Hydroxamic Acids and Their Porous Materials
Total Page:16
File Type:pdf, Size:1020Kb
Hydroxamic Acids and Their Porous Materials Hayley Rebecca Green A thesis submitted for the Degree of Doctor of Philosophy. School of Engineering and Physical Sciences. Heriot-Watt University. January 2018 The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any of the information contained in it must acknowledge this thesis as the source of the quotation or information. Abstract This thesis aims to provide better understand of the supramolecular synthons of hydroxamic acids and the design rules associated with the porous materials based on hydroxamic acids. Also studied was how synthesis routes influcence the self-assembaly process and the properties of the materials produced. Using a range of analytical techniques, including thermogravimetric analysis, pair distribution function and X-ray diffraction, the structure, design and supramolecular synthons of hydroxamic acids have been studied. By determining the supramolecular synthons of hydroxamic acids the successful production of cocrystals was accomplished. By better understanding the coordination of hydroxamates to metals we have formed two solvates of an eight coordinate Zirconium1[hydroxamate]4 complex. The design rules for the formation of intrinsically and extrinsically porous M4[hydroxamate]6 tetrahedra have also been explored. Using crystal engineering principles it has been possible to produce a series of materials with increasing amounts of extrinsic porosity.The host:guest chemistry of the M4L6 tetrahdera has been studied. The host:guest properties of a family of coordination polymers and macrocycles were also studied. The materials were synthesised via mechanochemical synthesis and solution state crystallisation, with the aim of understanding how the synthetic method affects the host:guest properties of the material. For my Family “No, no! The adventures first, explanations take such a dreadful time.” Gryphon, in Lewis Carrol’s, Alice’s Adventure in Wonderland. Acknowledgements Firstly, I would like to thank Dr Gareth Lloyd, my supervisor, for giving me the opportunity to work in his group and for all the wonderful opportunities, this has provided me. A special thank you must be extended to Profs. Catharine Esterhuysen and Len Barbour at Stellenbosch University, South Africa, where I spent three very happy months of my PhD under their guidance. I would also like to thank Dr Helena Shepherd, Dr Phil Chater, Dr Kathi Edkins, Dr Ross Forgan and Oxford Rigaku Diffraction for their contributions, allowing me to complete this work. A big thank you to the supramolecular group at Stellenbosch University who made me feel so welcome and at home. Closer to home I must thank the Lloyd group past and present and the materials office. Finally, I would like to thank my friends and family for their support, patience and understanding throughout my studies, especially my parents, for encouraging me to carry on and reminding me that I can achieve whatever I set my mind too. Contents List of Tables………………………………………………………………………………………………………………..viii List of Figures………………………………………………………………………………………………………...........ix List of Abbreviations…………………………………………………………………………………………………….xxv List of Publications……………………………………………………………………………………………………..xxvii Chapter 1 - Introduction Foreword……………………………………………………………………………………………………………………...1 1.0 Introduction………………………………………………………………………………………………………..….1 1.1 Polygons………………………………………………………………………………………………………………….6 1.2 Polyhedra………………………………………………………………………………………………………………12 1.3 Materials and their properties………………………………………………………..……………………..16 1.3.1 Copper nanoball……………..…………………………………………………………………..….17 1.3.2 Tetrahedral MOPs……..……………………………………………………………………………21 1.4 Applications and characterisations……..…………………………………………………………………23 1.5 Hydroxamic acids……..……………………………………………………………………………………………31 1.5.1 An introduction …………………………………………………………………………………....31 1.5.2 Materials of hydroxamic acids. ……..…………………………………………...………33 1.5.2.1 Metallacrowns……..………………...................................…..………..34 i 1.5.2.2 MOPs of hydroxamic acids……..…………………………………………....35 1.5.2.3 MOFs……..…………………………………………….………………………………38 1.6 Conclusion ……..………………………………………………………………………………………………….39 1.7 Thesis overview……..…………………………………………………………………………………………..40 1.8 References……..…………………………………………………………………………………………………..42 Chapter 2 – Hydroxamic Acids Foreword……..……………………………………..……………………………………………………………………54 2.0 Introduction………………………………………………………………………………………………………..54 2.0.1 Multi-component crystals ……..…………………………………………………………..…55 2.1 Hydroxamic acid synthesis……..…………………………………………………………………………..58 2.1.1 Solution state synthesis ……..………………………………………………..………………58 2.1.2 Mechanochemical synthesis……..……………………………………………..……..….60 2.1.3 Hydroxylamine formation……..