Impact of Double-Diffusive Convection and Motile Gyrotactic

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Double-Diffusive Convection and Motile Gyrotactic Open Physics 2020; 18: 74–88 Review Article Tanveer Sajid*, Muhammad Sagheer, Shafqat Hussain, and Faisal Shahzad Impact of double-diffusive convection and motile gyrotactic microorganisms on magnetohydrodynamics bioconvection tangent hyperbolic nanofluid https://doi.org/10.1515/phys-2020-0009 to be explored widely because of its enormous applications in received July 07, 2019; accepted February 10, 2020 the field of pharmaceutical industry, purification of cultures, fl Abstract: The double-diffusive tangent hyperbolic nanofluid micro uidic devices, mass transport enhancement and containing motile gyrotactic microorganisms and magneto- mixing, microbial enhanced oil recovery and enzyme hydrodynamics past a stretching sheet is examined. By biosensors. Bioconvection systems could be categorized ff adopting the scaling group of transformation, the governing based on the directional motion of di erent species of equations of motion are transformed into a system of microorganisms. In particular, gyrotactic microorganisms are nonlinear ordinary differential equations. The Keller box the ones whose swimming direction is dependent on a [ ] scheme, a finite difference method, has been employed for the balance between gravitational and viscous torques 4,5 . [ ] solution of the nonlinear ordinary differential equations. The Oyelakin et al. 6 pondered the impact of bioconvection and fl behaviour of the working fluid against various parameters of motile gyrotactic microorganisms on the Casson nano uid physical nature has been analyzed through graphs and tables. past a stretching sheet and observed that the microorganism fi The behaviour of different physical quantities of interest pro le decreases as a result of an increment in the Peclet [ ] ff such as heat transfer rate, density of the motile gyrotactic number. Saini and Sharma 7 explored the e ects of - microorganisms and mass transfer rate is also discussed in the bioconvection and gyrotactic microorganisms on the nano fl fl form of tables and graphs. It is found that the modified Dufour uid ow over a porous stretching sheet. It is noted that parameter has an increasing effect on the temperature profile. the Lewis number escalates the bioconvection process. [ ] Thesoluteprofile is observed to decay as a result of an Dhanai et al. 8 explored the impact of bioconvection on fl fl augmentation in the nanofluid Lewis number. the uid ow over an inclined stretching sheet and assessed that the microorganism density profile is enhanced with Keywords: magnetohydrodynamics, bioconvection, an improvement in the bioconvection Schmidt number. gyrotactic microorganisms, nanofluid, magnetic field, Mahdy [9] pondered the effects of motile microorganisms Keller box method, stretching sheet, double diffusion on the fluid past a stretching wedge and noted that a positive variation in the Peclet number leads to an augmentation in 1 Introduction the microorganism profile. Avinash et al. [10] pondered the impact of bioconvection and aligned magnetic field on the nanofluid flow over a vertical plate and concluded that In fluid dynamics, bioconvection [1–3] occurs when the heat transfer rate increases with an improvement in the microorganisms, which are denser than water, swim Lewis number. Makinde and Animasaun [11] studied the upwards. The upper surface of the fluid becomes thicker effects of magnetohydrodynamics (MHD),bioconvection, due to the assemblage of microorganisms. As a result, the nonlinear thermal radiation and nanoparticles on fluid past upper surface becomes unstable and microorganisms fall an upper horizontal surface of a paraboloid of revolution and down, which creates bioconvection. Bioconvection continues found that the Brownian motion boosts the concentration profile. Khan et al. [12] studied the impact of MHD, gyrotactic fl * Corresponding author: Tanveer Sajid, Capital University of Science microorganisms, slip condition and nanoparticles on the uid and Technology (CUST), Islamabad, Pakistan, e-mail: tanveer.sajid15@ flow over a vertical stretching plate; it was observed that the yahoo.com magnetic field suppresses the dimensionless velocity inside Muhammad Sagheer: Capital University of Science and Technology the boundary layer. Later, the effects of