Binomial Heaps )

Total Page:16

File Type:pdf, Size:1020Kb

Binomial Heaps ) CSE 548: Analysis of Algorithms Lecture 9 ( Binomial Heaps ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2017 Mergeable Heap Operations MAKE -HEAP ( ): return a new heap containing only element INSERT ( ): insert element into heap , MINIMUM( ): return a pointer to an element in containing the smallest key EXTRACT -MIN ( ): delete an element with the smallest key from and return a pointer to that element UNION ( ): return a new heap containing all elements of , heaps and , and destroy the input heaps More mergeable heap operations: DECREASE -KEY ( ): change the key of element of heap to , , assuming the current key of DELETE ( ): delete element from heap , Mergeable Heap Operations Heap Binary Heap Binomial Heap Operation ( worst-case ) ( amortized ) MAKE -HEAP Θ Θ 1 1 INSERT Ο Θ log 1 MINIMUM Θ Θ 1 1 EXTRACT -MIN Ο Ο log log UNION Θ Θ 1 DECREASE -KEY Ο log DELETE Ο log Binomial Trees A binomial tree is an ordered tree defined recursively as follows. − consists of a single node − For , consists of two ’s that are linked together so that the 0 root of one is the left child of the root of the other Binomial Trees Some useful properties of are as follows. 1. it has exactly nodes 2 2. its height is 3. there are exactly nodes at depth 0,1,2, … , 4. the root has degree 5. if the children of the root are numbered from left to right by , then child1,2,…,0 is the root of a Binomial Trees Prove: has exactly nodes at depth . 0,1,2,…, Proof: Suppose has nodes at depth . , 0 # $ 0 %& , , !1 # 0, , , %'()&*). , , , , , , 1 , , , , , Binomial Trees 0 # $ 0 %& , , !1 # 0, , , %'()&*). , / 0 0 01 , , 0 Generating function: , - , ,- ,- … ,- ,2 - 3 ,- 3 ,- 3 ,- / 01 3 / 01- 4 4 4 4 3 ,- - 3 ,- 0 4 4 , - -, - 0 1 - , - / 01 1 # 0, ., - 5 1 - , - %'()&*). Equating the coefficient 1 - of from both sides: , - Binomial Heaps A binomial heap is a set of binomial trees that satisfies the following properties: Binomial Heaps A binomial heap is a set of binomial trees that satisfies the following properties: 1. each node has a key 2. each binomial tree in obeys the min-heap property 3. for any integer , there is at most one binomial tree in whose root node 0 0 has degree 6 1 10 8 14 29 12 25 11 17 38 18 min 27 Rank of Binomial Trees The rank of a binomial tree node , denoted , is the number of children of . &9 The figure on the right shows the rank of each node in . 3 Observe that . 2 1 0 &9 &%%' Rank of a binomial tree is the rank of 1 0 0 its root. Hence, 0 &9 &9 &%%' A Basic Operation: Linking Two Binomial Trees Given two binomial trees of the same rank , say, two ’s, we link them in constant time by making the root of one tree the left child ; of the root of the other, and thus 6 producing a . 8 14 29 ; If the trees are part of a binomial 11 17 38 min-heap, we always make the root 27 with the smaller key the parent, and the one with the larger key the child. Ties are broken arbitrarily. Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min < 6 1 18 14 29 25 38 min min < Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min < 6 1 18 14 29 25 38 min 12 18 min Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min 6 1 18 14 29 25 38 min < 12 18 min Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min 6 1 18 14 29 25 38 min < 1 12 12 25 18 18 min Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min < 6 1 18 14 29 25 38 min 1 12 25 18 min Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min < 6 1 18 14 29 25 38 min 6 1 8 14 29 12 25 11 17 38 18 27 min Binomial Heap Operations: UNION( ) , 8 12 11 17 27 min 6 1 18 14 29 25 38 min =>?