Solar System Formation Notes Planets 1. There Are Two Types of Planets

Total Page:16

File Type:pdf, Size:1020Kb

Solar System Formation Notes Planets 1. There Are Two Types of Planets Solar System Formation Notes Planets 1. There are two types of planets: Terrestrial and Jovian. Terrestrial o Small o Dense o Low mass o Rocky o Close to the sun o Few moons Jovian o Large o Low density o Massive o Gas o Far from the Sun o Lots of moons 2. Temperature is the key to whether a planet will be terrestrial or Jovian. Terrestrial planets form where it’s hot and Jovian planets where its cold. 3. By definition, a planet has to pass these two tests: Has to be large enough to be spherical in shape. Has to be massive enough (heavy enough) not to be pulled out of its orbit by another body. Dwarf Planets 1. Pluto is round, so it’s large enough, but its orbit has been altered by Neptune, so it’s not considered a planet. We call it a dwarf planet. 2. There are thousands (and probably hundreds of thousands) of dwarf planets. In odd orbits beyond Neptune. Comets 1. Irregular, icy bodies beyond the dwarf planets. 2. These objects get pulled by the Suns gravity and melt as they approach the Sun. 3. Comets have collided with all of the planets of our solar system many times. 4. Our water comes from cometary collisions billions of years ago. Asteroids 1. Irregular shaped bodies of rock between Mars and Jupiter. 2. Left over planetesimals from the early solar system. 3. They never formed into a body because of Jupiter’s gravitational pull and their distance from the Sun (they cooled two quickly). Meteors 1. Pieces of an asteroid, planet or comet that heats up in the Earth’s atmosphere due to friction. 2. Most are very small (grain of sand)and never hit the ground. 3. Larger ones do hit and we call them meteorites. Age of the Solar System 1. Believed to be about 4.6 billion years old. 2. Based on samples of lunar rocks, meteorites and earth rocks. Solar System Formation 1. Solar Nebula: collection of cold gases (mostly hydrogen and helium along with heavier elements) that contract to form the Sun and the planets. 2. Condensation: gas turns to a liquid due to temperature. Close to the Sun it becomes blobs of molten iron, further out around the Earth’s orbit, silicate rocks, and the area around Jupiter it becomes ice. 3. Accretion: the blobs of liquid collide and stick together. These collisions are the beginning of planet building. 4. Planetesimals: These are the building blocks of planets. The larger blobs of liquid attract more of the smaller ones due to their higher gravitational pull. The planetesimals collide become larger still. The largest ones will win out to become planets. 5. Differentiation: When impacts occur, the heavier elements like iron sink to the center and the lighter elements float to the surface. This creates different layers and gives the body an iron core. 6. Protoplanets: These are the largest molten bodies sweeping out the smaller material around the Sun. They will become planets. Typically there are no large collisions left (although it can still happen at this stage). 7. Radiation Pressure: The Sun ignites for the first time and a shock wave of energy pours out blasting away the remaining dust and gas and leaving behind the planets to slowly cool. 8. New research shows that Jovian planets could not have formed this way- there wasn’t enough time for them to collect all of the gases they need for their large size. Today’s belief is that the Jovian planets formed directly bypassing accretion to make its core. Exceptions 1. The Moon Triton around Neptune revolves the wrong way: it was a dwarf planet captured by Neptune. 2. Uranus is tilted on its side: a large collision blasted the gas planet apart and it reformed with a different tilt. 3. The Earth’s Moon is too large: A collision with another protoplanet tilted the Earth giving us seasons and ripping a piece of the Earth off to create our Moon. 4. Venus is upside down: A collision may have toppled the planet 180 degrees. Exoplanets 1. Planets that are outside the solar system. We’ve already discovered some 2,500 of them. 2. Found mostly Jovian planets because they are larger. 3. Most of the Jovian planets were found in terrestrial orbits where they could not have formed. The current idea is that they formed in the colder areas and were pulled into their inner solar system by a passing star or other object. 4. We have found earth-like planets around other stars as well. Five of them are in the goldilocks zone- not too hot and not to cold, a place where water can exist as a solid, liquid and a gas at the same time. .