different features of ( ) - CUST , Islamabad, Pakistan, e mail: [email protected] the gyrotactic microorganisms on the fluid flow are analyzed Shafqat Hussain: Capital University of Science and Technology [ – ] (CUST), Islamabad, Pakistan, e-mail: [email protected] in various investigations 13 15 . Faisal Shahzad: Capital University of Science and Technology (CUST), Nanotechnology has been considered the most sub- Islamabad, Pakistan, e-mail: [email protected] stantial and fascinating forefront area in physics, Open Access. © 2020 Tanveer Sajid et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License. Impact of double-diffusive convection and motile gyrotactic microorganisms 75 engineering, chemistry and biology. The thermal conduc- distinct rate of diffusion. Double-diffusive convection occurs tivity of a nanofluid is greater than that of the base fluid. in a variety of scientific disciplines such as oceanography, The thermal conductivity of the fluid is considered to be biology, astrophysics, geology, crystal growth and chemical enhanced by the nanoparticles present in the fluid. reactions [28]. Nield and Kuznetsov [29] scrutinized the Buongiorno [16] established a model to examine the thermal nanofluid past a porous medium along with the double- conductivity of nanofluids. Baby and Ramaprabhu [17] diffusive convection effect. The impact of double-diffusive analyzed the heat transport of fluids using graphene convection on the fluid flow over a square cavity is analyzed nanoparticles. They reported that the thermal conductivity byMahapatraetal.[30]. Gireesha et al. [31] discussed the of hydrogen-exfoliated graphene is enhanced with an Casson nanofluid past a stretching sheet along with the increment in the volume fraction of the nanoparticles. MHD and double-diffusive convection. Rana and Chand [32] Khan and Gorla [18] pondered the mass transfer of the explored the effect of double-diffusive convection on nanofluid flow over a convective sheet using the Keller box viscoelastic fluid and deduced that a Rayleigh number scheme and noted that the heat transfer rate is high in the increases with an improvement in the Soret parameter. dilatant fluids compared with that in the pseudoplastic Gaikwad et al. [33] have monitored the fluid flow above a fluids. Das [19] discussed the rotating flow of a nanofluid stretching sheet together with double-diffusive convection with respect to the constant heat source. A boost in the and found that an augmentation in the Nusselt number volume fraction of nanoparticles was observed to cause an takes place with an improvement in the Dufour parameter. increment in the thermal boundary layer thickness. Gireesha Kumar et al. [34] inspected the influence of nanoparticles et al. [20] considered the Hall impact on a dusty nanofluid and double diffusion on viscoelastic fluid and monitored and concluded that the skin friction coefficient decreases that an increase in the velocity field occurs with an due to an improvement in the Hall current. increment in the Dufour Lewis number. The experimental and the theoretical scientificstudies Convection is a process common to particles, gases and of the non-Newtonian liquids together with MHD have vapours. Convection occurs when a fluid is in motion and achieved a considerable attention of researchers because of that motion carries with it a material of interest such as the their adequate applications in the field of aeronautics, particles or the droplets of an aerosol. There are two types of chemical, mechanical, civil and bio-engineering. The fluid convection: free convection and forced convection. In free becomes electrically conducting under the effect of MHD convection or natural convection, the fluid motion cannot led like ionized gases, plasmas and liquid metals such as by external sources such as fans, pumps, and suction devices mercury. The impact of MHD and nonlinear thermal etc. Gravity is the main driving force in the case of free radiationontheSiskonanofluid flow over a nonlinear convection. Free convection has various environmental and stretching surface is premeditated by Prasannakumara industrial applications such as plate tectonics, oceanic et al. [21].Rashidietal.