Geologitc Majp of the Saratoga Tajble Quadrangle, Pensacola Mountains, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Geologitc Majp of the Saratoga Tajble Quadrangle, Pensacola Mountains, Antarctica DEJP> A.R TMENT Of THE INTERIOR !UNHTJED STATES GEOLOGICAL SURVEY GEOLOGITC MAJP OF THE SARATOGA TAJBLE QUADRANGLE, PENSACOLA MOUNTAINS, ANTARCTICA By Arthur B. Forrd, Dwight L. Schmidt, Walter W. Boyd 9 Jrr., and Willis H. Nelson Prepared by the U.S. GEOLOGHCAL SURVEY under the auspices of the NATIONAL SCIENCE FOUNDATITON - t-J (.1\ 0 b 0 0 U.S. ANTARCTIC RESEARCH PROGRAM MAP Published by the U.S. Geological Survey, 1978 G GEOLOGIC MAP SYMBOLS COMMONLY USED ON MAPS OF THE UNITED STATES GEOLOGICAL SURVEY (Special symbols are shown in explanation) Contact-Dashed where approximately Strike and dip of beds-Ball indicates located; short dashed where inferred; top of beds known from sedimentary dotted where concealed structures _!!!_ Inclined EB Horizontal Contact-Showing dip; well exposed at -t- Vertical -.;:.Overturned triangle Strike and dip of foliation Fault-Dashed where approximately located; short dashed where inferred; .31?_ Inclined --+- Vertical +Horizontal dotted where concealed Strike and dip of cleavage Fault, showing dip-Ball and bar on ~ Inclined 1--f Vertical +Horizontal downthrown side Bearing and plunge of lineation -,--..,....--.,.-~"""T"-...-- Normal fault-Hachured on down­ '~Inclined • Vertical -Horizontal thrown side Strike and dip of joints Fault-Showing relative horizontal -~ Inclined --Vertical +Horizontal movement Note: Planar symbols (strike and dip + + + + + + Thrust fault-Sawteeth on upper plate of beds, foliation or schistosity, and cleav­ age) may be combined with linear symbols to record data observed at • Anticline-Showing direction of plunge; same locality by superimposed symbols dashed where approximately located; at point of observation. Coexisting dotted where concealed planar symbols are shown intersecting at point of observation. Asymmetric anticline-Short arrow indicates steeper limb Shafts Overturned anticline-Showing direction of dip of limbs· ~ Vertical ~ Inclined Syncline-Showing direction of plunge; Adit, tunnel, or slope dashed where approximately located; >-Accessible :>-!--Inaccessible dotted where concealed X Prospect Asymmetric syncline-Short arrow indicates steeper limb Quarry X Active 'X' Abandoned Overturned syncline-Showing direction of dip of limbs Gravel pit X Active X Abandoned Monocline-Showing direction of plunge of axis Oil wells o Drilling ¢ Shut-in -¢- Dry hole, Minor anticline-Showing plunge of axis ~Gas ~ Show of gas abandoned -E---+60 Minor syncline-Showing plunge of axis • Oil ~ Show of oil DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP A-9 UNITED STATES GEOLOGICAL SURVEY GEOLOGY OF THE SARATOGA TABLE QUADRANGLE PENSACOLA MOUNTAINS, ANTARCTICA by Arthur B. Ford, Dwight L. Schmidt, Walter W. Boyd, Jr.! and Willis H. Nelson INTRODUCTION weather conditions to be mostly fair, but strong winds The area that includes the Saratoga Table quadrangle were common near mountain escarpments. Summer tem­ in the Pensacola Mountains was first seen and photo­ peratures during our work in the area ranged from about graphed on January 13, 1956, on a U.S. Navy transpo­ -l9°C (-2°F) to -7°C (20°F) and averaged about -12°C lar flight from McMurdo Sound. Trimetrogon aerial (10°F). mapping photography of the quadrangle was obtained Work on the Dufek intrusion in 1965 - 66 was chiefly in January 1958 by the U.S. Air Force. 