A Model-Driven Development and Verification Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GNAT User's Guide for Native Platforms
GNAT User's Guide for Native Platforms GNAT User's Guide for Native Platforms , January 13, 2017 AdaCore Copyright c 2008-2017, Free Software Foundation i Table of Contents 1 About This Guide :::::::::::::::::::::::::::::: 2 1.1 What This Guide Contains ::::::::::::::::::::::::::::::::::::: 2 1.2 What You Should Know before Reading This Guide :::::::::::: 2 1.3 Related Information :::::::::::::::::::::::::::::::::::::::::::: 3 1.4 A Note to Readers of Previous Versions of the Manual :::::::::: 3 1.5 Conventions:::::::::::::::::::::::::::::::::::::::::::::::::::: 4 2 Getting Started with GNAT ::::::::::::::::::: 5 2.1 Running GNAT :::::::::::::::::::::::::::::::::::::::::::::::: 5 2.2 Running a Simple Ada Program :::::::::::::::::::::::::::::::: 5 2.3 Running a Program with Multiple Units :::::::::::::::::::::::: 6 2.4 Using the gnatmake Utility ::::::::::::::::::::::::::::::::::::: 7 3 The GNAT Compilation Model ::::::::::::::: 9 3.1 Source Representation:::::::::::::::::::::::::::::::::::::::::: 9 3.2 Foreign Language Representation:::::::::::::::::::::::::::::: 10 3.2.1 Latin-1::::::::::::::::::::::::::::::::::::::::::::::::::: 10 3.2.2 Other 8-Bit Codes:::::::::::::::::::::::::::::::::::::::: 10 3.2.3 Wide Character Encodings ::::::::::::::::::::::::::::::: 11 3.2.4 Wide Wide Character Encodings ::::::::::::::::::::::::: 12 3.3 File Naming Topics and Utilities :::::::::::::::::::::::::::::: 13 3.3.1 File Naming Rules ::::::::::::::::::::::::::::::::::::::: 13 3.3.2 Using Other File Names :::::::::::::::::::::::::::::::::: 14 3.3.3 Alternative -
Riscv-Software-Stack-Tutorial-Hpca2015
Software Tools Bootcamp RISC-V ISA Tutorial — HPCA-21 08 February 2015 Albert Ou UC Berkeley [email protected] Preliminaries To follow along, download these slides at http://riscv.org/tutorial-hpca2015.html 2 Preliminaries . Shell commands are prefixed by a “$” prompt. Due to time constraints, we will not be building everything from source in real-time. - Binaries have been prepared for you in the VM image. - Detailed build steps are documented here for completeness but are not necessary if using the VM. Interactive portions of this tutorial are denoted with: $ echo 'Hello world' . Also as a reminder, these slides are marked with an icon in the upper-right corner: 3 Software Stack . Many possible combinations (and growing) . But here we will focus on the most common workflows for RISC-V software development 4 Agenda 1. riscv-tools infrastructure 2. First Steps 3. Spike + Proxy Kernel 4. QEMU + Linux 5. Advanced Cross-Compiling 6. Yocto/OpenEmbedded 5 riscv-tools — Overview “Meta-repository” with Git submodules for every stable component of the RISC-V software toolchain Submodule Contents riscv-fesvr RISC-V Frontend Server riscv-isa-sim Functional ISA simulator (“Spike”) riscv-qemu Higher-performance ISA simulator riscv-gnu-toolchain binutils, gcc, newlib, glibc, Linux UAPI headers riscv-llvm LLVM, riscv-clang submodule riscv-pk RISC-V Proxy Kernel (riscv-linux) Linux/RISC-V kernel port riscv-tests ISA assembly tests, benchmark suite All listed submodules are hosted under the riscv GitHub organization: https://github.com/riscv 6 riscv-tools — Installation . Build riscv-gnu-toolchain (riscv*-*-elf / newlib target), riscv-fesvr, riscv-isa-sim, and riscv-pk: (pre-installed in VM) $ git clone https://github.com/riscv/riscv-tools $ cd riscv-tools $ git submodule update --init --recursive $ export RISCV=<installation path> $ export PATH=${PATH}:${RISCV}/bin $ ./build.sh . -
Operating Systems and Applications for Embedded Systems >>> Toolchains