[22] pondered the MHD viscoelastic currents, formation of microstructures during the cooling of fluid together with the Soret and Dufour effects and molten metals, fluid flows around shrouded heat dissipation observed that the velocity profile decreases with an fins, solar ponds and free air cooling without the aid of fans. improvement in the magnetic parameter. Kothandapani In forced convection, the fluid motion is generated externally and Prakash [23] studied the effect of magnetic field on with the help of pumps, fans, suction devices, etc. This peristaltic tangent hyperbolic nanofluid past a asymmetric mechanism has enormous applications in our daily life such channel. Gaffar et al. [24] showed the tangent hyperbolic as heat exchangers, central heating system, steam turbines fluid flow over a cylinder together with the MHD and partial and air conditioning. Mixed convection is the situation in slip effects. Nagendramma et al. [25] analyzed the tangent whichbothfreeconvectionandforcedconvectionareof hyperbolic fluid flow over a stretching sheet together with comparable order. Mixed convection is of great interest to the
Recommended publications
  • General@ Electric Space Sciences Laboratory Theoretical Fluid Physics Section
    4 3 i d . GPO PRICE $ CFSTI PRICE(S) $ R65SD50 Microfiche (MF) , 7.3, We53 July85 THE STRUCTURE OF THE VISCOUS HYPERSONIC SHOCK LAYER SPACE SCIENCES LABORATORY . MISSILE AND SPACE DIVISION GENERAL@ ELECTRIC SPACE SCIENCES LABORATORY THEORETICAL FLUID PHYSICS SECTION THE STRUCTURE OF THE VISCOUS HYPERSONIC SHOCK LAYER BY L. Goldberg . Work performed for the Space Nuclear Propulsion Office, NASA, under Contract No. SNPC-29. f This report first appeared as part of Contract Report DIN: 214-228F (CRD), October 1, 1965. Permission for release of this publication for general distribution was received from SNPO on December 9, 1965. R65SD50 December, 1965 MISSILE AND SPACE DIVISION GENERAL ELECTRIC CONTENTS PAGE 1 4 I List of Figures ii ... Abstract 111 I Symbols iv I. INTRODUCTION 1 11. DISCUSSION OF THE HYPER NIC CO TTINUI 3 FLOW FIELD 111. BASIC RELATIONS 11 IV . BOUNDARY CONDITIONS 14 V. NORMALIZED SYSTEM OF EQUATIONS AND BOUNDARY 19 CONDITIONS VI. DISCUSSION OF RESULTS 24 VII. CONCLUSIONS 34 VIII. REFERENCES 35 Acknowledgements 39 Figures 40 1 LIST OF FIGURES 'I PAGE 1 1 1. Hypersonic Flight Regimes 40 'I 2. Coordinate System 41 3. Profiles Re = 15, 000 42 S 3 4. Profiles Re = 10 43 S 3 5. Profiles Re = 10 , f = -0.4 44 S W 2 6. Profiles Re = 10 45 S 2 7. Profiles Re = 10 , f = do. 4 46 S W Profiles Re = 10 47 8. s 9. Normalized Boundary Layer Correlations 48 10. Reduction in Skin Friction and Heat Transfer with Mass 49 Transfer 11. Normalized Heat Transfer 50 12. Normalized Skin Friction 51 13.
    [Show full text]
  • Soret and Dufour Effects on MHD Boundary Layer Flow of Non
    Pramana – J. Phys. (2020) 94:108 © Indian Academy of Sciences https://doi.org/10.1007/s12043-020-01984-z Soret and Dufour effects on MHD boundary layer flow of non-Newtonian Carreau fluid with mixed convective heat and mass transfer over a moving vertical plate ANIL KUMAR GAUTAM1, AJEET KUMAR VERMA1, KRISHNENDU BHATTACHARYYA1 ,∗ and ASTICK BANERJEE2 1Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India 2Department of Mathematics, Sidho-Kanho-Birsha University, Purulia 723 104, India ∗Corresponding author. E-mail: [email protected], [email protected] MS received 1 August 2019; revised 24 April 2020; accepted 3 May 2020 Abstract. In this analysis, the mixed convection boundary layer MHD flow of non-Newtonian Carreau fluid subjected to Soret and Dufour effects over a moving vertical plate is studied. The governing flow equations are converted into a set of non-linear ordinary differential equations using suitable transformations. For numerical computations, bvp4c in MATLAB package is used to solve the resulting equations. Impacts of various involved parameters, such as Weissenberg number, power-law index, magnetic parameter, thermal buoyancy parameter, solutal buoyancy parameter, thermal radiation, Dufour number, Soret number and reaction rate parameter, on velocity, temperature and concentration are shown through figures. Also, the local skin-friction coefficient, local Nusselt number and local Sherwood number are calculated and shown graphically and in tabular form for different parameters. Some important facts are revealed during the investigation. The temperature and concentration show decreasing trends with increasing values of power-law index, whereas velocity shows reverse trend and these trends are more prominent for larger values of Weissenberg number.
