Smithsonian Contributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mansions of Grosse Pointe
~""__ "'''' __ ''_-iiiJi'''W'' -- 'i If ,I :''j '1 I I , BY HAWKINS FERRY A SU.hurh In Good Taste By Hawkins Ferry Reprinted by Economee Service, In,c. from March, 1956 Issue, Michigan Society of Architects CENTRA~ GR'OSS,EPOINTE PUBLIC UBRAR1 IJDIJRD IN ~;:OOD Tt\STt; BY HAWKINS FERRY THE npllnmg Yllarn of the eighteenth of It:. "elf]! th", ilhores of Lake St Cbir n~JClr ArntJ:,,'::i'Jn t0n~1'1 allraclt'd settlers in the Gl'Om8~' Gretu !i{; r;t \~fid areCI Eorly French farmers bmlt hap~ It III d'!f,~ihngs rtertr the lake both for acces:1 flvt:J11Vfj h~tlSO;g pr(IVtHl to 1:F'~ by cano,) cmd for a convenient water O;H;j "hn[lfll:'lg ;,\lpply TillS resulted in tho hou8e~ boing '.:md l"Jwns th~y together The land of eelen farm sIOnt Cl of l:vlr:q !bf1t j >d'l)' 'ixwnd!!1d from the lake far into the interior enlld by prohlbi!lYC' and m(ll1ilf}IlCll:,;/"' 111 n'lm1W strips, thus having originated C'o~tJ All thli1 er(l tl1'.1t prociuC'<)'d th~, tNm 'ribbon farm." hom,,!s Ul Y'Jl1l,,!llllq rmcl many thif,"'rJl ~'Te It an ()pprr.)p£:-:~t{) h thl' latter part of the nineteenth century mOln'3nt to rellvl11w,1tAthem ',:1$ mmthetl\; th'l mcreational value of the waterfront phenomena. Tf)cognized, and summer cottages took place of farmhouses; but Grosse On@ of the hut lluba\c:mlial ma:nslon~ in P)mte'f!) role as em isolated summer colony Grosse POlllte was thf>' Joseph H. -
Brian Mcmahon Chad Roberts, Roxanne Sands, James A
RAMSEY COUNTY “Abide with Me” Grace Craig Stork, 1916 Rebecca A. Ebnet-Mavencamp —Page 10 HıstoryA Publication of the Ramsey County Historical Society Fall 2016 Volume 51, Number 3 A Workplace Accident John Anderson’s Fall from the High Bridge John T. Sielaff, page 3 Towering above the Mississippi River flood plain, St. Paul’s Smith Avenue High Bridge, seen here in a 1905 postcard, connected the city’s oldest residential neighborhood, West Seventh Street, with its newest at the time, Cherokee Heights, or the Upper West Side. John Anderson, a painter working on the bridge in 1902, fell and survived the accident. His story tells us much about the dangers in the workplace then and now. Photo by the Detroit Photographic Company, courtesy of the Minnesota Historical Society. RAMSEY COUNTY HISTORY RAMSEY COUNTY President Chad Roberts Founding Editor (1964–2006) Virginia Brainard Kunz Editor Hıstory John M. Lindley Volume 51, Number 3 Fall 2016 RAMSEY COUNTY HISTORICAL SOCIETY THE MISSION STATEMENT OF THE RAMSEY COUNTY HISTORICAL SOCIETY BOARD OF DIRECTORS ADOPTED BY THE BOARD OF DIRECTORS ON JANUARY 25, 2016: James Miller Preserving our past, informing our present, inspiring our future Chair Jo Anne Driscoll First Vice Chair Carl Kuhrmeyer C O N T E N T S Second Vice Chair Susan McNeely 3 A Workplace Accident Secretary Kenneth H. Johnson John Anderson’s Fall from the High Bridge Treasurer John T. Sielaff William B. Frels Immediate Past Chair 10 “Abide with Me” Anne Cowie, Cheryl Dickson, Mari Oyanagi Grace Craig Stork, 1916 Eggum, Thomas Fabel, Martin Fallon, Rebecca A. -
Junkers G 38 Aerophilatelie
Katalog und Handbuch zu den Flügen der JUNKERS G 38 D-2000 und D-2500 Hubertus Hentschel Siemensstraße 10 40670 Meerbusch Tel. 02159 - 3084 FAX 02159 – 51808 eMail: [email protected] Die Junkers Ganzmetallflugzeuge G 38 Junkers G 38 D-2000 ( AZUR ) Werknummer 3301 G 38 di 06.11.29 JUNKERS D-2000 07.05.31 LUFT HANSA D-2000 06.07.33 DEUTSCHLAND D-2000 20.03.34 DEUTSCHLAND D-AZUR Besatzung Flugkapitän : Wilhelm Zimmermann * 24.02.1897 + 29.03.1956 2. Flugzeugf. : Otto Brauer * 16.10.1897 + 16.04.1976 : Paul Dierberg : Hans Etzold Steward : Arthur Howe Konstrukteure : Hugo Junkers * 03.02.1859 + 03.02.1935 : Ernst Zindel * 21.03.1897 + 10.10.1978 Passagiere : 9 Sitzplätze, 4 Liegeplätze : nach dem Umbau 30 Sitzplätze Junkers G 38 D-2500 ( APIS ) Werknummer 3302 G 38 ce, G 38 ci, G 38 fi 14.06.32 LUFT-HANSA D-2500 00.00.33 HINDENBURG D-2500 29.04.33 