>>> Operating Systems And Applications For Embedded Systems >>> Toolchains Name: Mariusz Naumowicz Date: 31 sierpnia 2018 [~]$ _ [1/19] >>> Plan 1. Toolchain Toolchain Main component of GNU toolchain C library Finding a toolchain 2. crosstool-NG crosstool-NG Installing Anatomy of a toolchain Information about cross-compiler Configruation Most interesting features Sysroot Other tools POSIX functions AP [~]$ _ [2/19] >>> Toolchain A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. [1. Toolchain]$ _ [3/19] >>> Main component of GNU toolchain * Binutils: A set of binary utilities including the assembler, and the linker, ld. It is available at http://www.gnu.org/software/binutils/. * GNU Compiler Collection (GCC): These are the compilers for C and other languages which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common back-end which produces assembler code which is fed to the GNU assembler. It is available at http://gcc.gnu.org/. * C library: A standardized API based on the POSIX specification which is the principle interface to the operating system kernel from applications. There are several C libraries to consider, see the following section. [1. Toolchain]$ _ [4/19] >>> C library * glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. * eglibc: Available at http://www.eglibc.org/home. -
Linux Journal | February 2016 | Issue
™ A LOOK AT KDE’s KStars Astronomy Program Since 1994: The Original Magazine of the Linux Community FEBRUARY 2016 | ISSUE 262 | www.linuxjournal.com + Programming Working with Command How-Tos Arguments in Your Program a Shell Scripts BeagleBone Interview: Katerina Black Barone-Adesi on to Help Brew Beer Developing the Snabb Switch Network Write a Toolkit Short Script to Solve a WATCH: ISSUE Math Puzzle OVERVIEW V LJ262-February2016.indd 1 1/21/16 5:26 PM NEW! Agile Improve Product Business Development Processes with an Enterprise Practical books Author: Ted Schmidt Job Scheduler for the most technical Sponsor: IBM Author: Mike Diehl Sponsor: people on the planet. Skybot Finding Your DIY Way: Mapping Commerce Site Your Network Author: to Improve Reuven M. Lerner Manageability GEEK GUIDES Sponsor: GeoTrust Author: Bill Childers Sponsor: InterMapper Combating Get in the Infrastructure Fast Lane Sprawl with NVMe Author: Author: Bill Childers Mike Diehl Sponsor: Sponsor: Puppet Labs Silicon Mechanics & Intel Download books for free with a Take Control Linux in simple one-time registration. of Growing the Time Redis NoSQL of Malware http://geekguide.linuxjournal.com Server Clusters Author: Author: Federico Kereki Reuven M. Lerner Sponsor: Sponsor: IBM Bit9 + Carbon Black LJ262-February2016.indd 2 1/21/16 5:26 PM NEW! Agile Improve Product Business Development Processes with an Enterprise Practical books Author: Ted Schmidt Job Scheduler for the most technical Sponsor: IBM Author: Mike Diehl Sponsor: people on the planet. Skybot Finding Your DIY Way: Mapping Commerce Site Your Network Author: to Improve Reuven M. Lerner Manageability GEEK GUIDES Sponsor: GeoTrust Author: Bill Childers Sponsor: InterMapper Combating Get in the Infrastructure Fast Lane Sprawl with NVMe Author: Author: Bill Childers Mike Diehl Sponsor: Sponsor: Puppet Labs Silicon Mechanics & Intel Download books for free with a Take Control Linux in simple one-time registration. -
Compiler Construction
Compiler Construction Chapter 11 Compiler Construction Compiler Construction 1 A New Compiler • Perhaps a new source language • Perhaps a new target for an existing compiler • Perhaps both Compiler Construction Compiler Construction 2 Source Language • Larger, more complex languages generally require larger, more complex compilers • Is the source language expected to evolve? – E.g., Java 1.0 ! Java 1.1 ! . – A brand new language may undergo considerable change early on – A small working prototype may be in order – Compiler writers must anticipate some amount of change and their design must therefore be flexible – Lexer and parser generators (like Lex and Yacc) are therefore better than hand- coding the lexer and parser when change is inevitable Compiler Construction Compiler Construction 3 Target Language • The nature of the target language and run-time environment influence compiler construction considerably • A new processor and/or its assembler may be buggy Buggy targets make it difficult to debug compilers for that target! • A successful source language will persist over several target generations – E.g., 386 ! 486 ! Pentium ! . – Thus the design of the IR is important – Modularization of machine-specific details is also important Compiler Construction Compiler Construction 4 Compiler Performance Issues • Compiler speed • Generated code quality • Error diagnostics • Portability • Maintainability Compiler Construction Compiler Construction 5 Compiler Speed • Reduce the number of modules • Reduce the number of passes Perhaps generate machine -
