Universal Quantum Computing and Three-Manifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Borromean Rings: a Video About the New IMU Logo
The Borromean Rings: A Video about the New IMU Logo Charles Gunn and John M. Sullivan∗ Technische Universitat¨ Berlin Institut fur¨ Mathematik, MA 3–2 Str. des 17. Juni 136 10623 Berlin, Germany Email: {gunn,sullivan}@math.tu-berlin.de Abstract This paper describes our video The Borromean Rings: A new logo for the IMU, which was premiered at the opening ceremony of the last International Congress. The video explains some of the mathematics behind the logo of the In- ternational Mathematical Union, which is based on the tight configuration of the Borromean rings. This configuration has pyritohedral symmetry, so the video includes an exploration of this interesting symmetry group. Figure 1: The IMU logo depicts the tight config- Figure 2: A typical diagram for the Borromean uration of the Borromean rings. Its symmetry is rings uses three round circles, with alternating pyritohedral, as defined in Section 3. crossings. In the upper corners are diagrams for two other three-component Brunnian links. 1 The IMU Logo and the Borromean Rings In 2004, the International Mathematical Union (IMU), which had never had a logo, announced a competition to design one. The winning entry, shown in Figure 1, was designed by one of us (Sullivan) with help from Nancy Wrinkle. It depicts the Borromean rings, not in the usual diagram (Figure 2) but instead in their tight configuration, the shape they have when tied tight in thick rope. This IMU logo was unveiled at the opening ceremony of the International Congress of Mathematicians (ICM 2006) in Madrid. We were invited to produce a short video [10] about some of the mathematics behind the logo; it was shown at the opening and closing ceremonies, and can be viewed at www.isama.org/jms/Videos/imu/. -
Hyperbolic Structures from Link Diagrams
Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova, joint work with Morwen Thistlethwaite Louisiana State University/University of Tennessee Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 1/23 Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 14 prime knots up to 7 crossings, 3 are non-hyperbolic. Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. Schubert). It also true for non-split links (i.e. if there is no a 2–sphere in the complement separating the link). Anastasiia Tsvietkova, joint work with MorwenHyperbolic Thistlethwaite Structures (UTK) from Link Diagrams 2/23 Of the 1,701,935 prime knots up to 16 crossings, 32 are non-hyperbolic. Of the 8,053,378 prime knots with 17 crossings, 30 are non-hyperbolic. Motivation: knots Every knot can be uniquely decomposed as a knot sum of prime knots (H. -
Some Generalizations of Satoh's Tube
SOME GENERALIZATIONS OF SATOH'S TUBE MAP BLAKE K. WINTER Abstract. Satoh has defined a map from virtual knots to ribbon surfaces embedded in S4. Herein, we generalize this map to virtual m-links, and use this to construct generalizations of welded and extended welded knots to higher dimensions. This also allows us to construct two new geometric pictures of virtual m-links, including 1-links. 1. Introduction In [13], Satoh defined a map from virtual link diagrams to ribbon surfaces knotted in S4 or R4. This map, which he called T ube, preserves the knot group and the knot quandle (although not the longitude). Furthermore, Satoh showed that if K =∼ K0 as virtual knots, T ube(K) is isotopic to T ube(K0). In fact, we can make a stronger statement: if K and K0 are equivalent under what Satoh called w- equivalence, then T ube(K) is isotopic to T ube(K0) via a stable equivalence of ribbon links without band slides. For virtual links, w-equivalence is the same as welded equivalence, explained below. In addition to virtual links, Satoh also defined virtual arc diagrams and defined the T ube map on such diagrams. On the other hand, in [15, 14], the notion of virtual knots was extended to arbitrary dimensions, building on the geometric description of virtual knots given by Kuperberg, [7]. It is therefore natural to ask whether Satoh's idea for the T ube map can be generalized into higher dimensions, as well as inquiring into a generalization of the virtual arc diagrams to higher dimensions. -