GENERALFELDMARSCHALL VON HINDENBURG D-2500 20.03.34 GENERALFELDMARSCHALL VON HINDENBURG D-APIS 00.04.40 GF-GG Besatzung Flugkapitän : Otto Brauer ( später Major ) 2. Flugzeugf. : Hans Etzold Funker : Heinrich Wiechers Maschinisten : Otto Rosinski, Willi Melzer, Heinrich Lauerwald Steward : Arthur Howe Konstrukteure : Hugo Junkers, Ernst Zindel Passagiere : 34 Fluggäste Das Gästebuch der JUNKERS G 38 ( D - 2500 ) Am 29.04.1933 wurde die JUNKERS G 38 ( D - 2500 ) auf den Namen Generalfeldmarschall von Hindenburg getauft. Der Name Hindenburg hatte bereits vorher auf dem Rumpf gestanden. Die Taufe nahm Reichsluftfahrtminister Hermann Göring im Beisein des greisen Reichspräsidenten Paul von Hindenburg vor. -
During World War Ii. New Insights from the Annual Audits of German Aircraft Producers
ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208629 New Haven, CT 06520-8269 http://www.econ.yale.edu/~egcenter/ CENTER DISCUSSION PAPER NO. 905 DEMYSTIFYING THE GERMAN “ARMAMENT MIRACLE” DURING WORLD WAR II. NEW INSIGHTS FROM THE ANNUAL AUDITS OF GERMAN AIRCRAFT PRODUCERS Lutz Budraß University of Bochum Jonas Scherner University of Mannheim Jochen Streb University of Hohenheim January 2005 Notes: Center Discussion Papers are preliminary materials circulated to stimulate discussions and critical comments. The first version of this paper was written while Streb was visiting the Economic Growth Center at Yale University in fall 2004. We are grateful to the Economic Growth Center for financial support. We thank Christoph Buchheim, Mark Spoerer, Timothy Guinnane, and the participants of the Yale economic history workshop for many helpful comments. Corresponding author: Prof. Dr. Jochen Streb, University of Hohenheim (570a), D- 70593 Stuttgart, Germany, E-Mail: [email protected]. This paper can be downloaded without charge from the Social Science Research Network electronic library at: http://ssrn.com/abstract=661102 An index to papers in the Economic Growth Center Discussion Paper Series is located at: http://www.econ.yale.edu/~egcenter/research.htm Demystifying the German “armament miracle” during World War II. New insights from the annual audits of German aircraft producers by Lutz Budraß, Jonas Scherner, and Jochen Streb Abstract Armament minister Albert Speer is usually credited with causing the boom in German armament production after 1941. This paper uses the annual audit reports of the Deutsche Revisions- und Treuhand AG for seven firms which together represented about 50 % of the German aircraft producers. -
CASE FILE Co
CASE FILE co TECHIICAL LIEMORANUI.:S 1TATIONAL ADVISORY FOR AERONAUTICS No. 608 THE USE OF ELEKTRON MTAL liT AIRPLANE CONSTRUCTION By E. I. de Ridder Jahrbuoh 1929 der Wsenschaft1iohen Oesellschaft fi.r Lu±tfahrt This nmuua ON W* F** Nt R NATIONAL MWOlY COMM4!TI K* AEONAIrnr L&JIG1Y PVVOKIAL *€O$*tlT%C*t. LAaOPA7OPY LANG&.EY FIELD, MAM1N, VRIN*A TO ThLMOV€ *uø€: QUESTS R) P*iCAIONS SHOULD ,,Do(SstD Vasi ng to i-i I11Nk pmi*y coMMrcEE Mebruary, 1931 37$UMI'. N.W.. *INGTO$ • 2S. ).C. NATIONAL ADVISORY COITTEE FOR AERONAUTICS TECHNICAL 1MORANDUM NO. 608 THE USE OF ELEKTRON 1.rETAL IN AIRPLANE CONSTRUCTION* By E. I. de Ridder The tendency in aircraft construction is tovard higher per formanc:e. and gea.ter economy. From the , aerodynamic standpoint this me:ans a minimum possible drag by streamlining,. and from the structura]viewpo,nt, .aving in weight by usag light metal. Elektron is the lightest of the light metas, andas such merits our special attention beoaus .e it meets the demand for lighter construction. Itis impossible to go fully into its mechanical proper- ties and chemical composition on this occasion, but i .t should. not, be passed without at least briefly describing those charac- teristics which are of interest to the cpnstructor who uses it. E].elctron,. .as manufacT'cured ly the .1. G. Dye Industry, A.G., Bitterfeld,; isa magnesium-base alloy offrom 1.8 to 1.83 spe- cif'ic gravity.,. lience.a third as ligit as aluminum alloys. The rn I + .' eEg point of the metal is 625° slightly below that of aluminum. -