Linux Everywhere a Look at Linux Outside the World of Desktops
Linux Everywhere A look at Linux outside the world of desktops CIS 191 Spring 2012 – Guest Lecture by Philip Peng Lecture Outline 1. Introduction 2. Different Platforms 3. Reasons for Linux 4. Cross-compiling 5. Case Study: iPodLinux 6. Questions 2 What’s in common? 3 All your hardware are belong to us • Linux is everywhere – If its programmable, you can put Linux on it! – Yes, even a microwave CES 2010, microwave running Android: http://www.handlewithlinux.com/linux-washing-cooking 4 Servers • What servers use – Stability, security, free – Examples: ◦ CentOS ◦ Debian ◦ Red Hat 5 Desktop • What you use – Free Windows/Mac alternative – Examples: ◦ Ubuntu ◦ Fedora ◦ PCLinuxOS 6 Gaming Devices • What (white-hat) hackers do – To run “homebrew” software – Examples: ◦ PS3, Wii, XBOX ◦ PS2, GameCube ◦ Dreamcast ◦ PSP, DS ◦ Open Pandora, GP2X 7 Mobile Devices • What distributors are developing – Community contribution – Examples ◦ Android ◦ Maemo/MeeGo/Tizen ◦ Openmoko 8 Embedded Devices • What embedded hardware run – Small footprint, dev tools – Examples ◦ RTLinux (real-time) ◦ μClinux (no MMU) ◦ Ångström (everything) 9 Why? 10 Free! • Free! – As in freedom, i.e. open source – As in beer, i.e. vs paid upgrades 11 Homebrew! • Run own software – Your hardware your software? 12 Support! • Community contribution – “For the greater good” (i.e. users) – Everyone contributes ◦ Specialists from all over the world – Existing hardware support ◦ Many already supported computer architecture ◦ Modify existing drivers 13 Lots of support! 14 Why not? • Because we can – If its hackable, it can run Linux 15 How? • How do we get Linux running on XXX? • Port: A version of software modified to run on a different target platform – The PS3 port of Fedora is a modified build of Fedora compiled to run on the PS3 architecture – e.g. -
Programas Incluidos En El DVD DVD-Programación 2012-12
D 2 i c 1 - i e 2 DVD-Programación 2012-12 m 1 0 b 2 r Programas incluidos en el DVD e n d ó i (continuación) Eclipse PDT Helios SR2 - Elgg 1.8.9 - Erlang R15B03 - Etherpad Lite 1.2.1 - Euphoria 3.1.1 - e c ez Components 2009.2.1 - eZ Publish Community 2012.09 - Feng Office 2.2.1 - FileZilla Server 0.9.41 - 2 a 0 m Firebird 2.5.2 - Firebug 1.10.6 - FlameRobin 0.9.3.1186200 - Free Pascal 2.6.0 - FreeBasic 0.24.0 - 1 a 2 r FreeDOS 1.1 Full CD - Gazpacho 0.7.2 - Geany 0.21 - gedit 2.30.1 - Git 1.8.0 - GNAT Programming Studio g 5.1.1 - GnuWin32 Indent 2.2.10 - GTK+ 2.14.7 - Guido van Robot 4.4 - gVim 7.3.46 - HM NIS Edit 2.0.3 - IE o r Tab 2.0 2012.03.12 - Inno Setup 5.5.2 - Inno Setup Tool 5.3.0.1 - InstallJammer 1.2.15 - Instant Rails 2.0 - P - IzPack 4.3.5 - Java Runtime Environment 6 update 37 - Java Runtime Environment 7 update 9 - jEdit 5.0.0 - D Jelix Developer Edition 1.4.1 - Joomla! 2.5.8 - Joomla! 3.0.1 - Komodo Edit 7.1.3 - Kompozer 0.8.b3 - V D Kompozer 0.8.b3 Català - Lazarus 1.0.4 - lightTPD 1.4.30.3 - LinkChecker 8.2 - Mambo 4.6.5 - MantisBT 1.2.12 - MediaWiki 1.20.1 - Mercurial 2.4 - Minimum Profit 5.2.3 - Mono 2.10.9 - monotone 1.0 - Moodle 2.3.3 - MS .NET Framework 1.1 - MS .NET Framework 2.0 - MS Windows Installer 4.5 - MySql 5.5.28 - MySQL WorkBench OSS 5.2.44 - NetBeans Java EE IDE 7.2.1 - Notepad++ 5.9 - NSIS 2.46 - NumPy 1.6.2 (py 2.7) - NumPy 1.6.2 (py 3.2) - Open Watcom Fortran 1.9 - OpenLaszlo 4.9.0 - Parrot 4.10.0 - PECL 5.2.6 - pgAdmin3 1.14.1 - PHP 5.3.19 VC9 (instalador) - PHP-Fusion 7.02.05 - phpMyAdmin 3.5.4 -
Embedded Linux Device Driver Development Sébastien Bilavarn
