Eruptive Pegmatite Magma: Rhyolite of the Honeycomb Hillso Utah

Total Page:16

File Type:pdf, Size:1020Kb

Eruptive Pegmatite Magma: Rhyolite of the Honeycomb Hillso Utah American Mineralogist, Volume 76, pages I26I-1278, 1991 Eruptive pegmatite magma: Rhyolite of the Honeycomb Hillso Utah Rocnn D. CoNcooN* Department of Earth and Planetary Sciences,Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. W. P. Nlsn Departmentof Geologyand Geophysics,University of Utah, Salt Lake City, Utah 84112-l183, U.S.A. Ansrn-lcr The Honeycomb Hills rhyolite representsdifferentiation in a highly evolved magma. A pyroclastic sequence12.5 m thick and a dome of -0.2 km3 occur in western Utah in a region populated with severalTertiary topaz rhyolites. Phenocrystsconsist of quartz, san- idine, and albite (10-500/ototal) in a glassyor fine-grained groundmass.Primary pheno- crysts and megacrystsof topaz and fluorsiderophyllite (- lolototal) and accessoryphases usually associatedwith rare-elementpegmatites occur: fergusonite,ishikawaite, columbite, fluocerite, thorite, monazite, and zircon. Whole-rock composition (SiO, : 73.3o/o,TiO, : 0.01,AlrO3 : 14.0,Fe,O, : 0.28,FeO : 0.55,MnO : 0.07,MgO < 0.01, CaO:0.42, NarO : 4.59,&O : 4.44,PrO, < 0.01,F: 0.61,Cl : 0.10,and maximum valuesRb : 1960ppm, Cs : 78,Li: 344, Sn : 33, Be : 80, and Y : 156)is peraluminous,highly evolved, and comparable to rare element pegmatites.Elevated F contents of up to 2.30/o in glass account for low silica and high alumina contents becausethe granite minimum shifts toward the Ab apex of the Q-Ab-Or ternary with increasing F. Mineralogy and distribution of trace elementswith order of eruption indicate evacuation of a cool (570- 'C), 610 chemically stratified magma chamber. Chemical variation within the erupted volume can be modeled by Rayleigh fractionation of 7 5o/oof the phenocrystphases. Spatial variation of some elements,notably Li, Be, B, F, and Cs, may be due to volatile transfer. Enrichment of HrO and F in interstitial melt during crystallization reduced viscosity enough to allow eruption of the highly crystalline lava of the dome. IurnooucrroN of the Honeycomb Hills. Previously, the rhyolite body possibly The Honeycomb Hills in west-central Utah are the was consideredto be the remains of two or three product of a single eruptive cycle of unusual lavas. The lava domes (McAnulty and kvinson,1964; Christiansen lavas are silicic, contain high concentrations of F, are et al., 1986). However, flow banding orientations reveal crystal rich, were erupted at low temperature,and contain that the Hills are the eroded remnants of a single dome a suite of unusual accessoryminerals. The parent magma that emanatedfrom a central conduit that can be distin- was the result of extensive differentiation and was com- guished by concentric vertical flow banding in coarsely positionally zoned. High silica concentration and crystal crystalline rhyolite (Congdon and Nash, 1988).There are content together with low temperatureswould normally several other volcanic units in the immediate vicinity, mitigate against eruption. The lavas of the Honeycomb but all are older and unrelated to the genesisofthe Hon- Hills provide an opportunity to examine these unusual eycomb Hills magma body. An underlying tuff (Ttrt) is features,to assesstheir effectson eruption of the lavas, similar in composition to tuffs erupted from the Thomas and to place constraintson differentiation mechanismsin Range 50 km to the east and dated at 6.1 Ma (Turley and highly evolved silicic magmas. In addition, these lavas Nash, 1980). Latites and dacites of Oligoceneage (Hogg, are a rare example of an eruptive pegmatite magma, and 1972) outcrop adjacent to the Honeycomb Hills and are they provide specific information on crystal-liquid rela- underlain by the Kalamazoo Tuff dated at 