual Technical Report FY 2010 Kentucky Water Resources Research Institute Annual Technical Report FY 2010 1 Introduction The 2010 Annual Technical Report for Kentucky consolidates reporting requirements for the Section 104(b) base grant award into a single document that includes: 1) a synopsis of each research project that was conducted during the period, 2) citations for related publications, reports, and presentations, 3) a description of information transfer activities, 4) a summary of student support during the reporting period, and 5) notable awards and achievements during the year.
    [Show full text]
  • Investigations of the Electronic Structure and Excited State Processes of Transition Metal Complexes with Polypyridyl and Schiff Base Ligands
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ Investigations of the Electronic Structure and Excited State Processes of Transition Metal Complexes with Polypyridyl and Schiff Base Ligands A dissertation submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (Ph.D.) In the Department of Chemistry of the College of Arts and Sciences 2005 by Pamilla J. Ball B.S., University of Cincinnati, 2000 Committee Chair: Dr. William B. Connick Acknowledgements Nearly a decade ago when I stepped onto this campus, the last thing I thought I would be leaving with is a Ph.D in chemistry. I surely would have told you that I wasn’t smart enough to do that. Without a doubt, I am where I am because of the many wonderful people who have come into my life. Foremost, I have to thank my advisor Dr. Bill Connick. His passion, focus, creativity, and brilliance have made a lasting impression on my life. I am grateful for all the things he has taught me not only about science but about life and for the person he has helped me to be. By example he has taught me to never accept less than perfection, to question everything, and not to half-ass anything. I am grateful that he did not let me slink away and that he did not make this road straight, flat and comfortable.
    [Show full text]
  • Of Rabbits and Men: the Tale of Paul Ehrlich in Our Modern World Of
    Of Rabbits and Men: The Tale of Paul Ehrlich In our modern world of chemotherapy, antibiotics and antivirals, it might come as a surprise to find that the origin of all these treatments can be traced back to rabbits; the cute and fluffy kind. To understand why, we need to go all the way back to 1882 Berlin. A talented, if aimless, young German doctor, Paul Ehrlich, had just met the great microbiologist Robert Koch. Koch was giving a lecture in which he identified the pathogen responsible for tuberculosis. Ehrlich was instantly fascinated by Koch and microbiology. Unknown to himself, he had just taken the first step on a path that would help change the way disease is tackled forever1. The late 1800’s were a time of dynamic change in the sciences. Charles Darwin had proposed his Theory of Natural Selection and Thomas Edison had given us the light bulb. Amongst the many fashionable topics of the time, some biologists were fascinated by dyes; specifically the staining of living tissue. Spending all day bent over a microscope looking at the pretty colours might not seem like worthwhile science by modern standards, but these dyes had interesting properties. Dyes displayed a high level of specificity; they would only stain certain structures and pass through others. Ehrlich noticed this and soon started to think of applications for these properties. These were times when catching a chill could kill. Many well-known individuals of the time were killed in their prime due to infectious disease. Emily Brontë died from tuberculosis2, René Descartes from pneumonia3 and Pyotr Tchaikovsky died from cholera4.
    [Show full text]
  • Syphilis - Its Early History and Treatment Until Penicillin, and the Debate on Its Origins
    History Syphilis - Its Early History and Treatment Until Penicillin, and the Debate on its Origins John Frith, RFD Introduction well as other factors such as education, prophylaxis, training of health personnel and adequate and rapid “If I were asked which is the most access to treatment. destructive of all diseases I should unhesitatingly reply, it is that which Up until the early 20th century it was believed that for some years has been raging with syphilis had been brought from America and the New impunity ... What contagion does World to the Old World by Christopher Columbus in thus invade the whole body, so much 1493. In 1934 a new hypothesis was put forward, resist medical art, becomes inoculated that syphilis had previously existed in the Old World so readily, and so cruelly tortures the before Columbus. I In the 1980’s palaeopathological patient ?” Desiderius Erasmus, 1520.1 studies found possible evidence that supported this hypothesis and that syphilis was an old treponeal In 1495 an epidemic of a new and terrible disease broke disease which in the late 15th century had suddenly out among the soldiers of Charles VIII of France when evolved to become different and more virulent. Some he invaded Naples in the first of the Italian Wars, and recent studies however have indicated that this is not its subsequent impact on the peoples of Europe was the case and it still may be a new epidemic venereal devastating – this was syphilis, or grande verole, the disease introduced by Columbus from America. “great pox”. Although it didn’t have the horrendous mortality of the bubonic plague, its symptoms were The first epidemic of the ‘Disease of Naples’ or the painful and repulsive – the appearance of genital ‘French disease’ in Naples 1495 sores, followed by foul abscesses and ulcers over the rest of the body and severe pains.
    [Show full text]