Recommended publications
  • Planets of the Solar System
    Chapter Planets of the 27 Solar System Chapter OutlineOutline 1 ● Formation of the Solar System The Nebular Hypothesis Formation of the Planets Formation of Solid Earth Formation of Earth’s Atmosphere Formation of Earth’s Oceans 2 ● Models of the Solar System Early Models Kepler’s Laws Newton’s Explanation of Kepler’s Laws 3 ● The Inner Planets Mercury Venus Earth Mars 4 ● The Outer Planets Gas Giants Jupiter Saturn Uranus Neptune Objects Beyond Neptune Why It Matters Exoplanets UnderstandingU d t di theth formationf ti and the characteristics of our solar system and its planets can help scientists plan missions to study planets and solar systems around other stars in the universe. 746 Chapter 27 hhq10sena_psscho.inddq10sena_psscho.indd 774646 PDF 88/15/08/15/08 88:43:46:43:46 AAMM Inquiry Lab Planetary Distances 20 min Turn to Appendix E and find the table entitled Question to Get You Started “Solar System Data.” Use the data from the How would the distance of a planet from the sun “semimajor axis” row of planetary distances to affect the time it takes for the planet to complete devise an appropriate scale to model the distances one orbit? between planets. Then find an indoor or outdoor space that will accommodate the farthest distance. Mark some index cards with the name of each planet, use a measuring tape to measure the distances according to your scale, and place each index card at its correct location. 747 hhq10sena_psscho.inddq10sena_psscho.indd 774747 22/26/09/26/09 111:42:301:42:30 AAMM These reading tools will help you learn the material in this chapter.
    [Show full text]
  • A 4565 Myr Old Andesite from an Extinct Chondritic Protoplanet
    A 4565 Myr old andesite from an extinct chondritic protoplanet. Jean-Alix Barrata*, Marc Chaussidonb, Akira Yamaguchic, Pierre Beckd, Johan Villeneuvee, David J. Byrnee, Michael W. Broadleye, Bernard Martye a Univ Brest, Institut Universitaire Européen de la Mer (IUEM), UMR 6539, Place Nicolas Copernic, F- 29280 Plouzané, France ;b Université de Paris, Institut de pHysique du globe de Paris, CNRS, F-75005 Paris;c National Institute of Polar ResearcH, Tokyo, 190-8518, Japan ;dUniversite Grenoble Alpes, CNRS, Institut de Planetologie et d’Astrophysique de Grenoble (IPAG), Saint-Martin d’Heres, France;e Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France. *Corresponding autHor Jean-Alix Barrat Email: [email protected] Abstract The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the Heat generated by 26Al decay, many early protoplanets were fully differentiated, with an igneous crust produced during the cooling of a magma ocean, and the segregation at depth of a metallic core. The formation and nature of the primordial crust generated during the early stages of melting is poorly understood, due in part to the scarcity of available samples. The newly discovered meteorite Erg CHecH 002 (EC 002) originates from one sucH primitive igneous crust, and has an andesite bulk composition. It derives from the partial melting of a non-carbonaceous chondritic reservoir, witH no depletion in alkalis relative to the sun’s photosphere, and at a high melting rate of around 25%. Moreover, EC 002 is to date, the oldest known piece of an igneous crust witH a 26Al-26Mg crystallization age of 4565.0 Myr.
    [Show full text]
  • Origin of Water Ice in the Solar System 309
    Lunine: Origin of Water Ice in the Solar System 309 Origin of Water Ice in the Solar System Jonathan I. Lunine Lunar and Planetary Laboratory The origin and early distribution of water ice and more volatile compounds in the outer solar system is considered. The origin of water ice during planetary formation is at least twofold: It condenses beyond a certain distance from the proto-Sun — no more than 5 AU but perhaps as close as 2 AU — and it falls in from the surrounding molecular cloud. Because some of the infalling water ice is not sublimated in the ambient disk, complete mixing between these two sources was not achieved, and at least two populations of icy planetesimals may have been present in the protoplanetary disk. Added to this is a third reservoir of water ice planetesimals representing material chemically processed and then condensed in satellite-forming disks around giant planets. Water of hydration in silicates inward of the condensation front might be a sepa- rate source, if the hydration occurred directly from the nebular disk and not later in the parent bodies. The differences among these reservoirs of icy planetesimals ought to be reflected in diverse composition and abundance of trapped or condensed species more volatile than the water ice matrix, although radial mixing may have erased most of the differences. Possible sources of water for Earth are diverse, and include Mars-sized hydrated bodies in the asteroid belt, smaller “asteroidal” bodies, water adsorbed into dry silicate grains in the nebula, and comets. These different sources may be distinguished by their deuterium-to-hydrogen ratio, and by pre- dictions on the relative amounts of water (and isotopic compositional differences) between Earth and Mars.