2 The area was by A.B. Ford and W.W. Boyd, Jr. and was continued in first visited by U.S. Geological Survey parties in the January 1974 by Ford. Study of the sedimentary country austral summer, 1965 - 66. rocks was mainly by D.L. Schmidt and W.H. Nelson. Geological, geophysical, and geodetic surveys of the This report briefly outlines geologic relations and reviews entire map area, as well as over many other parts of the work done in the quadrangle and adjacent regions. Pensacola Mountains, were made by the U.S. Geological Acknowledgments. -This work was part of the Survey during the 1965 - 66 field season (Huffman and U.S. Antarctic Research Program of the Office of Schmidt, 1966). The surveys used close support of Polar Programs, National Science Foundation. General U.S. Army UH - 1B turbine helicopters operating from a logistic and fixed-wing aircraft support was provided base camp in the central Neptune Range where the field by the U.S. Navy Air Development Squadron Six. party was placed by U.S. Navy LC- 130F (Hercules) air­ Helicopter support was provided by the U.S. Army craft from McMurdo Station. This work completed the Aviation Detachment. We gratefully acknowledge the geologic mapping of the entire 540-km-long chain of the help of all support personnel, of Jerry Huffman, National Pensacola Mountains, a project begun in 1962- 63 at Science Foundation, in coordinating the field logistical the south end of the mountains (Schmidt and Ford,l969). support, and the assistance by Steven W. Nelson in Additional geologic studies were made in January 1974 in laboratory studies related to this project. the vicinity of Mount Lechner (Cameron and Ford, 1974) SYNOPSIS OF GEOLOGIC STUDIES during investigations of possible ice-runway aircraft land­ The map area is near the north end of the Pensacola ing sites by the U.S. Army Cold Regions Research and Mountains, a mountain group that forms part of the Engineering Laboratory (Kovacs and Abele, 1974). transcontinental chain of the Transantarctic Mountains The major geologic feature of this quadrangle is the (fig. 1B). Principal ranges of the Pensacola Mountains south end of the Dufek intrusion (Ford and Boyd, 1968), are shown in figure lA. an immense differentiated stratiform mafic igneous body The principal rock exposures in the map area are units that was discovered in 1957 by an International Geophysi­ of the Dufek intrusion. This layered igneous body, which cal Year (IGY) traverse party visiting Dufek Massif, a is Jurassic in age, intruded moderately to highly deformed northern range of the Pensacola Mountains (Aughenbaugh, Precambrian to Permian sedimentary rocks during the time 1961; Walker, 1961; Neuburg and others, 1959). Our of emplacement of sills of Ferrar Dolerite throughout the 1965 - 66 studies showed that the intrusion makes up all Transantarctic Mountains (Grindley, 1963). The poorly of Dufek Massif (Ford and others, 1978) and virtually all exposed sedimentary country rocks are visible only in of the Forrestal Range. Geophysical surveys show that small, isolated nunataks in the southern and southwestern most of the body is covered by ice sheets adjoining the parts of the Forrestal Range. Relations between sedimen­ ranges and that its area is of the order of half that of the tary formations are inferred to be the same as in the Nep­ Bushveld intrusion of South Africa (Behrendt and others, tune Range, about 60 km southwest of the Forrestal Range, 1974). where the units are much better exposed (Schmidt and Access to this remote part of the continent is difficult others, 1978). General geologic relations between ranges except by ski-equipped aircraft. The ice terrain near the of the Pensacola Mountains are shown on the 1: 1,000,000- Forrestal Range is gen~ally suitable for ski-plane landings scale map of Schmidt and Ford (1969). Formal rock­ n"r two seasons' experrence in the area showed summer stratigraphic nomenclature for the Dufek intrusion is pre­ sented by Ford (1976)"and for sedimentary rocks is given 1 Present address, Geological Survey of Finland, Helsinki 2 by Schmidt and others (1964, 1965), Schmidt and Ford Aerial photographs of the Pensacola Mountains can be ordered from the U.S. Geological Survey, National Center, ( 1969), and Williams ( 1969). The summary below is Reston, Virginia 22092 drawn largely from these sources. ~. EXPLANATION Bedrock exposure f1'rtf Escarpment Hachures on down slope side Direction of ice flow $~..... ,,, Crevasse zone 50 KILOMETERS I I A B Figure 1. -Index maps. A, Major ranges of the Pensacola Mountains and location of Camp Neptune. B, Location of Pensacola Mountains in Antarctica. SEDIMENTARY ROCKS 