Biogeosciences, 13, 4615–4626, 2016 www.biogeosciences.net/13/4615/2016/ doi:10.5194/bg-13-4615-2016 © Author(s) 2016. CC Attribution 3.0 License. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions Irina Evgenievna Terentieva1,*, Mikhail Vladimirovich Glagolev1,3,4,5, Elena Dmitrievna Lapshina3, Alexandr Faritovich Sabrekov2, and Shamil Maksyutov6 1Laboratory of Computational Geophysics, Tomsk State University, Tomsk, 643050, Russia 2BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, 643050, Russia 3UNESCO Department ’Environmental Dynamics and Global Climate Changes’, Yugra State University, Khanty-Mansiysk, 628012, Russia 4Institute of Forest Science Russian Academy of Sciences, Uspenskoe, 143030, Russia 5Faculty of Soil Science, Moscow State University, Moscow, 119992, Russia 6Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan *previously published under the name I. E. Kleptsova Correspondence to: Irina Evgenievna Terentieva (
[email protected]) Received: 5 November 2015 – Published in Biogeosciences Discuss.: 16 December 2015 Revised: 18 July 2016 – Accepted: 21 July 2016 – Published: 16 August 2016 Abstract. High-latitude wetlands are important for under- (5 %), patterned fens (4 %), and swamps (4 %). Various olig- standing climate change risks because these environments otrophic environments are dominant among wetland ecosys- sink carbon dioxide and emit methane. However, fine-scale tems, while poor fens cover only 14 % of the area. Because of heterogeneity of wetland landscapes poses a serious chal- the significant change in the wetland ecosystem coverage in lenge when generating regional-scale estimates of green- comparison to previous studies, a considerable reevaluation house gas fluxes from point observations. In order to reduce of the total CH4 emissions from the entire region is expected.