……………………………………………………..….…62 2.1.4 Synthesis summary……..…………………………………………………………….………..63 2.2 Hydroxamic acids synthons……..…………………………………………………………………………63 2.3 Multicomponent crystals of hydroxamic acids……..…………………………………………….71 2.3.1 Results and discussion……..…………………………………………………………………..71 2.4 Complexes of hydroxamic acids……..……………………………………………………………………76 2.4.1 Background and history ……..…………………………………………………………..…….76 ii 2.4.2 Results and discussion……..…………………………………………………………………….80 2.5 Conclusion and future work……..………………………………………………………………………….85 2.6 References……..……………………………………………………………………………………………………87 Chapter 3 – Molecular Cages Foreword……..…………………………………………………………………………………………………………..92 3.0 Introduction……..…………………………………………………………………………………………………92 3.0.1 xPDF……..…………………………………………………………………………………….……….94 3.0.1.1 PDF method……..……………………………………………………………….….94 3.0.1.2 PDF analysis……..………………………………………………….……………..…95 3.0.1.3 PDF in the literature……..…………………………………………………..…….96 3.1 Project aims and overview……..………………………………………………………………………….…97 3.2 Cage structure……..……………………………………………………………………………………………..100 3.3.1 Coordination sphere……..………………………………………………………………………100 3.3.2 Literature comparison……..……………………………………………………………………102 3.3 The solution state……..………………………………………………………………………………………..105 3.3.1 NMR……..……………………………………………………………………………………………...105 3.3.1.1 Dynamics……..……………………………………………………………………….105 3.3.1.2 Axial chirality……………………………………………………………………………106 3.3.1.3 Isomer ratio and barrier height……………………………….………………108 iii 3.3.2 Mass spectroscopy………………………………………………………………………………..108 3.4 The solid state….……..……………………………………………………………………..…………………..109 3.4.1 Results and discussion……..……………………………………………………….…………..109 3.4.2 Crystal structure analysis……..……………………………………………………….………111 3.4.2.1 Asymmetric unit……..………………………………………………………………111 3.4.2.2 The unit cell….…..…………………………………………………………………...113 3.4.2.3 Summary…………..….……………………………………………………….………..122 3.4.3 Intrinsic pore……..……………………………………………………………………..…….….….122 3.4.4 The extrinsic pore and crystal engineering……..………………………………………124 3.4.5 Solvent disorder ……..……………………………………………………………………..………127 3.5 Cage desolvation……..…………………………………………………………………………………….……130 3.5.1 Solvent exchange…….……..…………………………………………..………………………..130 3.5.2 TGA……..……………………………………………………………………………………...…….…131 3.5.3 DSC……..………………………………………………………………………………………………..134 3.5.4 Powder X-ray diffraction……..……………………………………………………………..…134 3.6 xPDF……..………………………………………………………………………………………..……………………136 3.6.1 Experimental……..………………………………………………………………………………….136 3.6.2 Results and discussion……..……………………………………………………………..………136 3.6.2.1 Room temperature study……..………………………………………………….136 iv 3.6.2.2 Variable temperature study……..……………………………………….…….139 3.7 Host:guest chemistry……..………………………………………………………………………….………….141 3.7.1 Water sorption……..…………………………………………………………………………….…141 3.7.2 CO2 sorption……..…………………………………………………….………………………….…143 3.8 Conclusions and future work……..…………………………………………………………………….….145 3.9 References……..……………………………………………………………………………………………….…146 Chapter 4 – Co-ordination Polymers Foreword……..………………………………………………………………………………………………..…………153 4.0 Introduction……..…………………………………………………………………………………………………153 4.1 Results and discussion……..………………………………………………………………………………….158 4.1.1 Solution state synthesis……..…………………………………………………………...…….158 4.1.2 Mechanochemical synthesis……..…………………………………………………..………163 4.2 Conclusions……..…………………………………………………………………………………..………………168 4.3 References……..…………………………………………………………………………………….………………169 Chapter 5 – Overview and Future Work 5.0 Conclusions and future work……..………………………………………………………….………………173 5.1 References ……..………………………………………………………………………………………………….…176 Appendix A v A.0 Methodology……..……………………………………………………………………………………………………178 A.0.1 Chemical list……..…………………………………………………………………………….………..178 A.1 Analytical techniques……..………………………………………………………………………………………..178 A.1.1 NMR……..………………………………………………………………………………………………..…178 A.1.2 IR……..………………………………………………………..……………………………………………..179 A.1.3 TGA……..………………………………………………………………………………………….…….….179 A.1.4 DSC……..……………………………………………………………………………………….…………..179 A.1.5 pXRD ………………………………………………………………………………………………………..179 A.1.5.1 VT-pXRD……..…………….………………………………………………………………..180 A.1.6 Sc XRD……..…………………………………….………………………………………………………….180 A.1.7 Mass spectrometry……..…………………………………………………………………………….180 A.1.8 Mechanochemical synthesis……..………………………………………………………………180 A.1.9 Gas sorption……..……………………………………………………………………………………….181 A.1.10 CrystalExplorer……..…………………………………………………………………………………181 A.2 Chapter 2……..………………………………………………………………………………………………………….181 A.2.0 Solution state monotopic ligands……..……………………………………………………….181 A.2.1 Solution state multitopic ligands……..…………………………………………………………184 A.2.2 Mechanochemical synthesis……..………………………………………………………………189 A.2.3 CSD searches……..………………………………………………………………………………………193