General Electric Company Turbofan Engines
50320 Federal Register / Vol. 78, No. 160 / Monday, August 19, 2013 / Rules and Regulations 11. Markings and Placards— Vibration levels imposed on the DEPARTMENT OF TRANSPORTATION Miscellaneous Markings and Placards— airframe can be mitigated to an Fuel, and Oil, Filler Openings acceptable level by utilization of Federal Aviation Administration (Compliance With § 23.1557(c)(1)(ii) isolators, damper clutches, and similar Requirements) provisions so that unacceptable 14 CFR Part 39 Instead of compliance with vibration levels are not imposed on the [Docket No. FAA–2013–0195; Directorate § 23.1557(c)(1)(i), the applicant must previously certificated structure. Identifier 2013–NE–08–AD; Amendment 39– comply with the following: 14. Powerplant Installation—One 17553; AD 2013–16–15] Fuel filler openings must be marked Cylinder Inoperative RIN 2120–AA64 at or near the filler cover with— Tests or analysis, or a combination of For diesel engine-powered Airworthiness Directives; General methods, must show that the airframe airplanes— Electric Company Turbofan Engines can withstand the shaking or vibratory (a) The words ‘‘Jet Fuel’’; and forces imposed by the engine if a AGENCY: Federal Aviation (b) The permissible fuel designations, cylinder becomes inoperative. Diesel Administration (FAA), DOT. or references to the Airplane Flight engines of conventional design typically Manual (AFM) for permissible fuel ACTION: Final rule. have extremely high levels of vibration designations. when a cylinder becomes inoperative. SUMMARY: We are adopting a new (c) A warning placard or note that Data must be provided to the airframe airworthiness directive (AD) for all states the following or similar: installer/modifier so either appropriate General Electric Company (GE) model ‘‘Warning—this airplane is equipped design considerations or operating GEnx–2B67B turbofan engines with with an aircraft diesel engine; service procedures, or both, can be developed to booster anti-ice (BAI) air duct, part with approved fuels only.’’ prevent airframe and propeller damage. -
Aluminum: the Light Metal—Part
nov amp features_am&p master template new QX6.qxt 11/5/2014 3:05 PM Page 30 Aluminum: The Light Metal—Part III Alcoa’s aluminum monopoly continued throughout the 1920s and 1930s— a serious problem when World War II demands far exceeded production capacity. Metallurgy Lane, lcoa acquired the laboratory of the Alu- process that bonded a more corrosion resistant authored by minum Casting Co. in 1920 as payment for layer of pure aluminum to both sides of the 17S ASM life member A the debt owed on aluminum purchases sheet metal. These two layers make up about 10% Charles R. Simcoe, made during World War I. Two metallurgists with of total sheet thickness. This product—named Al- is a yearlong series aluminum experience came with the laboratory— clad—is still used in aluminum alloy applications dedicated to the early Zay Jeffries and Robert Archer. During WWI, Jef- exposed to corrosive atmospheres. history of the U.S. metals fries worked on aluminum casting problems, and materials industries mainly with ordinance fuses and the Liberty Air- Alloy development along with key craft Engine. Jeffries and Archer continued to make In the 1930s, Alcoa developed a higher strength milestones and major contributions to the field of cast and forged alloy called 24S. The major change from 17S to 24S developments. aluminum alloys throughout the 1920s, working in involved boosting the magnesium level from 0.5% the Cleveland laboratory. to 1.5%. This increased the design strength of 24S With two lab facilities dedicated to research to 50,000 psi, from 40,000. -
The Ford Tri-Motor Design