Embedded Linux Device driver development Sébastien Bilavarn Polytech’Nice Sophia - Département Electronique - Université de Nice Sophia Antipolis - S. Bilavarn - 1 - Outline Ch1 – Introduction to Linux Ch2 – Linux kernel overview Ch3 – Linux for Embedded Systems Ch4 – Embedded Linux distributions Ch5 – Case study: Xilinx PowerPC Linux Ch5 bis – Case study: Xilinx Zynq-7000 Linux Ch6 – Device driver development Polytech’Nice Sophia - Département Electronique - Université de Nice Sophia Antipolis - S. Bilavarn - 2 - Linux for Embedded Systems Introduction to Embedded Linux Key features Embedded Linux development Linux kernel development Polytech’Nice Sophia - Département Electronique - Université de Nice Sophia Antipolis - S. Bilavarn - 3 - Embedded Linux What is Embedded Linux ? Strictly speaking Embedded Linux is an operating system based on Linux and adapted specifically to the constraints of embedded systems. Unlike standard versions of Linux for Personal Computers, embedded Linux is designed for systems with limited resources Memory: few RAM, sometimes no Memory Management Unit (MMU) Storage: Flash instead of hard disk drive Since embedded systems are often designed for domain specific purposes and specific target platforms, they use kernel versions that are optimized for a given context of application. This results in different Linux kernel variants that are also called Linux distributions Polytech’Nice Sophia - Département Electronique - Université de Nice Sophia Antipolis - S. Bilavarn - 4 - Embedded Linux What is embedded Linux ? Embedded Linux is used in embedded systems such as mobile phones, personal digital assistants (PDA), media players set-top boxes, and other consumer electronics devices networking equipment machine control, industrial automation navigation equipment medical instruments Key features runs in a small embedded system, typically booting out of Flash, no hard disk drive, no full-size video display, and take far less than 2 minutes to boot up, sometimes supports real- time tasks. -
Cross-Compiler Bipartite Vulnerability Search
electronics Article Cross-Compiler Bipartite Vulnerability Search Paul Black * and Iqbal Gondal Internet Commerce Security Laboratory (ICSL), Federation University, Ballarat 3353, Australia; [email protected] * Correspondence: [email protected] Abstract: Open-source libraries are widely used in software development, and the functions from these libraries may contain security vulnerabilities that can provide gateways for attackers. This paper provides a function similarity technique to identify vulnerable functions in compiled programs and proposes a new technique called Cross-Compiler Bipartite Vulnerability Search (CCBVS). CCBVS uses a novel training process, and bipartite matching to filter SVM model false positives to improve the quality of similar function identification. This research uses debug symbols in programs compiled from open-source software products to generate the ground truth. This automatic extraction of ground truth allows experimentation with a wide range of programs. The results presented in the paper show that an SVM model trained on a wide variety of programs compiled for Windows and Linux, x86 and Intel 64 architectures can be used to predict function similarity and that the use of bipartite matching substantially improves the function similarity matching performance. Keywords: malware similarity; function similarity; binary similarity; machine-learning; bipar- tite matching 1. Introduction Citation: Black, P.; Gondal, I. Cross-Compiler Bipartite Function similarity techniques are used in the following activities, the triage of mal- Vulnerability Search. Electronics 2021, ware [1], analysis of program patches [2], identification of library functions [3], analysis of 10, 1356. https://doi.org/10.3390/ code authorship [4], the identification of similar function pairs to reduce manual analysis electronics10111356 workload, [5], plagiarism analysis [6], and for vulnerable function identification [7–9]. -
SEWIP Program Leverages COTS P 36 P 28 an Interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Systems & Global Solutions
