An Interpretive Review of Selective Sweep Studies in Bos Taurus Cattle Populations: Identification of Unique and Shared Selection Signals Across Breeds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approximating Selective Sweeps
Approximating Selective Sweeps by Richard Durrett and Jason Schweinsberg Dept. of Math, Cornell U. Corresponding Author: Richard Durrett Dept. of Mathematics 523 Malott Hall Cornell University Ithaca NY 14853 Phone: 607-255-8282 FAX: 607-255-7149 email: [email protected] 1 ABSTRACT The fixation of advantageous mutations in a population has the effect of reducing varia- tion in the DNA sequence near that mutation. Kaplan, Hudson, and Langley (1989) used a three-phase simulation model to study the effect of selective sweeps on genealogies. However, most subsequent work has simplified their approach by assuming that the number of individ- uals with the advantageous allele follows the logistic differential equation. We show that the impact of a selective sweep can be accurately approximated by a random partition created by a stick-breaking process. Our simulation results show that ignoring the randomness when the number of individuals with the advantageous allele is small can lead to substantial errors. Key words: selective sweep, hitchhiking, coalescent, random partition, paintbox construction 2 When a selectively favorable mutation occurs in a population and is subsequently fixed (i.e., its frequency rises to 100%), the frequencies of alleles at closely linked loci are altered. Alleles present on the chromosome on which the original mutation occurred will tend to increase in frequency, and other alleles will decrease in frequency. Maynard Smith and Haigh (1974) referred to this as the ‘hitchhiking effect,’ because an allele can get a lift in frequency from selection acting on a neighboring allele. They considered a situation with a neutral locus with alleles A and a and a second locus where allele B has a fitness of 1 + s relative to b. -
A Network-Informed Analysis of SARS-Cov-2 and Hemophagocytic Lymphohistiocytosis Genes' Interactions Points to Neutrophil Extr
medRxiv preprint doi: https://doi.org/10.1101/2020.07.01.20144121; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 A network-informed analysis of SARS-CoV-2 and hemophagocytic 2 lymphohistiocytosis genes’ interactions points to Neutrophil Extracellular Traps as 3 mediators of thromBosis in COVID-19 4 5 Jun Ding1, David Earl Hostallero2, Mohamed Reda El Khili2, Gregory Fonseca3, Simon 6 Millette4, Nuzha Noorah3, Myriam Guay-Belzile3, Jonathan Spicer5, Noriko Daneshtalab6, 7 Martin Sirois7, Karine Tremblay8, Amin Emad2,* and Simon Rousseau3,* 8 9 10 1Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA, 15204 11 12 2Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada. 13 14 3The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath 15 Centre Research Institute, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. 16 17 4Goodman Cancer Research Centre, McGill University 18 19 5Division of Thoracic and Upper Gastrointestinal Surgery, McGill University Health Centre 20 Research Institute, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. 21 22 6School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Drive, Health 23 Sciences Center, St. John’s, Newfoundland, Canada, A1B 3V6 24 25 7Montreal Heart Institute and Department of pharmacology and physiology, Faculty of medicine, 26 Université de Montréal. 27 28 8Pharmacology-physiology Department, Faculty of Medicine and Health Sciences, Université de 29 Sherbrooke, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint- 30 Jean (Chicoutimi University Hospital) Research Center, Saguenay, QC, Canada. -
New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome
PLoS BIOLOGY A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome Kun Tang1*, Kevin R. Thornton2, Mark Stoneking1 1 Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany, 2 Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America Genome-wide scanning for signals of recent positive selection is essential for a comprehensive and systematic understanding of human adaptation. Here, we present a genomic survey of recent local selective sweeps, especially aimed at those nearly or recently completed. A novel approach was developed for such signals, based on contrasting the extended haplotype homozygosity (EHH) profiles between populations. We applied this method to the genome single nucleotide polymorphism (SNP) data of both the International HapMap Project and Perlegen Sciences, and detected widespread signals of recent local selection across the genome, consisting of both complete and partial sweeps. A challenging problem of genomic scans of recent positive selection is to clearly distinguish selection from neutral effects, given the high sensitivity of the test statistics to departures from neutral demographic assumptions and the lack of a single, accurate neutral model of human history. We therefore developed a new procedure that is robust across a wide range of demographic and ascertainment models, one that indicates that certain portions of the genome clearly depart from neutrality. Simulations of positive selection showed that our tests have high power towards strong selection sweeps that have undergone fixation. Gene ontology analysis of the candidate regions revealed several new functional groups that might help explain some important interpopulation differences in phenotypic traits. -