1003cent.qxd 9/12/03 10:11 AM Page 1 he Ford Tri-Motor design was Liberty engines during World War I, Tone of the most successful early Stout was employed by the govern- transports. Nicknamed the Tin ment to build an all-metal single- Goose, it was one of the largest all- wing torpedo bomber. Using the metal aircraft built in America up to knowledge he learned during this that time. It featured corrugated alu- project, he founded the Stout Metal minum covering on the fuselage, Airplane Company, with a focus on wings, tail, and on the internally building civil aircraft of composite braced cantilever wing. The Ford metal and wood construction. Tri-motor was an inherently stable Many factors drove metal con- airplane, designed to fly well on two struction. Maintenance accounted engines and to maintain level flight for a large portion of an aircraft’s di- on one. The first three Tri-Motors rect operating cost. In particular, built seated the pilot in an open Ford’s fabric needed regular replacement cockpit, as many pilots doubted that after every 750 to 1000 flying hours. a plane could be flown without the Eliminating the periodic replace- direct “feel of the wind.” Tri-Motor ment of fabric offset the increased Henry Ford is credited with cost of metal aircraft coverings. founding American commercial The Ford Tri-Motor, Ford supported Stout’s ideas by aviation when the Ford Freight building an airplane factory with a Service, comprising six aircraft, affectionately known as the landing field, and leasing it to the began flying between Chicago and “Tin Goose,” was the Stout Metal Airplane Company. -
Military Vehicle Options Arising from the Barrel Type Piston Engine
Journal of Power Technologies 101 (1) (2021) 22–33 Military vehicle options arising from the barrel type piston engine Pawe l Mazuro1 and Cezary Chmielewski1,B 1Warsaw University of Technology B [email protected] Abstract in terms of efficiency, meaning that piston engines can deliver enhanced range and endurance. This is benefi- The article reviews knowledge about requirements for engines in cial in missions requiring a stopover for refueling and state-of-the-art unmanned aerial vehicles and tanks. Analysis of particularly useful for unmanned supply, observation design and operational parameters was carried out on selected and maritime missions. turboshaft and piston engines generating power in the range of 500 - 1500 kW (0.5 - 1.5 MW). The data was compared In contrast, land combat vehicles have significantly with the performance of innovative, barrel type piston engines, different drive unit requirements. High mobility en- which are likely to become an alternative drive solution in the ables the vehicle to rapidly change location after de- target vehicle groups. tection. To this end, the torque curve as a function of the rotational speed of the shaft is of decisive im- portance. Keywords: military UAV, tanks, turboshaft engines, piston engines, barrel type piston engines The complexity of tank engines adds an additional layer of requirements, impacting the reliability and durability of the power unit, and they come with re- 1 Introduction lated manufacturing and operating costs. In military land vehicles, the engine should be as small This article consolidates knowledge on options and as possible; the space saved can be used for other capabilities arising from use of the barrel type piston purposes. -
American Airlines Stionson
American Airlines Stinson Copyright by © Captain Carl Jordan <[email protected]> Feb 23, 1997 - Page 1 of 5 Printed here with permission Let me start out by saying that my dad learned to fly in 1927. He began to fly with the Army Air Corps Reserve in 1931. He started with American Airlines in 1935, and retired 33 years later in 1968. I learned to fly in 1949. Subsequently did a stint in the US Air Force during the Korean War. Wound-up being a 20-year-old all-weather, jet fighter interceptor pilot. I started with United Airlines (Capital) in 1956, flying co-pilot on the DC-3. I "officially" retired in 1993. (I say "officially" because the Age-60 thing hasn't run its full course yet. "Old" geezers like me are still hopeful that 65 or 70 will eventually be recognized