34 Ma (Hag- tions in such magmas that are not obtainable from peg- strum and Gans, 1989). The Kalamazoo Tuff(Tjt) lies matites themselves. unconformably on the Devonian Guilmette Formation, a thick carbonate sequencethat overlies about 5 km of Gnor,ocrc sETTTNG lower Paleozoicsediments (Hintze, 1988). The lavas of the Honeycomb Hills were erupted at 4.7 The rhyolites of the Honeycomb Hills can be conve- Ma in the eastern Basin and Range province (Lindsey, niently divided into two units, a pyroclastic sequenceand 1977;Turley and Nash, 1980).Figure I is a geologicmap the overlying lavas that form a dome. The proximal py- roclastic sequenceconsists of 12.5 m of pumice-bearing t Presentaddress: U.S. GeologicalSurvey, M.S. 956,Reston, air-fall tuffs with rare interbedded surge deposits. The Viryinia 22092,U.S.A. tephra deposit is capped by a vitrophyric breccia that 0003-{04x/9l /0708-l26 I $02.00 t26l r262 CONGDON AND NASH: ERUPTIVE PEGMATITE MAGMA representsa vitric bomb bed marking the end of the ex- plosive phase of the eruption. The upper unit is a flow- banded felsite that forms the single dome; based upon a presentday extent and height (240 m), it had an original volume of approximalely 0.2 km3. Any original pumi- ceouscarapace has been lost to erosion that has exposed the internal structure of the dome including the central conduit. AN.c.LyrrcAL METHoDS Whole-rock SiO2, Al2O3, CaO, Fe,o,,TiOr, MnO, Cl, Rb, Y, Zr, and Nb were measuredby X-ray fluorescence spectroscopy.MgO and Fe2* were determined volumet- rically, PrO, by colorimetry, NarO and KrO by flame photometry, Li by atomic absorption, and F by selective ion electrode. Be, B, As, Cs, Th, U, and rare earth ele- ments (REE) were determined by instrumental neutron ----\_ contact activation analysis (INAA) by Neutron -------- Activation Ser- o--l]-T-n.5-1.+ os -.---- approximatecontact vices, Toronto, Canada. Electron microprobe analyses { adit were performed with Applied Research Laboratories unconsolidatedalluvium ** topazhorizon EMX-SM and Cameca SX-50 instruments at the Uni- lg| andlake deposits s2. samplesite location versity of Utah, using a combination of natural minerals Flowbanded domal topaz ffi$l Poorlysorted crystal and synthetic lThhrl materials as standards and applying ZAF l-aala'l rhyoliteflows fi]'et$llvitric tuff and Q@z)(PAP) correction procedures.Mineral separates llflll Airfall pyroclastic Latiteand dacite of biotite, plagioclase,sanidine, topaz, and quartz were 1""''ldeposits E analyzedfor trace elementsby INAA. Separationwas by Crossstratified Kalamazootuff use of heavy liquids and a Franz isodynamic magnetic pyroclasticdeposits ffi separator. Separateswere examined under a binocular Fig. 1. Geologicmap of theHoneycomb Hills area.Location microscope, and foreign grains were removed by hand. is approximately113'35'W, 39%3'N. For completekey to the Small accessoryminerals were not always eliminated, as pyroclasticsection, see Figure 2. discussedbelow. Modal analyses were made by point counting of samplesin thin section. The total number of points counted varied between 1000 and 2000, depend- Eureka and Prospect Mountain lie at depths ing on sample size. the Quartzites of about I and 5 km, respectively,below the Honeycomb Hills. Pumice fragments contain from l0 to 250lophe- Prrnocru.prrv nocrysts consisting of plagioclase,sanidine, quartz, and The proximal stratigraphic section is illustrated in Fig- less abundant F-rich annite and topaz set in a glassy ure 2, in which the pyroclastic section is shown to scale. groundmass(Table l). Feldsparphenocrysts ar€ euhedral, Pyroclastic depositsare light colored (white to light gay) whereasquartz is commonly embayed and subhedral. when fresh and oxidized to brown or red-brown when The dome-forming felsites are markedly flow banded, weathered. Pumice fragments up