Refining the Use of Linkage Disequilibrium As A
HIGHLIGHTED ARTICLE | INVESTIGATION Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps Guy S. Jacobs,*,†,1 Timothy J. Sluckin,* and Toomas Kivisild‡ *Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom, †Complexity Institute, Nanyang Technological University, Singapore 637723, and ‡Department of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, United Kingdom ORCID IDs: 0000-0002-4698-7758 (G.S.J.); 0000-0002-9163-0061 (T.J.S.); 0000-0002-6297-7808 (T.K.) ABSTRACT During a selective sweep, characteristic patterns of linkage disequilibrium can arise in the genomic region surrounding a selected locus. These have been used to infer past selective sweeps. However, the recombination rate is known to vary substantially along the genome for many species. We here investigate the effectiveness of current (Kelly’s ZnS and vmax) and novel statistics at inferring hard selective sweeps based on linkage disequilibrium distortions under different conditions, including a human-realistic demographic model and recombination rate variation. When the recombination rate is constant, Kelly’s ZnS offers high power, but is outperformed by a novel statistic that we test, which we call Za: We also find this statistic to be effective at detecting sweeps from standing variation. When recombination rate fluctuations are included, there is a considerable reduction in power for all linkage disequilibrium-based statistics. However, this can largely be reversed by appropriately controlling for expected linkage disequilibrium using a genetic map. To further test these different methods, we perform selection scans on well-characterized HapMap data, finding that all three statistics—vmax; Kelly’s ZnS; and Za—are able to replicate signals at regions previously identified as selection candidates based on population differentiation or the site frequency spectrum. -
Identification of Selective Sweeps, Major Genes, and Genotype by Diet Interactions Melanie D
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses and Dissertations in Animal Science Animal Science Department 12-2015 Genomic Analysis of Sow Reproductive Traits: Identification of Selective Sweeps, Major Genes, and Genotype by Diet Interactions Melanie D. Trenhaile University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/animalscidiss Part of the Meat Science Commons Trenhaile, Melanie D., "Genomic Analysis of Sow Reproductive Traits: Identification of Selective Sweeps, Major Genes, and Genotype by Diet Interactions" (2015). Theses and Dissertations in Animal Science. 114. http://digitalcommons.unl.edu/animalscidiss/114 This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses and Dissertations in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. GENOMIC ANALYSIS OF SOW REPRODUCTIVE TRAITS: IDENTIFICATION OF SELECTIVE SWEEPS, MAJOR GENES, AND GENOTYPE BY DIET INTERACTIONS By Melanie Dawn Trenhaile A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Animal Science Under the Supervision of Professor Daniel Ciobanu Lincoln, Nebraska December, 2015 GENOMIC ANALYSIS OF SOW REPRODUCTIVE TRAITS: IDENTIFICATION OF SELECTIVE SWEEPS, MAJOR GENES, AND GENOTYPE BY DIET INTERACTIONS Melanie D. Trenhaile, M.S. University of Nebraska, 2015 Advisor: Daniel Ciobanu Reproductive traits, such as litter size and reproductive longevity, are economically important. However, selection for these traits is difficult due to low heritability, polygenic nature, sex-limited expression, and expression late in life. -
Chromosomal Rearrangements Are Commonly Post-Transcriptionally Attenuated in Cancer
bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Chromosomal rearrangements are commonly post-transcriptionally attenuated in cancer 1 3 1 3, 4, 5 Emanuel Gonçalves , Athanassios Fragoulis , Luz Garcia-Alonso , Thorsten Cramer , 1,2# 1# Julio Saez-Rodriguez , Pedro Beltrao 1 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK 2 RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen 52057, Germany 3 Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany 4 NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands 5 ESCAM – European Surgery Center Aachen Maastricht, Germany and The Netherlands # co-last authors: [email protected]; [email protected] Running title: Chromosomal rearrangement attenuation in cancer Keywords: Cancer; Gene dosage; Proteomics; Copy-number variation; Protein complexes 1 bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chromosomal rearrangements, despite being detrimental, are ubiquitous in cancer and often act as driver events. -