@> , 6 1 8 14 29 12 25 11 17 38 18 27 min Binomial Heap Operations: UNION( ) UNION works in exactly the same way as binary addition., , Let be the number of nodes in . A 1,2B Then the largest binomial tree in is a , where . C log Thus can be treated as a bit binary number , where bit is 1 if contains a , and 0 otherwise.D 1 E If , then can be viewed F% as a , bit binary number log , where . Binomial Heap Operations: UNION( ) UNION works in exactly the same way as binary addition., , Initially, does not contain any binomial trees. Melding starts from ( LSB ) and continues up to ( MSB ). At each location , one encounters at mostD G three /0, 1 ( 3 ) ’s: E − at most 1 from ( input ), − at most 1 from ( input ), and − if at most 1 from ( carry ) D 0, Binomial Heap Operations: UNION( ) UNION works in exactly the same way as binary addition., , When the number of ’s at location is: E D G /0, 1 − 0: location of is set to − 1: location D of points to< that − 2: the two D ’s are linked to produceE a whichE is stored as a carry at locationE; of , and location isD set 1 to − 3: two ’s Dare linked< to produce a Ewhich is stored as a carryE; at location of , and the 3 rd Dis 1 stored at locationE D Binomial Heap Operations: UNION( ) UNION works in exactly the same way as binary addition., , Worst case cost of UNION is clearly Θ , where is the total number of nodes in, and . log Observe that this operation fills out locations of , where . 1 log It does only Θ work for each location. 1 Hence, total cost is Θ Θ . log Binomial Heap Operations: UNION( ) One can improve the performance of UNION as follows., , W.l.o.g., suppose is at least as large as , i.e., . 0 We also assume that has enough space to store at least up to , where, . log Then instead of melding and to a new heap , we can meld them in-place at . After melding till , we stop once the carry stops propagating.H The cost is Ω , but Ο . Worst-case cost is still Ο Ο . log Binomial Heap Operations: INSERT ( ) , Step 1: MAKE -HEAP I 5 ITakes J Θ time. 1 min I Step 2: UNION 8 12 J ( in-place , at I ) 11 17 Takes Ο time, where 27 min is the number oflog nodes in . Thus the worst-case cost of 8 5 11 17 12 INSERT is Ο , where 27 min is the , number oflog items already in the heap. Binomial Heap Operations: EXTRACT -MIN( ) 6 Step 1: Step 2: remove the binomial tree with remove the smallest root from the input heap minimum min 6 10 element 8 14 29 12 25 11 17 38 18 27 10 12 25 Step 3: remove the root of the binomial 18 min < tree with the minimum element, and form a new binomial heap from the children of the removed root Step 4: UNION and update the min pointer K , I 8 14 29 8 14 29 11 17 38 10 11 17 38 27 min I < 12 25 27 min 18 Binomial Heap Operations: EXTRACT -MIN( ) 6 Step 1: Step 2: remove the binomial tree with remove the smallest root from the input heap minimum min 6 10 element Θ 8 14 29 12 25 Θ 1 11 17 38 18 1 27 10 12 25 Step 3: remove the root of the binomial 18 min < Tree with the minimum element, and form a new binomial heap from the children of the removed root Step 4: UNION and update the min pointer Ο K , log Ο log I 8 14 29 8 14 29 11 17 38 10 11 17 38 27 min I < 12 25 27 min 18 Thus, the worst-case cost of EXTRACT -MIN is Ο log Binomial Heap Operations Heap Worst-case Operation MAKE -HEAP Θ 1 INSERT Ο log MINIMUM Θ 1 EXTRACT -MIN Ο log UNION Ο log Amortized Analysis ( Accounting Method ) We maintain a credit account for every tree in the heap, and always maintain the following invariant: L M&)N' E 1 OPGQ MAKE -HEAP ( ): actual cost, ( for creating the singleton heap ) extra charge,M 1 ( for storing in the credit account R 1 of the new tree ) amortized cost, Θ MS M R 2 1 Amortized Analysis ( Accounting Method ) We maintain a credit account for every tree in the heap, and always maintain the following invariant: L M&)N' E 1 OPGQ LINK ( ): AB AB T actual,T cost, ( for linking the two trees ) M 1 We use pay for this actual work. AB M&)N' Let be the newly created tree. We restore the credit invariant ; by transferring to . AB M&)N' M&)N' ; Hence, amortized cost, MS M R 1 1 0 Amortized Analysis ( Accounting Method ) We maintain a credit account for every tree in the heap, and always maintain the following invariant: L M&)N' E 1 OPGQ INSERT ( ): , Amortized cost of MAKE -HEAP is 2 Then UNION is simply a sequence of free LINK operations K with only a constant , amount of additional work that do not create any new trees. Thus the credit invariant is maintained, and the amortized cost of this step is .