as mandatory retirement age.) My daughter is a third-generation airline captain (type-rated in A-320 & B-737), and still has a long run ahead of her before bumping into the mandatory retirement age...whatever it might happen to be when she finally gets there. If any of my grand kids (seven of them...for now) decide to get into the airline game, they'll be fourth-generation. With regard to Stinsons and American Airlines, there are two interesting points. First, when my dad started with American in 1935, he flew Curtiss Condors and STINSON TRIMOTORS. Like the Curtiss Condor, the Stinson Trimotor was a fabric-covered bird, and wasn't covered with "corrugated tin" like the Ford Trimotor. -
Up from Kitty Hawk Chronology
airforcemag.com Up From Kitty Hawk Chronology AIR FORCE Magazine's Aerospace Chronology Up From Kitty Hawk PART ONE PART TWO 1903-1979 1980-present 1 airforcemag.com Up From Kitty Hawk Chronology Up From Kitty Hawk 1903-1919 Wright brothers at Kill Devil Hill, N.C., 1903. Articles noted throughout the chronology provide additional historical information. They are hyperlinked to Air Force Magazine's online archive. 1903 March 23, 1903. First Wright brothers’ airplane patent, based on their 1902 glider, is filed in America. Aug. 8, 1903. The Langley gasoline engine model airplane is successfully launched from a catapult on a houseboat. Dec. 8, 1903. Second and last trial of the Langley airplane, piloted by Charles M. Manly, is wrecked in launching from a houseboat on the Potomac River in Washington, D.C. Dec. 17, 1903. At Kill Devil Hill near Kitty Hawk, N.C., Orville Wright flies for about 12 seconds over a distance of 120 feet, achieving the world’s first manned, powered, sustained, and controlled flight in a heavier-than-air machine. The Wright brothers made four flights that day. On the last, Wilbur Wright flew for 59 seconds over a distance of 852 feet. (Three days earlier, Wilbur Wright had attempted the first powered flight, managing to cover 105 feet in 3.5 seconds, but he could not sustain or control the flight and crashed.) Dawn at Kill Devil Jewel of the Air 1905 Jan. 18, 1905. The Wright brothers open negotiations with the US government to build an airplane for the Army, but nothing comes of this first meeting. -
Federal Register/Vol. 78, No. 160/Monday, August 19, 2013
Federal Register / Vol. 78, No. 160 / Monday, August 19, 2013 / Rules and Regulations 50317 (3) The factor with wing flaps extended as 3A13 to include the new Model J182T model T182T. The regulations specified in CS–VLA 345. with the Societe de Motorisation incorporated by reference in the type (f) Kinds of operation. The kinds of Aeronautiques (SMA) Engines, Inc. certificate are commonly referred to as operation (day VFR or day and night VFR, SR305–230E–C1 which is a four-stroke, the ‘‘original type certification basis.’’ In whichever is applicable) in which the aeroplane may be used, must be stated. The air cooled, diesel cycle engine that uses addition, the J182T certification basis minimum equipment required for the turbine (jet) fuel. The Model No. J182T, includes special conditions and operation must be listed. which is a derivative of the T182 equivalent levels of safety. (g) Powerplant limitations. The following currently approved under Type If the Administrator finds that the information must be furnished: Certificate No. 3A13, is an aluminum, applicable airworthiness regulations (1) Limitation required by CS–VLA 1521. four place, single engine airplane with (i.e., 14 CFR part 23) do not contain (2) Information necessary for marking the a cantilever high wing, with the SMA adequate or appropriate safety standards instruments required by CS–VLA 1549 to 1553. SR305–230E–C1 diesel cycle engine and for the J182T because of a novel or (3) Fuel and oil designation. associated systems installed. unusual design feature, special (4) For two-stroke engines, fuel/oil ratio. In anticipation of the reintroduction conditions are prescribed under the (h) Placards.