    [Show full text]
  • Inertia-Less Convectively-Driven Dynamo Models in the Limit
    Inertia-less convectively-driven dynamo models in the limit of low Rossby number and large Prandtl number Michael A. Calkins a,1,∗, Keith Julienb,2, Steven M. Tobiasc,3 aDepartment of Physics, University of Colorado, Boulder, CO 80309 USA bDepartment of Applied Mathematics, University of Colorado, Boulder, CO 80309 USA cDepartment of Applied Mathematics, University of Leeds, Leeds, UK LS2 9JT Abstract Compositional convection is thought to be an important energy source for magnetic field generation within planetary interiors. The Prandtl number, Pr, characterizing compositional convection is significantly larger than unity, suggesting that the inertial force may not be important on the small scales of convection as long as the buoyancy force is not too strong. We develop asymptotic dynamo models for the case of small Rossby number and large Prandtl number in which inertia is absent on the convective scale. The rele- vant diffusivity parameter for this limit is the compositional Roberts number, q = D/η, which is the ratio of compositional and magnetic diffusivities. Dy- namo models are developed for both order one q and the more geophysically relevant low q limit. For both cases the ratio of magnetic to kinetic energy densities, M, is asymptotically large and reflects the fact that Alfv´en waves have been filtered from the dynamics. Along with previous investigations of asymptotic dynamo models for Pr = O(1), our results show that the ratio M is not a useful indicator of dominant force balances in the momentum equa- tion since many different asymptotic limits of M can be obtained without changing the leading order geostrophic balance.
    [Show full text]
  • Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt Number Average Nusselt Number: Nul = Convective
    Jingwei Zhu http://jingweizhu.weebly.com/course-note.html Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Average Nusselt number: convective heat transfer ℎ퐿 Nu = = L conductive heat transfer 푘 where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective heat transfer coefficient of the fluid. Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere. For complex shapes, the length may be defined as the volume of the fluid body divided by the surface area. The thermal conductivity of the fluid is typically (but not always) evaluated at the film temperature, which for engineering purposes may be calculated as the mean-average of the bulk fluid temperature T∞ and wall surface temperature Tw. Local Nusselt number: hxx Nu = x k The length x is defined to be the distance from the surface boundary to the local point of interest. 2. Prandtl number The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. That is, the Prandtl number is given as: viscous diffusion rate ν Cpμ Pr = = = thermal diffusion rate α k where: ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) k α: thermal diffusivity, α = , (SI units : m²/s) ρCp μ: dynamic viscosity, (SI units : Pa ∗ s = N ∗ s/m²) W k: thermal conductivity, (SI units : ) m∗K J C : specific heat, (SI units : ) p kg∗K ρ: density, (SI units : kg/m³).