@military_cots John McHale Obsolescence trends 8 Special Report Shipboard displays 44 Mil Tech Trends Predictive analytics 52 Industry Spotlight Aging avionics software 56 MIL-EMBEDDED.COM September 2015 | Volume 11 | Number 6 RESOURCE GUIDE 2015 P 62 Navy SEWIP program leverages COTS P 36 P 28 An interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Systems & Global Solutions Military electronics market overview P 14 Volume 11 Number 6 www.mil-embedded.com September 2015 COLUMNS BONUS – MARKET OVERVIEW Editor’s Perspective 14 C4ISR funding a bright spot in military 8 Tech mergers & military electronics electronics market obsolescence By John McHale, Editorial Director By John McHale Q&A EXECUTIVE OUTLOOK Field Intelligence 10 Metadata: When target video 28 Defending DoD from cyberattacks, getting to data is not enough the left of the boom By Charlotte Adams 14 An interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Mil Tech Insider Systems & Global Solutions 12 Broadwell chip boosts GPU performance for COTS SBCs 32 RF and microwave innovation drives military By Aaron Frank radar and electronic warfare applications An interview with Bryan Goldstein, DEPARTMENTS General Manager of the Aerospace and Defense, Analog Devices 22 Defense Tech Wire By Mariana Iriarte SPECIAL REPORT 60 Editor’s Choice Products Shipboard Electronics 112 University Update 36 U.S. Navy’s electronic warfare modernization On DARPA’s cybersecurity radar: 36 effort centers on COTS Algorithmic and side-channel attacks By Sally Cole, Senior Editor By Sally Cole 114 Connecting with Mil Embedded 44 Key to military display technologies: Blog – The fascinating world of System integration By Tom Whinfrey, IEE Inc. -
GNAT User's Guide
GNAT User's Guide GNAT, The GNU Ada Compiler For gcc version 4.7.4 (GCC) AdaCore Copyright c 1995-2009 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". About This Guide 1 About This Guide This guide describes the use of GNAT, a compiler and software development toolset for the full Ada programming language. It documents the features of the compiler and tools, and explains how to use them to build Ada applications. GNAT implements Ada 95 and Ada 2005, and it may also be invoked in Ada 83 compat- ibility mode. By default, GNAT assumes Ada 2005, but you can override with a compiler switch (see Section 3.2.9 [Compiling Different Versions of Ada], page 78) to explicitly specify the language version. Throughout this manual, references to \Ada" without a year suffix apply to both the Ada 95 and Ada 2005 versions of the language. What This Guide Contains This guide contains the following chapters: • Chapter 1 [Getting Started with GNAT], page 5, describes how to get started compiling and running Ada programs with the GNAT Ada programming environment. • Chapter 2 [The GNAT Compilation Model], page 13, describes the compilation model used by GNAT. • Chapter 3 [Compiling Using gcc], page 41, describes how to compile Ada programs with gcc, the Ada compiler. -
Sigada 2007 Annual International Conference on the Ada Programming Language
ADA Vo lume 28 USER Number 3 September 2007 JOURNAL Contents Page Editorial Policy for Ada User Journal 130 Editorial 131 News 133 Conference Calendar 166 Forthcoming Events 173 Articles J. Miranda “Towards Certification of Object-Oriented Code with the GNAT Compiler” 178 P. E. Black “SAMATE and Evaluating Static Analysis Tools” 184 G. Bernat, R. Davis, N. Merriam, J. Tuffen, A. Gardner, M. Bennett, D. Armstrong “Identifying Opportunities for Worst-Case Execution Time Reduction in an Avionics System” 189 Ada-Europe Associate Members (National Ada Organizations) 196 Ada-Europe 2007 Sponsors Inside Back Cover Ada User Journal Volume 28, Number 3, September 2007 130 Editorial Policy for Ada User Journal Publication Original Papers Commentaries Ada User Journal — The Journal for Manuscripts should be submitted in We publish commentaries on Ada and the international Ada Community — is accordance with the submission software engineering topics. These published by Ada-Europe. It appears guidelines (below). may represent the views either of four times a year, on the last days of individuals or of organisations. Such March, June, September and All original technical contributions are articles can be of any length – December. Copy date is the last day of submitted to refereeing by at least two inclusion is at the discretion of the the month of publication. people. Names of referees will be kept Editor. confidential, but their comments will Opinions expressed within the Ada Aims be relayed to the authors at the discretion of the Editor. User Journal do not necessarily Ada User Journal aims to inform represent the views of the Editor, Ada- readers of developments in the Ada The first named author will receive a Europe or its directors.