Recommended publications
  • Advanced Data Structures
    Advanced Data Structures PETER BRASS City College of New York CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880374 © Peter Brass 2008 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2008 ISBN-13 978-0-511-43685-7 eBook (EBL) ISBN-13 978-0-521-88037-4 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface page xi 1 Elementary Structures 1 1.1 Stack 1 1.2 Queue 8 1.3 Double-Ended Queue 16 1.4 Dynamical Allocation of Nodes 16 1.5 Shadow Copies of Array-Based Structures 18 2 Search Trees 23 2.1 Two Models of Search Trees 23 2.2 General Properties and Transformations 26 2.3 Height of a Search Tree 29 2.4 Basic Find, Insert, and Delete 31 2.5ReturningfromLeaftoRoot35 2.6 Dealing with Nonunique Keys 37 2.7 Queries for the Keys in an Interval 38 2.8 Building Optimal Search Trees 40 2.9 Converting Trees into Lists 47 2.10
    [Show full text]
  • Introduction to Algorithms and Data Structures
    Introduction to Algorithms and Data Structures Markus Bläser Saarland University Draft—Thursday 22, 2015 and forever Contents 1 Introduction 1 1.1 Binary search . .1 1.2 Machine model . .3 1.3 Asymptotic growth of functions . .5 1.4 Running time analysis . .7 1.4.1 On foot . .7 1.4.2 By solving recurrences . .8 2 Sorting 11 2.1 Selection-sort . 11 2.2 Merge sort . 13 3 More sorting procedures 16 3.1 Heap sort . 16 3.1.1 Heaps . 16 3.1.2 Establishing the Heap property . 18 3.1.3 Building a heap from scratch . 19 3.1.4 Heap sort . 20 3.2 Quick sort . 21 4 Selection problems 23 4.1 Lower bounds . 23 4.1.1 Sorting . 25 4.1.2 Minimum selection . 27 4.2 Upper bounds for selecting the median . 27 5 Elementary data structures 30 5.1 Stacks . 30 5.2 Queues . 31 5.3 Linked lists . 33 6 Binary search trees 36 6.1 Searching . 38 6.2 Minimum and maximum . 39 6.3 Successor and predecessor . 39 6.4 Insertion and deletion . 40 i ii CONTENTS 7 AVL trees 44 7.1 Bounds on the height . 45 7.2 Restoring the AVL tree property . 46 7.2.1 Rotations . 46 7.2.2 Insertion . 46 7.2.3 Deletion . 49 8 Binomial Heaps 52 8.1 Binomial trees . 52 8.2 Binomial heaps . 54 8.3 Operations . 55 8.3.1 Make heap . 55 8.3.2 Minimum . 55 8.3.3 Union . 56 8.3.4 Insert .
    [Show full text]
  • Lecture 6 — February 9, 2017 1 Wrapping up on Hashing
    CS 224: Advanced Algorithms Spring 2017 Lecture 6 | February 9, 2017 Prof. Jelani Nelson Scribe: Albert Chalom 1 Wrapping up on hashing Recall from las lecture that we showed that when using hashing with chaining of n items into m C log n bins where m = Θ(n) and hash function h :[ut] ! m that if h is from log log n wise family, then no C log n linked list has size > log log n . 1.1 Using two hash functions Azar, Broder, Karlin, and Upfal '99 [1] then used two hash functions h; g :[u] ! [m] that are fully random. Then ball i is inserted in the least loaded of the 2 bins h(i); g(i), and ties are broken randomly. log log n Theorem: Max load is ≤ log 2 + O(1) with high probability. When using d instead of 2 hash log log n functions we get max load ≤ log d + O(1) with high probability. n 1.2 Breaking n into d slots n V¨ocking '03 [2] then considered breaking our n buckets into d slots, and having d hash functions n h1; h2; :::; hd that hash into their corresponding slot of size d . Then insert(i), loads i in the least loaded of the h(i) bins, and breaks tie by putting i in the left most bin. log log n This improves the performance to Max Load ≤ where 1:618 = φ2 < φ3::: ≤ 2. dφd 1.3 Survey: Mitzenmacher, Richa, Sitaraman [3] Idea: Let Bi denote the number of bins with ≥ i balls.