    [Show full text]
  • Thermal Radiations and Mass Transfer Analysis of the Three-Dimensional Magnetite Carreau Fluid Flow Past a Horizontal Surface of Paraboloid of Revolution
    processes Article Thermal Radiations and Mass Transfer Analysis of the Three-Dimensional Magnetite Carreau Fluid Flow Past a Horizontal Surface of Paraboloid of Revolution T. Abdeljawad 1,2,3 , Asad Ullah 4 , Hussam Alrabaiah 5,6, Ikramullah 7, Muhammad Ayaz 8, Waris Khan 9 , Ilyas Khan 10,∗ and Hidayat Ullah Khan 11 1 Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11 586, Saudi Arabia; [email protected] 2 Department of Medical Research, China Medical University, Taichung 40402, Taiwan 3 Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan 4 Institute of Numerical Sciences, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; [email protected] 5 College of Engineering, Al Ain University, Al Ain 64141, UAE; [email protected] 6 Department of Mathematics, Tafila Technical University, Tafila 66110, Jordan 7 Department of Physics, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan; [email protected] 8 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan; [email protected] 9 Department of Mathematics, Islamia College University Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan; [email protected] 10 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam 11 Department of Economics, Abbottabad University of Science and Technology (AUST), Abbottabad Havelian 22500, Khyber Pakhtunkhwa, Pakistan; [email protected] * Correspondence: [email protected] Received: 18 April 2020; Accepted: 22 May 2020; Published: 1 June 2020 Abstract: The dynamics of the 3-dimensional flow of magnetized Carreau fluid past a paraboloid surface of revolution is studied through thermal radiation and mass transfer analysis.
    [Show full text]
  • The Analogy Between Heat and Mass Transfer in Low Temperature Crossflow Evaporation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AUT Scholarly Commons The analogy between heat and mass transfer in low temperature crossflow evaporation Reza Enayatollahi*, Roy Jonathan Nates, Timothy Anderson Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand. Corresponding Author: Reza Enayatollahi Email Address: [email protected] Postal Address: WD308, 19 St Paul Street, Auckland CBD, Auckland, New Zealand Phone Number: +64 9 921 9999 x8109 Abstract This study experimentally determines the relationship between the heat and mass transfer, in a crossflow configuration in which a ducted airflow passes through a planar water jet. An initial exploration using the Chilton-Colburn analogy resulted in a coefficient of determination of 0.72. On this basis, a re-examination of the heat and mass transfer processes by Buckingham’s-π theorem and a least square analysis led to the proposal of a new dimensionless number referred to as the Lewis Number of Evaporation. A modified version of the Chilton-Colburn analogy incorporating the Lewis Number of Evaporation was developed leading to a coefficient of determination of 0.96. 1. Introduction Heat and mass transfer devices involving a liquid interacting with a gas flow have a wide range of applications including distillation plants, cooling towers and aeration processes and desiccant drying [1-5]. Many studies have gone through characterising the heat and mass transfer in such configurations [6-9]. The mechanisms of heat and mass transfer are similar and analogical. Therefore, in some special cases where, either the heat or mass transfer data are not reliable or may not be available, the heat and mass transfer analogy can be used to determine the missing or unreliable set of data.
    [Show full text]
  • High-Lewis Number Premixed Flame Instabilities
    High-Lewis Number Premixed Flame Instabilities A Thesis Submitted to the Faculty of Drexel University by Yi Ma in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2009 ii Acknowledgements It has been a great blessing being a graduate student under the supervision of Dr. Howard Pearlman. My appreciation of his generosity, tolerance, support and guidance through my long journey of Ph.D. study is beyond words. He is not only a very knowledgeable scholar but also a very kind and inspiring person. What I have learned from him will benefit me for my whole life. In addition, I would like to thank my committee members, Dr. Nicholas P. Cernansky, Dr. David L. Miller, Dr. Alan Lau and Dr. Smitesh Bakrania for their time and energy to review this dissertation. I must acknowledge a few of my colleagues in Hess Lab, Mike Foster, Rodney Johnson, Ashutosh Gupta, and Seul H. Park, among others, and my best friend Meline Zeng for their friendship and assistance for all these years. I would also like to thank two former undergraduate students, Christopher Ricciuti and Brian Fellon, for their contribution to the nano-size catalytic platinum particle project. Finally, the staff at the Machine Shop, namely Mark Shirber and Richard Miller have been very helpful modifying my experimental facility during various stages of this research. I would like to give special thanks to my husband David B. Lenhert for his endless love, tremendous help and encouragement during my Ph.D. study. Finally, my thanks go to my parents Zhong Hejiao and Ma Qingyun for their unconditional love, care and support over the years.