to 50 cm in diameter hght gray in color when fresh, and brown when weath- are abundant, comprising at least 500/oof the deposit. ered. They are holocrystalline, with phenocryst contents Latite clasts averaging 10 cm in diameter are present in ranging from 30 to 40o/othat consist of sanidine, plagro- conformable layers up to 50 cm thick, and these often clase, quartz, biotite, and topaz in decreasingorder of comprise up to 500/oof an individual layer. These lithic- abundance(Table l). The averagegrain size of the crys- rich layers delineate"throat clearing" episodesin the ini- talline groundmassis 0.3 mm; groundmasstopaz occurs tial stagesof the eruptive cycle. Other xenoliths include as needlesup to 0.1 mm in length. Xenoliths of quartzite quartzite and limestone clasts up to 50 cm in diameter. up to 50 cm in diameter tre presentin the dome. Cognate Two distinct varieties of quartzite occur as xenoliths. The (?) xenoliths of pegmatite up to 20 cm in diameter and dome contains red, hematite-stained, slightly conglom- topaz-rich xenoliths are present.The pegmatite xenoliths eratic quartzite derived from the Prospect Mountain contain miarolitic cavities and are composed of potassi- Quartzite of lower Cambrian age. Within the tephra are um feldspar, plagioclase,quartz, biotite, and topaz, typ- xenoliths of white quartzite from either the Eureka ically l-2 cm in diameter. Topaz-rich xenoliths are poi- Quartzite (Ordovician) or sandstonelenses in the Guil- kilitic in texture and contain up to 200/otopaz together mette Formation (Devonian). The Guilmette Formation with quartz, potassium feldspar,plagioclase, and fluorite. outcrops a few kilometers west of the Honeycomb Hills. Megacrystsof topaz, sanidine, and biotite are common Based on stratigraphic sections for the adjacent Fish in a zone donoted "Topaz Horizon" in Figure 1. This is Springsand southern Deep Creek Range (Hintze, 1988), a horizon approximately 10-20 m thick and subparallel CONGDON AND NASH: ERUPTIVE PEGMATITE MAGMA r263 Samolenumbers Lithologydescription Magnetite is more abundant in the pyroclastic se- Unconsolidatedfluvial quence but is still present only in trace amounts; it is .F and lakedeDosits commonly oxidized. Other trace phasesin both units in- I clude zircon, thorite, monazite, fluorite, fluocerite, co- o Flow banded domal o lumbite, fergusonite,and ishikawaite. .*+S++{ ll:lg:l8rhyolite flows o + $??:3i:3? z -.,* Mrxnur,ocv 33:13:1f Quartz Airfall tuffs. Mafic EI!SSITc)4wC) 50 quartz claststhroughout, more Phenocrystsof are smokey throughout but ap- ! pear to be less often embayed in felsite than in pumice. oeu.o@ ug(D 49 abundantin zonesup lo 1mwide.
Recommended publications
  • Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 2-24-2016 Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon Arron Richard Steiner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Volcanology Commons Let us know how access to this document benefits ou.y Recommended Citation Steiner, Arron Richard, "Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon" (2016). Dissertations and Theses. Paper 2712. https://doi.org/10.15760/etd.2708 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Field Geology and Petrologic Investigation of the Strawberry Volcanics, Northeast Oregon by Arron Richard Steiner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources: Geology Dissertation Committee: Martin J. Streck, Chair Michael L. Cummings Jonathan Fink John A.Wolff Dirk Iwata-Reuyl Portland State University 2016 © 2015 Arron Richard Steiner i ABSTRACT The Strawberry Volcanics of Northeast Oregon are a group of geochemically related lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas of the Columbia River Basalt Group (CRBG), which erupted near and geographically surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3.