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • The Tessmann Planetarium Guide to Exoplanets
    The Tessmann Planetarium Guide to Exoplanets REVISED SPRING 2020 That is the big question we all have: Are we alone in the universe? Exoplanets confirm the suspicion that planets are not rare. -Neil deGrasse Tyson What is an Exoplanet? WHAT IS AN EXOPLANET? Before 1990, we had not yet discovered any planets outside of our solar system. We did not have the methods to discover these types of planets. But in the three decades since then, we have discovered at least 4158 confirmed planets outside of our system – and the count seems to be increasing almost every day. We call these worlds exoplanets. These worlds have been discovered with the help of new and powerful telescopes, on Earth and in space, including the Hubble Space Telescope (HST). The Kepler Spacecraft (artist’s conception, below) and the Transiting Exoplanet Survey Satellite (TESS) were specifically designed to hunt for new planets. Kepler discovered 2662 planets during its search. TESS has discovered 46 planets so far and has found over 1800 planet candidates. In Some Factoids: particular, TESS is looking for smaller, rocky exoplanets of nearby, bright stars. An earth-sized planet, TOI 700d, was discovered by TESS in January 2020. This planet is in its star’s Goldilocks or habitable zone. The planet is about 100 light years away, in the constellation of Dorado. According to NASA, we have discovered 4158 exoplanets in 3081 planetary systems. 696 systems have more than one planet. NASA recognizes another 5220 unconfirmed candidates for exoplanets. In 2020, a student at the University of British Columbia, named Michelle Kunimoto, discovered 17 new exoplanets, one of which is in the habitable zone of a star.
    [Show full text]
  • Exoplanet Atmosphere Measurements from Direct Imaging
    Exoplanet Atmosphere Measurements from Direct Imaging Beth A. Biller and Mickael¨ Bonnefoy Abstract In the last decade, about a dozen giant exoplanets have been directly im- aged in the IR as companions to young stars. With photometry and spectroscopy of these planets in hand from new extreme coronagraphic instruments such as SPHERE at VLT and GPI at Gemini, we are beginning to characterize and classify the at- mospheres of these objects. Initially, it was assumed that young planets would be similar to field brown dwarfs, more massive objects that nonetheless share sim- ilar effective temperatures and compositions. Surprisingly, young planets appear considerably redder than field brown dwarfs, likely a result of their low surface gravities and indicating much different atmospheric structures. Preliminarily, young free-floating planets appear to be as or more variable than field brown dwarfs, due to rotational modulation of inhomogeneous surface features. Eventually, such inho- mogeneity will allow the top of atmosphere structure of these objects to be mapped via Doppler imaging on extremely large telescopes. Direct imaging spectroscopy of giant exoplanets now is a prelude for the study of habitable zone planets. Even- tual direct imaging spectroscopy of a large sample of habitable zone planets with future telescopes such as LUVOIR will be necessary to identify multiple biosigna- tures and establish habitability for Earth-mass exoplanets in the habitable zones of nearby stars. Introduction Since 1995, more than 3000 exoplanets have been discovered, mostly via indirect means, ushering in a completely new field of astronomy. In the last decade, about a dozen planets have been directly imaged, including archetypical systems such as arXiv:1807.05136v1 [astro-ph.EP] 13 Jul 2018 Beth A.
    [Show full text]
  • Enhanced Collisional Growth of a Protoplanet That Has an Atmosphere
    A&A 410, 711–723 (2003) Astronomy DOI: 10.1051/0004-6361:20031248 & c ESO 2003 Astrophysics Enhanced collisional growth of a protoplanet that has an atmosphere S. Inaba1 and M. Ikoma2 1 Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro-ku, Tokyo 152-8551, Japan 2 Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro-ku, Tokyo 152-8551, Japan Received 14 February 2003 / Accepted 12 May 2003 Abstract. Once a protoplanet becomes larger than about lunar size, it accumulates a significant atmosphere that surrounds the solid core. When a planetesimal approaches the protoplanet, it interacts with the atmosphere. If enough energy of the planetesimal is lost by gas drag of the atmosphere, it is captured in the atmosphere even if its original trajectory would not lead to a direct collision with the solid core of the protoplanet. This increases the collision rate, resulting in faster growth of the protoplanet. We have derived the analytical calculations for the collision rate, and calculated the structure of the atmosphere and the trajectories of the planetesimals in the atmosphere. As a result of their large gas drag, small planetesimals are easily captured, resulting in a large rate of collision with the protoplanet. A collision rate of a protoplanet of Earth size with a planetesimal of 100 m radius is, for example, enhanced by a factor of ∼10. These effects play an essential role in the study of formation of solid cores of gas giant planets by the core accretion model.