    [Show full text]
  • The Effect of Induced Magnetic Field and Convective Boundary Condition
    Propulsion and Power Research 2016;5(2):164–175 HOSTED BY http://ppr.buaa.edu.cn/ Propulsion and Power Research www.sciencedirect.com ORIGINAL ARTICLE The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of upper-convected Maxwell fluid in the presence of nanoparticle past a stretching sheet Wubshet Ibrahimn Department of Mathematics, Ambo University, P.O. Box 19, Ambo, Ethiopia Received 5 February 2015; accepted 17 July 2015 Available online 30 May 2016 KEYWORDS Abstract The present study examines the effect of induced magnetic field and convective fl fl boundary condition on magnetohydrodynamic (MHD) stagnation point ow and heat transfer due Nano uid; fl Stagnation point flow; to upper-convected Maxwell uid over a stretching sheet in the presence of nanoparticles. fi Heat transfer; Boundary layer theory is used to simplify the equation of motion, induced magnetic eld, energy Convective boundary and concentration which results in four coupled non-linear ordinary differential equations. The condition; study takes into account the effect of Brownian motion and thermophoresis parameters. The Induced magnetic governing equations and their associated boundary conditions are initially cast into dimensionless field; form by similarity variables. The resulting system of equations is then solved numerically using Upper-convected Max- fourth order Runge-Kutta-Fehlberg method along with shooting technique. The solution for the well fluid governing equations depends on parameters such as, magnetic, velocity ratio parameter B,Biot number Bi, Prandtl number Pr, Lewis number Le, Brownian motion Nb, reciprocal of magnetic Prandtl number A, the thermophoresis parameter Nt, and Maxwell parameter β.
    [Show full text]
  • Research Article a Combined Convection Carreau–Yasuda Nanofluid Model Over a Convective Heated Surface Near a Stagnation Point: a Numerical Study
    Hindawi Mathematical Problems in Engineering Volume 2021, Article ID 6665743, 14 pages https://doi.org/10.1155/2021/6665743 Research Article A Combined Convection Carreau–Yasuda Nanofluid Model over a Convective Heated Surface near a Stagnation Point: A Numerical Study Azad Hussain,1 Aysha Rehman ,1 Sohail Nadeem,2 M. Y. Malik ,3 Alibek Issakhov,4,5 Lubna Sarwar,1 and Shafiq Hussain6 1Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan 2Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan 3Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia 4Department of Mathematical and Computer Modeling, Al-Farabi Kazakh National University, Almaty, Kazakhstan 5Department of Mathematical and Computer Modeling, Kazakh British-Technical University, Almaty, Kazakhstan 6Department of Computer Science, University of Sahiwal, Sahiwal, Pakistan Correspondence should be addressed to Aysha Rehman; [email protected] Received 18 November 2020; Revised 1 March 2021; Accepted 22 March 2021; Published 5 April 2021 Academic Editor: Adrian Neagu Copyright © 2021 Azad Hussain et al. 'is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 'e focus of this manuscript is on two-dimensional mixed convection non-Newtonian nanofluid flow near stagnation point over a stretched surface with convectively heated boundary conditions.