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]
  • Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru
    Earth-Science Reviews, 18 (1982) 253-283 253 Elsevier Scientific Publishing Company, Amsterdam-Printed in The Netherlands Present Knowledge of the Magmatic Evolution of the Eastern Cordillera of Peru G. Carlier', G. Grandin', G. Laubacher', R. and F. M6gard2 ' ORSTOM, Mission Peru, Apartado 270, Lima 18 (Peru) and 2'4 rue Bayard75008 Paris (France) ' Institut Francais #Etudes Andines, Apartado 278, Lima I8 (Peru) Pontificia Universidad Catdica del Perú, Avda S. Boliuar, Lima 27 (Peru) ABSTRACT Carlier, G., Grandin, G., Laubacher, G., Marócco, R. and Mégard, F., 1982. Present knowledge of the magmatic evolution of the Eastern Cordillera of Peru. Earth-Sci. Rev., 18: 253-283. The studies which have been carried out in the Eastern Cordillera of Peru over the past 20 years prove the existence of at least three orogenic cycles: the Late Precambrian, the Hercynian and the Andean, each one accompanied by a more or less abundant magmatism. (1) The Precambrian. Leaving aside the prasinites, possibly derived from synsedimentary , volcanites, Precambrian magmatism (in the Huanuco region) consists of: a meta-igneous ultramafic to mafic association (serpentinites, meta-gabbros, meta-diorites); syntectonic meta-tonalites; and post-tectonic dioritic and granitic intrusive bodies. (2) The Hercynian (550 to 220 my.). From the Cambrian to the Upper Devonian the existence of a synsedimentary magmatism is known. Syntectonic granites were emplaced during the Eohercynian phase, but the major part of magmatism is of a Late Permian to Early Trias age, and is characterized by the intrusion of granitoids and by volcanism of calc-al- kaline tendency. It appears that the nepheline syenite of Macusani may belong to a terminal episode of this magmatic period.
    [Show full text]
  • Petrologic and Geochemical Tracers of Magmatic Movement in Volcanic Arc Systems: Case Studies from the Aleutian Islands and Kamchatka, Russia
    Petrologic And Geochemical Tracers Of Magmatic Movement In Volcanic Arc Systems: Case Studies From The Aleutian Islands And Kamchatka, Russia Item Type Thesis Authors Neill, Owen Kelly Download date 04/10/2021 04:22:53 Link to Item http://hdl.handle.net/11122/9176 PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA By Owen Kelly Neill RECOMMENDED: APPROVED: PETROLOGIC AND GEOCHEMICAL TRACERS OF MAGMATIC MOVEMENT IN VOLCANIC ARC SYSTEMS: CASE STUDIES FROM THE ALEUTIAN ISLANDS AND KAMCHATKA, RUSSIA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Owen Kelly Neill Fairbanks, Alaska May 2013 UMI Number: 3573010 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Di!ss8?t&iori Publishing UMI 3573010 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 iii Abstract Mixing, crystallization and degassing commonly affect magmas during storage, ascent and eruption from volcanoes. As these interactions cannot be observed directly, they must be characterized using chemical signatures of volcanic eruptive products.
    [Show full text]
  • Voluminous and Compositionally Diverse, Middle Miocene Strawberry Volcanics of NE Oregon: Magmatism Cogenetic with fl Ood Basalts of the Columbia River Basalt Group
    OLD G The Geological Society of America Special Paper 538 OPEN ACCESS Voluminous and compositionally diverse, middle Miocene Strawberry Volcanics of NE Oregon: Magmatism cogenetic with fl ood basalts of the Columbia River Basalt Group Arron Steiner Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA, and Department of Geology, Washington State University, P.O. Box 642812, Pullman, Washington 99164-2812, USA Martin J. Streck Department of Geology, Portland State University, P.O. Box 751, Portland, Oregon 97207-0751, USA ABSTRACT The mid-Miocene Strawberry volcanic fi eld of northeastern Oregon is an exam- ple of intracontinental fl ood volcanism that produced lavas of both tholeiitic and calc- alkaline compositions derived by open-system processes. Until now, these dominantly calc-alkaline lavas have not been considered to have a petrogenetic origin similar to that of the fl ood basalts of the Pacifi c Northwest because of their calc-alkaline composition. These lavas are situated in between and co-erupted with the domi- nant volcanic fi eld of the Columbia River Basalt Group (CRBG). Due to the timing, location, and diversity of these erupted units, the Strawberry Volcanics may hold valuable information about the role of crustal modifi cation during large magmatic events such as hotspot volcanism. The earliest eruptions of the Strawberry Volca- nics began at 16.2 Ma and appear continuous to 15.3 Ma, characterized by low-sil- ica rhyolite. High-silica, A-type rhyolite eruptions followed at 15.3 Ma. The silicic eruptions continued until 14.6 Ma, with an estimated total volume up to ~100 km3.