    [Show full text]
  • Data Structures Binary Trees and Their Balances Heaps Tries B-Trees
    Data Structures Tries Separated chains ≡ just linked lists for each bucket. P [one list of size exactly l] = s(1=m)l(1 − 1=m)n−l. Since this is a Note: Strange structure due to finals topics. Will improve later. Compressing dictionary structure in a tree. General tries can grow l P based on the dictionary, and quite fast. Long paths are inefficient, binomial distribution, easily E[chain length] = (lP [len = l]) = α. Binary trees and their balances so we define compressed tries, which are tries with no non-splitting Expected maximum list length vertices. Initialization O(Σl) for uncompressed tries, O(l + Σ) for compressed (we are only making one initialization of a vertex { the X s j AVL trees P [max len(j) ≥ j) ≤ P [len(i) ≥ j] ≤ m (1=m) last one). i j i Vertices contain -1,0,+1 { difference of balances between the left and T:Assuming all l-length sequences come with uniform probability and we have a sampling of size n, E[c − trie size] = log d. j−1 the right subtree. Balance is just the maximum depth of the subtree. k Q (s − k) P = k=0 (1=m)j−1 ≤ s(s=m)j−1=j!: Analysis: prove by induction that for depth k, there are between Fk P:qd ≡ probability trie has depth d. E[c − triesize] = d d(qd − j! k P and 2 vertices in every tree. Since balance only shifts by 1, it's pretty qd+1) = d qd. simple. Calculate opposite event { trie is within depth d − 1.
    [Show full text]
  • Chapter C4: Heaps and Binomial / Fibonacci Heaps
    Chapter C4: Heaps and Binomial / Fibonacci Heaps C4.1 Heaps A heap is the standard implementation of a priority queue. A min-heap stores values in nodes of a tree such that heap-order property: for each node, its value is smaller than or equal to its children’s So the minimum is on top. (A max-heap can be defined similarly.) The standard heap uses a binary tree. Specifically, it uses a complete binary tree, which we define here to be a binary tree where each level except the last is full, and in the last level nodes are added left to right. Here is an example: 7 24 19 25 56 68 40 29 31 58 Now, any binary tree can be stored in an array using level numbering. The root is in cell 0, cells 1 and cells 2 are for its children, cells 3 through 6 are for its grandchildren, and so on. Note that this means a nice formula: if a node is in cell x,thenitschildren are in 2x+1 and 2x+2. Such storage can be (very) wasteful for a general binary tree; but the definition of complete binary tree means the standard heap is stored in consecutive cells of the array. C4.2 Heap Operations The idea for insertion is to: Add as last leaf, then bubble up value until heap-order property re-established. Insert(v) add v as next leaf while v<parent(v) { swapElements(v,parent(v)) v=parent(v) } One uses a “hole” to reduce data movement. Here is an example of inserting the value 12: 7 7 24 19 12 19 ) 25 56 68 40 25 24 68 40 29 31 58 12 29 31 58 56 The idea for extractMin is to: Replace with value from last leaf, delete last leaf, and bubble down value until heap-order property re-established.