    [Show full text]
  • Planetary Science
    Accretion 236, 416, 429 Basalts, Columbia River 269,272 heterogeneous 177, 220, 228,422 Basalts, Fra Mauro 203,217 homogeneous 228-9,422 Basalts, high-Al 300, 317, 330 secondary 420 Basalts, high-Ti 301, 308, 318 Achondrites, basaltic 338, 420 Basalts, highland 202, 228, 232 Agglutinates 128 Basalts, KREEP 214, 229, 251, 253, 326-7, elemental fractionation 130 330, 348 formation 126, 148 Bpsalts, low-K Fra Mauro (LKFM) 202, melts 127 214 Airy hypothesis 183 Basalts, low-Ti 300, 318 Akaganeite 21 7 Basalts, Luna 16 301, 317, 330 Alba Patera 52 Basalts, mare 243 Allende 378 ages 318 Allende inclusions 416, 425, 428 chalcophile 3 13 Altai Scarp 77 depths of melting 331 Aluminum-26 41 3-4,420,428 ferromagnesian elements 31 1 Anorthosites 205, 229, 249 high valency cations 309 Anorthosites, gabbroic 217 large cations 301 Apennine Bench Formation 38,78,93,215, lead 3 13 224, 273-4 nickel 31 1 Apennine Mountains 215, 346 origin 321 Apenninian series 26 oxidation state 292 Aphrodite Terra 55, 354 rock types 282 Apollo landing sites 11 sulfur 3 13 Apollo 14 37, 1 10, 227, 241 thickness 350 Apollo 15 187, 273, 351 trace elements 301 Apollo 16 110, 117, 187, 224, 238,240 volume 325 Apollo 17 109, 130, 167, 187, 267, 272 Basalts, mid-ocean ridge (MORB) 255 Apollo 1 l samples 267, 300 Basalts, VLT 200 Apollo 14 samples 187 Basins (see also Multi-ring basins) Apollo 16 samples 201 morphology 91 Apollo Soil Survey 202 peak ring 91, 92 Apollonian metamorphism 200 secondary 96 Archean 253 Basins, Callisto-Valhalla 76 Archean crustal composition 255 Basins,
    [Show full text]
  • Arxiv:1710.07303V2 [Astro-Ph.EP] 4 May 2018
    Draft version May 8, 2018 Typeset using LATEX twocolumn style in AASTeX62 Obliquity Variations of Habitable Zone Planets Kepler-62f and Kepler-186f Yutong Shan1 and Gongjie Li1, 2 1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 2Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA ABSTRACT Obliquity variability could play an important role in the climate and habitability of a planet. Orbital modulations caused by planetary companions and the planet's spin axis precession due to the torque from the host star may lead to resonant interactions and cause large-amplitude obliquity variability. Here we consider the spin axis dynamics of Kepler-62f and Kepler-186f, both of which reside in the habitable zone around their host stars. Using N -body simulations and secular numerical integrations, we describe their obliquity evolution for particular realizations of the planetary systems. We then use a generalized analytic framework to characterize regions in parameter space where the obliquity is variable with large amplitude. We find that the locations of variability are fine-tuned over the ◦ planetary properties and system architecture in the lower-obliquity regimes (. 40 ). As an example, assuming a rotation period of 24 hr, the obliquities of both Kepler-62f and Kepler-186f are stable below ∼ 40◦, whereas the high-obliquity regions (60◦ − 90◦) allow moderate variabilities. However, for some other rotation periods of Kepler-62f or Kepler-186f, the lower-obliquity regions could become more variable owing to resonant interactions. Even small deviations from coplanarity (e.g. mutual inclinations ∼ 3◦) could stir peak-to-peak obliquity variations up to ∼ 20◦.