    [Show full text]
  • Ten Seconds in the Field: Rapid Armenian Obsidian Sourcing With
    Journal of Archaeological Science 41 (2014) 333e348 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas Ten seconds in the field: rapid Armenian obsidian sourcing with portable XRF to inform excavations and surveys Ellery Frahm a, *, Beverly A. Schmidt b, Boris Gasparyan c, Benik Yeritsyan c, Sergei Karapetian d, Khachatur Meliksetian d, Daniel S. Adler b a Department of Archaeology, The University of Sheffield, Northgate House, West Street, Sheffield S1 4ET, United Kingdom b Department of Anthropology, Old World Archaeology Program, University of Connecticut, 354 Mansfield Road, Unit 1176, Storrs, CT 06269, United States c Institute of Archaeology and Ethnography, National Academy of Sciences, 15 Charents Street, Yerevan, Armenia d Institute of Geological Sciences, National Academy of Sciences, 24 Baghramian Avenue, Yerevan, Armenia article info abstract Article history: Armenia has one of the most obsidian-rich natural and cultural landscapes in the world, and the lithic Received 19 May 2013 assemblages of numerous Palaeolithic sites are predominantly, if not entirely, composed of obsidian. Received in revised form Recent excavations at the Middle Palaeolithic cave of Lusakert 1 recovered, on average, 470 obsidian 30 July 2013 artifacts daily. After sourcing more than 1700 artifacts using portable XRF (pXRF) in our field house, our Accepted 12 August 2013 team sought to shift pXRF-based obsidian sourcing into the field itself, believing that the geological origins of artifacts would be useful information to have on-site during an excavation or survey. Despite Keywords: increasing use of portable instruments, previous studies have principally focused on collections in Obsidian pXRF museums and other archives, and as a result, obsidian sourcing has remained embedded in post- fi Field methods excavation studies.
    [Show full text]
  • Uranium-Lithium Deposits at Macusani, Peru: Geology, Processing & Economics Along the Path to Production Thursday, 28 June 2018 14:40 (20 Minutes)
    International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2018) Contribution ID: 192 Type: ORAL Uranium-Lithium Deposits at Macusani, Peru: Geology, Processing & Economics along the path to production Thursday, 28 June 2018 14:40 (20 minutes) INTRODUCTION The swarm of near-surface uranium orebodies of the Macusani district, southern Peru, controlled byPlateau Uranium Inc., contain mineral resources of 51.9 Mlbs at 248 ppm U3O8 (20.0 ktU at 210 ppm U - Measured & Indicated) and 72.1 Mlbs at 251 ppm U3O8 (27.8 ktU at 212 ppm U - Inferred) using 75 ppm U economic cut-off [1]. This Preliminary Economic Assessment study has shown the easily leachable, near surface miner- alization constitutes a major, potential low-cost uranium source capable of producing uranium at cash costs of US17:28/lbU3O8(US44.5/kgU). The deposits are genetically anomalous: although the predominant host- rocks are rhyolitic volcanics and hypabyssal intrusions with geochemical affinities with the U-rich Hercynian S-type granites, the hexavalent uranium mineralogy, comprising meta-autunite and weeksite, is akin to that of other surficial systems [2], and differs fundamentally from all recognized high- and low-temperature ura- nium deposit clans [3]. The uniqueness of the district is also highlighted by the exceptional, inherent, lithium endowment of the host volcanics. Both the Miocene bedrock geology and the Plio-Pleistocene geomorphology and climatic history of the district are critical to an understanding of the origin of these unique uranium de- posits. This unique origin is key to the excellent potential economics of these near surface, low-grade uranium deposits.