THE JONES SLOPES of a KNOT Contents 1. Introduction 1 1.1. The
THE JONES SLOPES OF A KNOT STAVROS GAROUFALIDIS Abstract. The paper introduces the Slope Conjecture which relates the degree of the Jones polynomial of a knot and its parallels with the slopes of incompressible surfaces in the knot complement. More precisely, we introduce two knot invariants, the Jones slopes (a finite set of rational numbers) and the Jones period (a natural number) of a knot in 3-space. We formulate a number of conjectures for these invariants and verify them by explicit computations for the class of alternating knots, the knots with at most 9 crossings, the torus knots and the (−2, 3,n) pretzel knots. Contents 1. Introduction 1 1.1. The degree of the Jones polynomial and incompressible surfaces 1 1.2. The degree of the colored Jones function is a quadratic quasi-polynomial 3 1.3. q-holonomic functions and quadratic quasi-polynomials 3 1.4. The Jones slopes and the Jones period of a knot 4 1.5. The symmetrized Jones slopes and the signature of a knot 5 1.6. Plan of the proof 7 2. Future directions 7 3. The Jones slopes and the Jones period of an alternating knot 8 4. Computing the Jones slopes and the Jones period of a knot 10 4.1. Some lemmas on quasi-polynomials 10 4.2. Computing the colored Jones function of a knot 11 4.3. Guessing the colored Jones function of a knot 11 4.4. A summary of non-alternating knots 12 4.5. The 8-crossing non-alternating knots 13 4.6. -
Arxiv:2003.00512V2 [Math.GT] 19 Jun 2020 the Vertical Double of a Virtual Link, As Well As the More General Notion of a Stack for a Virtual Link
A GEOMETRIC INVARIANT OF VIRTUAL n-LINKS BLAKE K. WINTER Abstract. For a virtual n-link K, we define a new virtual link VD(K), which is invariant under virtual equivalence of K. The Dehn space of VD(K), which we denote by DD(K), therefore has a homotopy type which is an invariant of K. We show that the quandle and even the fundamental group of this space are able to detect the virtual trefoil. We also consider applications to higher-dimensional virtual links. 1. Introduction Virtual links were introduced by Kauffman in [8], as a generalization of classical knot theory. They were given a geometric interpretation by Kuper- berg in [10]. Building on Kuperberg's ideas, virtual n-links were defined in [16]. Here, we define some new invariants for virtual links, and demonstrate their power by using them to distinguish the virtual trefoil from the unknot, which cannot be done using the ordinary group or quandle. Although these knots can be distinguished by means of other invariants, such as biquandles, there are two advantages to the approach used herein: first, our approach to defining these invariants is purely geometric, whereas the biquandle is en- tirely combinatorial. Being geometric, these invariants are easy to generalize to higher dimensions. Second, biquandles are rather complicated algebraic objects. Our invariants are spaces up to homotopy type, with their ordinary quandles and fundamental groups. These are somewhat simpler to work with than biquandles. The paper is organized as follows. We will briefly review the notion of a virtual link, then the notion of the Dehn space of a virtual link. -
Knots: a Handout for Mathcircles
Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot. -
Arxiv:1501.00726V2 [Math.GT] 19 Sep 2016 3 2 for Each N, Ln Is Assembled from a Tangle S in B , N Copies of a Tangle T in S × I, and the Mirror Image S of S
HIDDEN SYMMETRIES VIA HIDDEN EXTENSIONS ERIC CHESEBRO AND JASON DEBLOIS Abstract. This paper introduces a new approach to finding knots and links with hidden symmetries using \hidden extensions", a class of hidden symme- tries defined here. We exhibit a family of tangle complements in the ball whose boundaries have symmetries with hidden extensions, then we further extend these to hidden symmetries of some hyperbolic link complements. A hidden symmetry of a manifold M is a homeomorphism of finite-degree covers of M that does not descend to an automorphism of M. By deep work of Mar- gulis, hidden symmetries characterize the arithmetic manifolds among all locally symmetric ones: a locally symmetric manifold is arithmetic if and only if it has infinitely many \non-equivalent" hidden symmetries (see [13, Ch. 6]; cf. [9]). Among hyperbolic knot complements in S3 only that of the figure-eight is arith- metic [10], and the only other knot complements known to possess hidden sym- metries are the two \dodecahedral knots" constructed by Aitchison{Rubinstein [1]. Whether there exist others has been an open question for over two decades [9, Question 1]. Its answer has important consequences for commensurability classes of knot complements, see [11] and [2]. The partial answers that we know are all negative. Aside from the figure-eight, there are no knots with hidden symmetries with at most fifteen crossings [6] and no two-bridge knots with hidden symmetries [11]. Macasieb{Mattman showed that no hyperbolic (−2; 3; n) pretzel knot, n 2 Z, has hidden symmetries [8]. Hoffman showed the dodecahedral knots are commensurable with no others [7]. -
Forming the Borromean Rings out of Polygonal Unknots
Forming the Borromean Rings out of polygonal unknots Hugh Howards 1 Introduction The Borromean Rings in Figure 1 appear to be made out of circles, but a result of Freedman and Skora shows that this is an optical illusion (see [F] or [H]). The Borromean Rings are a special type of Brunninan Link: a link of n components is one which is not an unlink, but for which every sublink of n − 1 components is an unlink. There are an infinite number of distinct Brunnian links of n components for n ≥ 3, but the Borromean Rings are the most famous example. This fact that the Borromean Rings cannot be formed from circles often comes as a surprise, but then we come to the contrasting result that although it cannot be built out of circles, the Borromean Rings can be built out of convex curves, for example, one can form it from two circles and an ellipse. Although it is only one out of an infinite number of Brunnian links of three Figure 1: The Borromean Rings. 1 components, it is the only one which can be built out of convex compo- nents [H]. The convexity result is, in fact a bit stronger and shows that no 4 component Brunnian link can be made out of convex components and Davis generalizes this result to 5 components in [D]. While this shows it is in some sense hard to form most Brunnian links out of certain shapes, the Borromean Rings leave some flexibility. This leads to the question of what shapes can be used to form the Borromean Rings and the following surprising conjecture of Matthew Cook at the California Institute of Technology. -
Hyperbolic Structures from Link Diagrams
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Hyperbolic Structures from Link Diagrams Anastasiia Tsvietkova [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Geometry and Topology Commons Recommended Citation Tsvietkova, Anastasiia, "Hyperbolic Structures from Link Diagrams. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1361 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Anastasiia Tsvietkova entitled "Hyperbolic Structures from Link Diagrams." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Mathematics. Morwen B. Thistlethwaite, Major Professor We have read this dissertation and recommend its acceptance: Conrad P. Plaut, James Conant, Michael Berry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Hyperbolic Structures from Link Diagrams A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Anastasiia Tsvietkova May 2012 Copyright ©2012 by Anastasiia Tsvietkova. All rights reserved. ii Acknowledgements I am deeply thankful to Morwen Thistlethwaite, whose thoughtful guidance and generous advice made this research possible. -
Milnor Invariants of String Links, Trivalent Trees, and Configuration Space Integrals