    [Show full text]
  • Lecture Notes of CSCI5610 Advanced Data Structures
    Lecture Notes of CSCI5610 Advanced Data Structures Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong July 17, 2020 Contents 1 Course Overview and Computation Models 4 2 The Binary Search Tree and the 2-3 Tree 7 2.1 The binary search tree . .7 2.2 The 2-3 tree . .9 2.3 Remarks . 13 3 Structures for Intervals 15 3.1 The interval tree . 15 3.2 The segment tree . 17 3.3 Remarks . 18 4 Structures for Points 20 4.1 The kd-tree . 20 4.2 A bootstrapping lemma . 22 4.3 The priority search tree . 24 4.4 The range tree . 27 4.5 Another range tree with better query time . 29 4.6 Pointer-machine structures . 30 4.7 Remarks . 31 5 Logarithmic Method and Global Rebuilding 33 5.1 Amortized update cost . 33 5.2 Decomposable problems . 34 5.3 The logarithmic method . 34 5.4 Fully dynamic kd-trees with global rebuilding . 37 5.5 Remarks . 39 6 Weight Balancing 41 6.1 BB[α]-trees . 41 6.2 Insertion . 42 6.3 Deletion . 42 6.4 Amortized analysis . 42 6.5 Dynamization with weight balancing . 43 6.6 Remarks . 44 1 CONTENTS 2 7 Partial Persistence 47 7.1 The potential method . 47 7.2 Partially persistent BST . 48 7.3 General pointer-machine structures . 52 7.4 Remarks . 52 8 Dynamic Perfect Hashing 54 8.1 Two random graph results . 54 8.2 Cuckoo hashing . 55 8.3 Analysis . 58 8.4 Remarks . 59 9 Binomial and Fibonacci Heaps 61 9.1 The binomial heap .
    [Show full text]
  • Problem Set 2 1 Lazy Binomial Heaps (100 Pts)
    ICS 621: Analysis of Algorithms Fall 2019 Problem Set 2 Prof. Nodari Sitchinava Due: Friday, September 20, 2019 at the start of class You may discuss the problems with your classmates, however you must write up the solutions on your own and list the names of every person with whom you discussed each problem. 1 Lazy Binomial Heaps (100 pts) Being lazy is nothing to be proud of, but occasionally it can improve the overall execution. In this exercise, we will see how delaying the work of the Union operation in the binomial heap can improve the runtime of several operations of the binomial heap. Delete and Decrease-Key operations in the lazy binomial heap will remain unchanged. To implement the new Union we will store the list of roots as a circular doubly-linked list. That is, every node in the linked list has two pointers left and right, including the head and the tail of the list, such that head:left = tail and tail:right = head: We will also maintain the number of elements stored in the heap as a field Q:n (accessible in O(1) time). Consider the following description of Union(Q1;Q2). It simply appends the root list of Q2 to the right of the root list of Q1: function Union(Q1, Q2) if Q1:head = NIL return Q2 else if Q2:head 6= NIL tail1 Q1:head:left; tail2 Q2:head:left . Pointers to the tails of Q1 and Q2 Q2:head:left tail1; tail1:right Q2:head . Link head of Q2 to the right of the tail of Q1 Q1:head:left tail2 ; tail2:right Q1:head .
    [Show full text]
  • Part C: Data Structures Wayne Goddard, School of Computing, Clemson University, 2019
    Part C: Data Structures Wayne Goddard, School of Computing, Clemson University, 2019 Data Structures 1 C1.1 Basic Collections . 1 C1.2 Stacks and Queues . 1 C1.3 Dictionary . 2 C1.4 Priority Queue . 2 Skip Lists 3 C2.1 Levels . 3 C2.2 Implementation of Insertion . 3 Binary Search Trees 5 C3.1 Binary Search Trees . 5 C3.2 Insertion and Deletion in BST . 5 C3.3 Rotations . 6 C3.4 AVL Trees . 6 Heaps and Binomial / Fibonacci Heaps 9 C4.1 Heaps . 9 C4.2 Heap Operations . 9 C4.3 Binomial Heaps . 11 C4.4 Decrease-Key and Fibonacci Heaps . 12 Hash Tables 14 C5.1 Buckets and Hash Functions . 14 C5.2 Collision Resolution . 14 C5.3 Rehashing . 15 C5.4 Other Applications of Hashing . 16 Disjoint Set Data Structure 17 C6.1 Disjoint Forests . 17 C6.2 Pointer Jumping . 18 Chapter C1: Data Structures An ADT or abstract data type defines a way of interacting with data: it specifies only how the ADT can be used and says nothing about the implementation of the structure. An ADT is conceptually more abstract than a Java interface specification or C++ list of class member function prototypes, and should be expressed in some formal language (such as mathematics). A data structure is a way of storing data that implements certain operations. When choosing a data structure for your ADT, you might consider many issues such as whether the data is static or dynamic, whether the deletion operation is important, whether the data is ordered, etc. C1.1 Basic Collections There are three basic collections.