    [Show full text]
  • On Dimensionless Numbers
    chemical engineering research and design 8 6 (2008) 835–868 Contents lists available at ScienceDirect Chemical Engineering Research and Design journal homepage: www.elsevier.com/locate/cherd Review On dimensionless numbers M.C. Ruzicka ∗ Department of Multiphase Reactors, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojova 135, 16502 Prague, Czech Republic This contribution is dedicated to Kamil Admiral´ Wichterle, a professor of chemical engineering, who admitted to feel a bit lost in the jungle of the dimensionless numbers, in our seminar at “Za Plıhalovic´ ohradou” abstract The goal is to provide a little review on dimensionless numbers, commonly encountered in chemical engineering. Both their sources are considered: dimensional analysis and scaling of governing equations with boundary con- ditions. The numbers produced by scaling of equation are presented for transport of momentum, heat and mass. Momentum transport is considered in both single-phase and multi-phase flows. The numbers obtained are assigned the physical meaning, and their mutual relations are highlighted. Certain drawbacks of building correlations based on dimensionless numbers are pointed out. © 2008 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. Keywords: Dimensionless numbers; Dimensional analysis; Scaling of equations; Scaling of boundary conditions; Single-phase flow; Multi-phase flow; Correlations Contents 1. Introduction .................................................................................................................
    [Show full text]
  • The Numerical Simulation of Double-Diffusive Laminar Mixed Convection Flow in a Lid-Driven Porous Cavity
    WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Shashak Misra, A. Satheesh, C. G. Mohan, P. Padmanathan The Numerical Simulation of Double-Diffusive Laminar Mixed Convection Flow in a Lid-Driven Porous Cavity SHASHAK MISRA, A. SATHEESH*, C.G. MOHAN AND P. PADMANATHAN School of Mechanical and Building Sciences VIT University, Vellore – 632014 Tamil Nadu, INDIA Corresponding author: Tel.: +91-416-224-2164; mob: +91-959-787-2825; [email protected] Abstract: - This paper presents the numerical investigation of double-diffusive mixed convective flow in an impermeable enclosed cavity. The uniform temperature and concentration is imposed along the vertical walls and the horizontal walls are considered as insulation. The flow behavior is analyzed when the top wall moves left side at a constant velocity (Uo) and the other walls kept remains stationary. Transport equations are solved using finite volume technique. The pressure and velocity terms are coupled by SIMPLE algorithm. The third order deferred Quadratic Upwind Interpolation for Convection Kinematics (QUICK) scheme and second order central difference scheme are applied at the inner and boarder nodal points, respectively. The present numerical simulation is compared with the reported literature and found that are in good agreement. The heat and mass transfer results are presented in the form of iso-temperature and concentration. The Lewis number (Le) and aspect ratio are varied over a wide range to analyse non-dimensional horizontal (U) and vertical velocities (V), stream line contours, temperature and concentration gradients. The present analysis is carried out at constant Prandtl (Pr=0.7), Richardson (Ri=1.0), Darcy (Da=1.0) and Reynolds (Re=100) numbers.
    [Show full text]
  • Dimensional Analysis and Modeling
    cen72367_ch07.qxd 10/29/04 2:27 PM Page 269 CHAPTER DIMENSIONAL ANALYSIS 7 AND MODELING n this chapter, we first review the concepts of dimensions and units. We then review the fundamental principle of dimensional homogeneity, and OBJECTIVES Ishow how it is applied to equations in order to nondimensionalize them When you finish reading this chapter, you and to identify dimensionless groups. We discuss the concept of similarity should be able to between a model and a prototype. We also describe a powerful tool for engi- ■ Develop a better understanding neers and scientists called dimensional analysis, in which the combination of dimensions, units, and of dimensional variables, nondimensional variables, and dimensional con- dimensional homogeneity of equations stants into nondimensional parameters reduces the number of necessary ■ Understand the numerous independent parameters in a problem. We present a step-by-step method for benefits of dimensional analysis obtaining these nondimensional parameters, called the method of repeating ■ Know how to use the method of variables, which is based solely on the dimensions of the variables and con- repeating variables to identify stants. Finally, we apply this technique to several practical problems to illus- nondimensional parameters trate both its utility and its limitations. ■ Understand the concept of dynamic similarity and how to apply it to experimental modeling 269 cen72367_ch07.qxd 10/29/04 2:27 PM Page 270 270 FLUID MECHANICS Length 7–1 ■ DIMENSIONS AND UNITS 3.2 cm A dimension is a measure of a physical quantity (without numerical val- ues), while a unit is a way to assign a number to that dimension.
    [Show full text]