Rapid Evolution of a Skin-Lightening Allele in Southern African Khoesan
Rapid evolution of a skin-lightening allele in southern African KhoeSan Meng Lina,1,2, Rebecca L. Siforda,b,3, Alicia R. Martinc,d,e,3, Shigeki Nakagomef, Marlo Möllerg, Eileen G. Hoalg, Carlos D. Bustamanteh, Christopher R. Gignouxh,i,j, and Brenna M. Henna,2,4 aDepartment of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY 11794; bThe School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287; cAnalytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; dProgram in Medical and Population Genetics, Broad Institute, Cambridge, MA 02141; eStanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02141; fSchool of Medicine, Trinity College Dublin, Dublin 2, Ireland; gDST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; hDepartment of Genetics, Stanford University, Stanford, CA 94305; iColorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and jDepartment of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Edited by Nina G. Jablonski, The Pennsylvania State University, University Park, PA, and accepted by Editorial Board Member C. O. Lovejoy October 18, 2018 (received for review February 2, 2018) Skin pigmentation is under strong directional selection in northern Amhara or another group who themselves are substantially European and Asian populations. The indigenous KhoeSan popula- admixed with Near Eastern people has been proposed (13, 14). -
Anti-AP3B1 / HPS2 Antibody (ARG59798)
Product datasheet [email protected] ARG59798 Package: 100 μl anti-AP3B1 / HPS2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes AP3B1 / HPS2 Tested Reactivity Hu, Ms Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name AP3B1 / HPS2 Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 895-1094 of Human AP3B1 (NP_003655.3). Conjugation Un-conjugated Alternate Names Adaptor-related protein complex 3 subunit beta-1; AP-3 complex subunit beta-1; HPS; ADTB3A; Clathrin assembly protein complex 3 beta-1 large chain; Adaptor protein complex AP-3 subunit beta-1; ADTB3; HPS2; PE; Beta-3A-adaptin Application Instructions Application table Application Dilution WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Mouse liver and SW620 Calculated Mw 121 kDa Observed Size 132 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol AP3B1 Gene Full Name adaptor-related protein complex 3, beta 1 subunit Background This gene encodes a protein that may play a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes. -
Molecular Diagnostic Requisition
BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 MOLECULAR DIAGNOSTIC REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested. -
Identifying the Favored Mutation in a Positive Selective Sweep
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Methods Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 November 12. Published in final edited form as: Nat Methods. 2018 April ; 15(4): 279–282. doi:10.1038/nmeth.4606. Identifying the Favored Mutation in a Positive Selective Sweep Ali Akbari1, Joseph J. Vitti2,3, Arya Iranmehr1, Mehrdad Bakhtiari4, Pardis C. Sabeti2,3, Siavash Mirarab1, and Vineet Bafna4 1Department of Electrical & Computer Engineering, University of California San Diego, La Jolla, California, USA 2Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA 3Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 4Department of Computer Science & Engineering, University of California San Diego, La Jolla, California, USA Abstract Methods to identify signatures of selective sweeps in population genomics data have been actively developed, but mostly do not identify the specific mutation favored by selection. We present a method, iSAFE, that uses a statistic derived solely from population genetics signals to accurately pinpoint the favored mutation in a large region (~5 Mbp). iSAFE does not require any knowledge of demography, specific phenotype under selection, or functional annotations of mutations. Human genetic data have revealed a multitude of genomic regions believed to be evolving under positive selection. Methods for detecting regions under selection from genetic variations exploit a variety of genomic signatures. Allele frequency based methods analyze the distortion in site frequency spectrums; Linkage Disequilibrium (LD) based methods use extended homozygosity in haplotypes; other methods use differences in allele frequency between populations; and finally, composite methods combine multiple test scores to improve the resolution1–3.