    [Show full text]
  • Geological Society of America Bulletin
    Downloaded from gsabulletin.gsapubs.org on February 6, 2012 Geological Society of America Bulletin 40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province Morgan J. Salisbury, Brian R. Jicha, Shanaka L. de Silva, Brad S. Singer, Néstor C. Jiménez and Michael H. Ort Geological Society of America Bulletin 2011;123, no. 5-6;821-840 doi: 10.1130/B30280.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.
    [Show full text]
  • Preliminary Geochemical Study of Ash-Flow Tuffs in the Morococala and Los Frailes Volcanic Fields, Central Bolivian Tin Belt
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Preliminary geochemical study of ash-flow tuffs in the Morococala and Los Frailes volcanic fields, central Bolivian tin belt By George E. Ericksen1 , Robert L. Smith1 , Robert G. Luedke1 Mario Flores^, Alfredo Espinosa^, Fernando Urquidi B^, and Fernando Saravia4 Open-File Report 85-258 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. ^Reston, Virginia ^American Embassy, La Paz 2GEOBOL, La Paz 4COMIBOL, La Paz 1985 CONTEIYTS Page Abstract ............................................................ 1 Introduction ........................................................ 1 Geologic settlng .................................................... 4 Geochemistry ........................................................ 5 Conclusions ......................................................... 6 References clted .................................................... 8 ILLUSTRATIONS Figure 1. Location map showing Bolivian tin belt and the Morococala and Los Frailes volcanic fields ....................... 2. Geologic sketch map showing distribution of intrusive and extrusive rocks and principal mines of the Morococala- Los Frailes region ................................... 3. Trace-element values of representative ash-flow tuffs of the Morococala and Los Frailes volcanic fields, Bolivia, compared with selected ash-flow tuffs from the western U. S. and southern Peru ................................ ABSTRACT
    [Show full text]
  • George E. Ericksen US Geological
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY NEOGENE-QUATERNARY VOLCANISM AND MINERALIZATION IN THE CENTRAL ANDES by George E. Ericksen U.S. Geological Survey, Reston, Va.; V. Raul Eyzaguirre, Lima, Peru; Fernando Urquidi B., American Embassy, La Paz, Bolivia; and Raul Sal as 0., Servicio Nacional de Geologia y Mineria, Santiago, Chile Open-File Report 87- 634 1987 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards ILLUSTRATIONS Page 1. Distribution of Neogene-Quaternary volcanic rocks in the central Andes .............................................. 1A 2. Known and inferred calderas in the central Andes ........... 3A 3. Distribution of metalliferous deposits associated with stratovolcanos and calderas in the central Andes ........... 12A 4. Distribution of native sulfur deposits associated with stratovolcanos in Bolivia and Chile ........................ 15A 5. Distribution of metalliferous deposits associated with dome complexes and with altered vent zones, breccias pipes, and thermal-spring systems not related to known volcanic land- forms ...................................................... 20A Tables Page Table 1. Mineral deposits associated with Neogene-Quaternary volcanic centers in the central Andes....................... 8A ABSTRACT Eruptive centers, which include calderas, stratovolcanos, and flow-dome complexes in the Neogene-Quaternary volcanic complex of the central Andean region of northwestern Argentina, western Boliva, northern Chile, and southern Peru, are potential targets for hydrothermal mineral deposits. This volcanic complex, consisting chiefly of rhyolitic ash-flow tuffs and andesitic lavas, p p extends over an area of about 300,000 knr within a 1,000,000 km area that is one of the world's great mineral provinces. Because many deposits of Cu, Pb, Zn, Sn, W, Sb, Bi, Ag, and Au in this area are of pre-Pliocene age, it had been believed that most of the Neogene-Quaternary volcanic rocks represented post-mineralization cover.