    [Show full text]
  • ISSUE 136, MARCH 2014 2 Curating NASA’S Extraterrestrial Samples Continued
    Curating NASA’s Extraterrestrial Samples — Carlton Allen and the Astromaterials Curation Team, NASA Johnson Space Center Note from the Editors: This article is the second in a series of reports describing the history and current activities of NASA’s planetary research facilities worldwide. — Paul Schenk and Renée Dotson Rock and dust samples from many solar system objects have made their way to Earth, either via spacecraft missions (manned and unmanned), or by simply falling to Earth’s surface from deep space. Curation of such extraterrestrial samples is the critical interface between sample return missions and the international research community. Curation includes documentation, preservation, physical security, Lpreparation, and allocation of samples for research, education, and public outreach. The NASA Johnson Space Center (JSC) in Houston, Texas, is responsible for curating NASA’s seven collections of extraterrestrial samples. These collections comprise lunar rocks and soils collected by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected by aircraft, solar wind atoms collected by the Genesis spacecraft, comet particles collected by the Stardust spacecraft, interstellar dust particles collected by Stardust, and asteroid surface particles collected by the Hayabusa spacecraft. The curators of these collections have developed specialized laboratories and procedures to preserve and protect the samples, meet current research needs, and support studies into the indefinite future. This suite of laboratories is unique in the world. A subset of each collection is maintained at a secure facility remote Pfrom JSC, ensuring that entire collections are not lost in the event of a disaster. Instructions for requesting samples, as well as catalogs, newsletters, images, and research results, are available online at curator.jsc.nasa.gov.
    [Show full text]
  • Formation of Terrestrial Planets from Planetesimals
    Formation of terrestrial planets from planetesimals Yuji MATSUMOTO ASIAA TIARA Summer School on Origins of the Solar System Outline - Basic dynamics of planetesimals - Runaway growth of planetesimals - Oligarchic growth of protoplanets - Giant impacts of protoplanets - Recent studies Minimum Mass Solar Nebula Model ice line https://www.rikanenpyo.jp/top/tokusyuu/toku2/index.html rocky icy planetesimals planetesimals rocky icy protoplanets protoplanets rocky planets gas giants Ice giants Minimum Mass Solar Nebula Model ice line Alma Partnership+’15 rocky icy planetesimals planetesimals Disk & planetesimals ・A planetary system forms from a protoplanetary disk. ・Planets/coresrocky are formed by accretion of planetesimals. icy protoplanets protoplanets- parent bodies of asteroids and comets - enough large to interact by their gravity —> building block of planet accretion (Safronovrocky planets 1969, Hayashigas 1981) giants Ice giants Minimum Mass Solar Nebula Model ice line How planetesimals grow up? rocky icy planetesimals planetesimals rocky icy protoplanets protoplanets rocky planets gas giants Ice giants Growth of planetesimals 1. Growth Mode 1 dM ∝ Mp M dt d M1 M1 1 dM1 1 dM2 = − (M1 > M2) dt ( M2 ) M2 ( M1 dt M2 dt ) orderly growth runaway growth d M d M 1 < 0 when p<0 1 > 0 when p>0 dt ( M2 ) dt ( M2 ) Growth of planetesimals 2. Growth Rate 1 dM ∝ Mp M dt dM v ≃ nσvrelm rel dt n: number density of bodies Target: σ: collisional cross-section M, R Field bodies: n, m vrel: relative velocity Growth of planetesimals 2. Growth Rate 1 dM ∝ Mp M dt dM v ≃ nσvrelm rel dt n: number density of bodies Target: σ: collisional cross-section M, R Field bodies: n, m vrel: relative velocity 1/2 v2 gravitational focusing R = R 1 + esc , GF 2 ( vrel ) RGF (vesc = 2GM/R) R v2 σ = πR2 = πR2 1 + esc .
    [Show full text]
  • Detailed Star System and Planetary Creation Guide an Unofficial
    Detailed Star System and Planetary Creation Guide Can be used with -MANYfi Games! Sci An Unofficial Supplement For Dark Heresy , Rogue Trader and Deathwatch Rogue Trader, Dark Heresy and Deathwatch copyright by Fantasy Flight Games Warhammer 40k copyright by Games Workshop Imperium planet classes information taken in whole or part without permission from Rouge Trader, Dark Heresy and Lexicanum Images are either original work of the author or taken from public sources online This work is fan created and no copyright infringement is intended. Original work copyright 2010 by author. Foreword So, what‘s this ‗ere then? This work is divided into three parts: While the directions for populating the void given in 1. Star System Creation: Allows the game master to the Game Master‘s Kit for Rogue Trader may be great develop a fairly comprehensive star system with a for generating quick star systems, sometimes a game wide range of conditions and variables. Allows master wants a more fleshed out or complete descrip- for the creation of single or multiple star systems. tion. 2. Detailed Planet Creation: Allows for the creation of detailed planets complete with size, atmos- That‘s where this comes in. phere types, cryosphere and humidity among other things. Descriptions of the world types are What you have before you is a much more detailed provided. star system generator. Maybe too detailed. Many things are still treated with a degree of needed ab- Everything is presented in what hopefully is a fairly straction, but within the tables and descriptions, many easy to use format of steps and tables.
    [Show full text]