    [Show full text]
  • Binomal Heaps and Queues Node
    EECS 311: Data Structure and Data Management Lecture 21, 22 Binomial Queues Binomial Queues & Heaps Reading: Chapter 6 (except 6.4–6.7); Chap- binomial tree structure: ter 11, Sections 2 and 4. • n is power of 2. • n = 1: binomial tree is a single Binomal Heaps and Queues node. • n =2i two 2i−1 node binomial trees, binary heaps based queues may be improv- make one a child of root of other. able. Example: 1. perform some operations faster? • One node trees: 2. binomial queue 2 . 9 • O(log n) merge. • Two node trees: 3. redundant binomial queue 2 5 • O(1) insert 9 7 • Θ(log n) delete-min, reduce-key. • Four node trees: 4. Fibonacci heaps 2 1 • O(1) insert, reduce-key 9 5 6 3 • O(log n) delete-min 7 8 • Dijkstra’s shortest paths + fi- conacci heap ⇒ Θ(n log n + m). • Eight node tree: Binomial Heaps 1 Def: a binomial heaps is a tree that satis- 6 3 2 fies 8 9 5 heap order: key at node is smaller than keys of children. 7 1 Def: a binomial queue is 1. make k into single-node queue Q′. ′ • a list of binomial heaps. 2. merge Q and Q . • for each i, at most one heap of size 2i. Runtime: merge = Θ(log n) Algorithm: delete-min Algorithm: binomial heap merge Input: Q Input: H1 and H2, two n node binomial i heaps. 1. find heap with min key ⇒ Hi, size 2 ′ • Make tree with greater root-key child of 2. remove heap Hi ⇒ Q root of other tree.
    [Show full text]
  • Page 1 Today's Goals • Mergeable Heaps – Review Binary Heaps
    ToDay’s&Goals& • MerGeable&Heaps& – Review&Binary&Heaps& – LinkeD2lists& – Binomial&Trees& – Binomial&Heaps& • ReD2Black& h<p://recursivelyrecursive.wordpress.com/& – Prove&balance& Heaps&O’&Fun& – Look&at&insert&/&Delete& CS&140&HMC&2&Jim&Boerkoel& Binary&heap&representaPons& ExtractMax& 16&&&14&&&10&&&8&&&&&7&&&&&&9&&&&&3&&&&&2&&&&&4&&&&&1& Return&anD&remove&the&larGest&element&in&the&set& 1&&&2&&&&3&&&&4&&&&5&&&&6&&&&7&&&&8&&&&9&&&&10& 16& 16& 14& 10& 14& 10& 8& 7& 9& 3& 8& 7& 9& 3& 2& 4& 1& 2& 4& 1& ExtractMax& ExtractMax& Return&anD&remove&the&larGest&element&in&the&set& Return&anD&remove&the&larGest&element&in&the&set& ?& 1& Heapify- 14& 10& 14& 10& 8& 7& 9& 3& 8& 7& 9& 3& 2& 4& 1& 2& 4& ExtractMax& ExtractMax& Return&anD&remove&the&larGest&element&in&the&set& Return&anD&remove&the&larGest&element&in&the&set& 14& Heapify- 8& 10& 4& 7& 9& 3& 2& 1& MerGeable&Heap& Binary&heaps& A&merGeable&heap&is&any&Data&structure&that&supports&the& followinG&five&operaPons,&in&which&each&element&has&a&key:& • MakeHeap()&2&creates&anD&returns&a&new&heap&containinG&no&elements.& • Insert(H,x)&2&inserts&element&x,&whose&key&has&already&been&filleD&in,&into& heap&H.& • Minimum(H)&2&returns&a&pointer&to&the&element&in&heap&H&whose&key&is& minimum.& • Extract:Min(H)&2&Deletes&the&element&from&heap&H&whose&key&is&minimum,& returninG&a&pointer&to&the&element.& • Union(H1,-H2)-2&creates&anD&returns&a&new&heap&that&contains&all&the& elements&of&heaps&H1&anD&H2.&Heaps&H1&anD&H2&are&“DestroyeD”&by&this& operaPon.& • ALSO:&Increase2Element,&Delete& MerGeable&heaps&
    [Show full text]
  • Binomial Heaps Supports the Following Operations