MILNOR INVARIANTS OF STRING LINKS, TRIVALENT TREES, AND CONFIGURATION SPACE INTEGRALS ROBIN KOYTCHEFF AND ISMAR VOLIC´ Abstract. We study configuration space integral formulas for Milnor's homotopy link invari- ants, showing that they are in correspondence with certain linear combinations of trivalent trees. Our proof is essentially a combinatorial analysis of a certain space of trivalent \homotopy link diagrams" which corresponds to all finite type homotopy link invariants via configuration space integrals. An important ingredient is the fact that configuration space integrals take the shuffle product of diagrams to the product of invariants. We ultimately deduce a partial recipe for writing explicit integral formulas for products of Milnor invariants from trivalent forests. We also obtain cohomology classes in spaces of link maps from the same data. Contents 1. Introduction 2 1.1. Statement of main results 3 1.2. Organization of the paper 4 1.3. Acknowledgment 4 2. Background 4 2.1. Homotopy long links 4 2.2. Finite type invariants of homotopy long links 5 2.3. Trivalent diagrams 5 2.4. The cochain complex of diagrams 7 2.5. Configuration space integrals 10 2.6. Milnor's link homotopy invariants 11 3. Examples in low degrees 12 3.1. The pairwise linking number 12 3.2. The triple linking number 12 3.3. The \quadruple linking numbers" 14 4. Main Results 14 4.1. The shuffle product and filtrations of weight systems for finite type link invariants 14 4.2. Specializing to homotopy weight systems 17 4.3. Filtering homotopy link invariants 18 4.4. The filtrations and the canonical map 18 4.5. -
A New Technique for the Link Slice Problem
Invent. math. 80, 453 465 (1985) /?/ven~lOnSS mathematicae Springer-Verlag 1985 A new technique for the link slice problem Michael H. Freedman* University of California, San Diego, La Jolla, CA 92093, USA The conjectures that the 4-dimensional surgery theorem and 5-dimensional s-cobordism theorem hold without fundamental group restriction in the to- pological category are equivalent to assertions that certain "atomic" links are slice. This has been reported in [CF, F2, F4 and FQ]. The slices must be topologically flat and obey some side conditions. For surgery the condition is: ~a(S 3- ~ slice)--, rq (B 4- slice) must be an epimorphism, i.e., the slice should be "homotopically ribbon"; for the s-cobordism theorem the slice restricted to a certain trivial sublink must be standard. There is some choice about what the atomic links are; the current favorites are built from the simple "Hopf link" by a great deal of Bing doubling and just a little Whitehead doubling. A link typical of those atomic for surgery is illustrated in Fig. 1. (Links atomic for both s-cobordism and surgery are slightly less symmetrical.) There has been considerable interplay between the link theory and the equivalent abstract questions. The link theory has been of two sorts: algebraic invariants of finite links and the limiting geometry of infinitely iterated links. Our object here is to solve a class of free-group surgery problems, specifically, to construct certain slices for the class of links ~ where D(L)eCg if and only if D(L) is an untwisted Whitehead double of a boundary link L. -
Rock-Paper-Scissors Meets Borromean Rings
ROCK-PAPER-SCISSORS MEETS BORROMEAN RINGS MARC CHAMBERLAND AND EUGENE A. HERMAN 1. Introduction Directed graphs with an odd number of vertices n, where each vertex has both (n − 1)/2 incoming and outgoing edges, have a rich structure. We were lead to their study by both the Borromean rings and the game rock- paper-scissors. An interesting interplay between groups, graphs, topological links, and matrices reveals the structure of these objects, and for larger values of n, extensive computation produces some surprises. Perhaps most surprising is how few of the larger graphs have any symmetry and those with symmetry possess very little. In the final section, we dramatically sped up the computation by first computing a “profile” for each graph. 2. Three Weapons Let’s start with the two-player game rock-paper-scissors or RPS(3). The players simultaneously put their hands in one of three positions: rock (fist), paper (flat palm), or scissors (fist with the index and middle fingers sticking out). The winner of the game is decided as follows: paper covers rock, rock smashes scissors, and scissors cut paper. Mathematically, this game is referred to as a balanced tournament: with an odd number n of weapons, each weapon beats (n−1)/2 weapons and loses to the same number. This mutual dominance/submission connects RPS(3) with a seemingly disparate object: Borromean rings. Figure 1. Borromean Rings. 1 2 MARCCHAMBERLANDANDEUGENEA.HERMAN The Borromean rings in Figure 1 consist of three unknots in which the red ring lies on top of the blue ring, the blue on top of the green, and the green on top of the red.