    [Show full text]
  • Bachman, O., Et Al., 2004, J. Petrology
    JOURNAL OF PETROLOGY VOLUME 45 NUMBER 8 PAGES 1565–1582 2004 DOI: 10.1093/petrology/egh019 On the Origin of Crystal-poor Rhyolites: Extracted from Batholithic Crystal Mushes Downloaded from https://academic.oup.com/petrology/article-abstract/45/8/1565/1476222 by FMC Corporation Librarian user on 01 October 2019 OLIVIER BACHMANN* AND GEORGE W. BERGANTZ DEPARTMENT OF EARTH AND SPACE SCIENCES, UNIVERSITY OF WASHINGTON, BOX 351310, SEATTLE, WA 98195-1310, USA RECEIVED AUGUST 10, 2003; ACCEPTED JANUARY 14, 2004 ADVANCE ACCESS PUBLICATION JULY 1, 2004 The largest accumulations of rhyolitic melt in the upper crust occur in (hereafter referred to as ‘silicic’) remains a major voluminous silicic crystal mushes, which sometimes erupt as challenge of igneous petrology. In particular, the origin unzoned, crystal-rich ignimbrites, but are most frequently preserved of rhyolites, which are typically the most crystal-poor, as granodioritic batholiths. After approximately 40–50% crystal- despite being the most viscous silicate liquids that the lization, magmas of intermediate composition (andesite–dacite) typic- Earth produces, remains elusive. Combinations of two ally contain high-SiO2 interstitial melt, similar to crystal-poor end-member mechanisms are commonly invoked to rhyolites commonly erupted in mature arc and continental settings. explain such magmas (Fig. 1a): (1) partial melting of This paper analyzes the feasibility of system-wide extraction of this crustal material; (2) fractional crystallization of a more melt from the mush, a mechanism that can rationalize a number mafic parent. Although systems dominated by crustal of observations in both the plutonic and volcanic record, such as: melting occur in some settings (e.g.
    [Show full text]
  • Stratigraphy and Geochronology of the Macusani Ignimbrite
    ..wl. _ “., 341 STRATIGRAPHY AND GEOCHRONOLOGY OF THE HACIJSANI IGNIMBRITE FIELD: CHRONOMETER OF THE MIO-PLIOCENE GEODYNAMIC EVOLUTION OF THE ANDES OF SE PERU Alain Cheilletr., Alan H. Clark**, Edward Farrare*, Guido Arroyo Pauca***, J. Duncan MacArthur**'*,and Michel Pichavant'***' ' Centre de Recherches Petrographiques et Geochimiques, B.P. 20, 54501 Vandoeuvre les Nancy-Cedex, France. l * Department of Geological Sciences, Queen's University, Kingston, Canada K7L 3N6. l ** Instituto Peruano de Energia Nuclear, Avenida Canada 1470, Lima 41, Peru. "*' Department of Physics, Queen's University, Kingston, Canada, K7L 3N6. l ****GIS-BRGM, 1 Rue de la Ferollerie, 45045 Orleans-Cedex, France. Resume La datation 40Ar/3gAr des Cpanchements ignimbritiques de Macusani (SE Perou) met en evidence trois episodes Cruptifs majeurs (1041: 6.7-8; et 4?1 Ma) qui peuvent Btre correles a l'ensemble du bassin et dont les caracteristiques petrochimiques demeurent constantes entre 10 et 6.7 Ma. Key words: 40Ar/3gAr dating, Andes, tectonics, ignimbrites, Peru. Introduction The andalusite- and muscovite-phyric rhyolitic tuffs of the Mio- Pliocene Macusani Volcanics, northern Puno Department, SE Peru, have received world-wide attention owing to their extreme contents of lithophile rare elements (e.g., Sn, W, U). This has led to their use as exemplars of quenched, metal-enriched,,highly-peraluminous, felsic melts, analogous in many respects to the parental magmas of "two-mica leucogranites", such as are widely associated with lithophile mineralisation'. The ash-flow tuffs constitute the youngest eruptive system of the Cordillera de Carabaya segment of the Central Andean Inner 342 Arc (Fig. l), an areally- restricted tectono-magmatic domain, broadly cospatial with the Cordillera Oriental and characterised by multifarious igneous rocks, some having only tenuous connections to subduction of oceanic lithosphere2S3.
    [Show full text]