    Priority Queues (heaps) Heaps in Action Dijkstra's Shortest Path Algorithm Binomial Heaps Supports the following operations. Insert element x. HeapInit () /*Initialized Priority Queue */ Return min element. for each v ∈∈∈ V Return and delete minimum element. d[v] ←←←∞∞∞ ; Decrease key of element x to k. HeapInsert (v) CLRS, Chapters 6, 19 Applications. d[s] ←←← 0 Dijkstra's shortest path algorithm. while (! HeapIsEmpty ()) u = Heap_Extract_Min () Thanks to Kevin Wayne for Prim's MST algorithm. the slides. for each v ∈∈∈ V(G) s.t (u,v) ∈∈∈ E(G) Event-driven simulation. if d[v] > d[u] + w(u,v) Huffman encoding. Heap_Decrease (v, d[u] + w(v,w)) Heapsort. . 2 3 Priority Queues Binomial Tree Binomial Tree Binomial tree - definition. Heaps B Useful properties of order k binomial tree B k. Recursive definition: 0 Bi Operation Linked List Binary Binomial Fibonacci * Relaxed k Number of nodes = 2 . make-heap 1 1 1 1 1 Bi is created from two Bi-1 by Bk connect the root of the Height = k. insert 1 log N log N 1 1 Bi-1 +1 find-min N 1 log N 1 1 larger key is a child of the Degree of root = k. Bi-1 delete-min N log N log N log N log N second. Deleting root yields binomial B1 B B0 union 1 N log N 1 1 2 So the degree could be trees Bk-1, … , B 0. Bk decrease-key 1 log N log N 1 1 rather large. delete N log N log N log N log N Proof.
    [Show full text]
  • Binomial Heaps
    Binomial Heaps Where We’re Going ● Binomial Heaps (Today) ● A simple, flexible, and versatile priority queue. ● Lazy Binomial Heaps (Today) ● A powerful building block for designing advanced data structures. ● Fibonacci Heaps (Tuesday) ● A heavyweight and theoretically excellent priority queue. Review: Priority Queues Priority Queues ● A priority queue is a data structure that supports these operations: ● pq.enqueue(v, k), which enqueues element v with key k; ● pq.find-min(), which returns the element with the least key; and ● pq.extract-min(), which removes and returns the element with the least key. ● They’re useful as building blocks in a bunch of algorithms. Priority Queues ● A priority queue is a data structure that supports Kilimanjaro these operations: 5,859 ● pq.enqueue(v, k), which enqueues element v with Mt. Sidley key k; Mt. Giluwe 4,285 ● pq.find-min(), which 4,368 returns the element with the least key; and ● pq.extract-min(), which removes and returns the element with the least key. Pico de Orizaba ● They’re useful as building blocks in a bunch of 5,636 algorithms. Binary Heaps ● Priority queues are frequently implemented as binary heaps. ● enqueue and extract-min run in time O(log n); find- min runs in time O(1). ● These heaps are surprisingly fast in practice. It’s tough to beat their performance! ● d-ary heaps can outperform binary heaps for a well- tuned value of d, and otherwise only the sequence heap is known to specifically outperform this family. ● (Is this information incorrect as of 2021? Let me know and I’ll update it.) ● In that case, why do we need other heaps? Priority Queues in Practice ● Many graph algorithms directly rely on priority queues supporting extra operations: ● meld(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their elements into a single priority queue.
    [Show full text]