10,000 m of metasubgraywacke and slate locally inter­ The sedimentary units exposed in this quadrangle be­ bedded with voluminous basaltic and felsic volcanic ma­ long chiefly to the youngest of three depositional sequences terials. Radiometric dating (Eastin and Faure, 1972) sug­ known to the south and west in the Neptune Range. The gests that some of these volcanic units may be as old as sequences in the Neptune Range are clearly seen to be sep­ 1,210 m.y. Diabase sills locally intrude the formation. arated by angular unconformities. Fossils are scarce in or The igneous units of the formation are not known in the absent from most units, but available paleontologic and Saratoga Table quadrangle. The Patuxent sediments were radiometric age data suggest that ages of the sequences deposited in a high-energy environment, probably a vol­ are ( 1) Precambrian, (2) Middle and Late(?) Cambrian, and canically active eugeosyncline, as indicated by lithologies (3) Ordovician(?) to Permian. Rocks correlative with the and abundant sedimentary structures such as graded bed­ oldest of these sequences are exposed only on small nuna­ ding, channel features,and sole markings. The Patuxent taks in the westernmost part of the Saratoga Table quad­ was widely metamorphosed to the greenschist facies dur­ rangle but are probably much more extensive under the ing an orogeny near the end of the Precambrian. cover of ice. Correlatives of the second sequence are not The second sequence, which is not known to occur in known but could occur beneath the ice cover. Rocks of and may be absent from the Saratoga Table quadrangle, the third sequence form the principal nunataks south and consists of a fossilferous Middle Cambrian (Palmer and west of the Dufek intrusion in this area. Gatehouse, 1972) limestone and overlying silicic volcanic The Patuxent Formation, of late Precambrian age and clastic sedimentary units that have a composite thick­ (Schmidt and others, 1978), makes up the oldest sequence ness of at least 700 m.
Recommended publications
  • Microorganisms in Antarctic Desert Rocks from Dry Valleys and Dufek
    onies per gram of soil). Also, time did not permit a second show the striking result that PYSA enabled development of plating. greater numbers of microorganisms than TSSA. Finally, only In most instances the appreciably higher numbers of col- 13 of the 138 Dufek Massif soil spread plates had any fungi, onies on PYSA plates were due to numerous small mucoid and by far most of the microorganisms were heterotrophic pink colonies, only a relative few of which developed on TSSA aerobic bacteria. plates. We plan to examine these isolates to better under- Cameron and Ford (1974) report aerobic bacteria of 0, stand their physiology. Similar pink colonies also were not less than 10, and 10 per gram of soil collected from Mount common in soils from the dry valleys of southern Victoria Lechner and 50, 250, and 1,800 per gram of soil collected Land grown on both TSSA and PYSA plates, although the soils from Cordiner Peaks. Only in two of 23 soils did our aerobic were collected, stored, and processed similarly to those from bacteria exceed 1,800 per gram of soil when TSSA medium the Dufek Massif. Further, a more extensive survey of was used. These results suggest that TSSA and probably the microbial abundance in soils of New Harbor, Barwick Tripticase soy agar (without soil extract) as used by Valley, and other locations in the dry valleys of southern Cameron and Ford (1974) may not be a good medium for Victoria Land during the 1976-1977 field season failed to microorganisms native to the remote Antarctic soils of the Pensacola Mountains and the Dufek Massif.
    [Show full text]
  • Geologic Map of the Davis Valley Quadrangle and Part of the Cordiner Peaks Quadrangle, Pensacola Mountains, Antarctica
    -0 DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOLOGIC MAP OF THE DAVIS VALLEY QUADRANGLE AND PART OF THE CORDINER PEAKS QUADRANGLE, PENSACOLA MOUNTAINS, ANTARCTICA By Arthur B. Ford, Dwight L. Schmidt, and Walter W. Boyd, Jr. Prepared by the U.S. GEOLOGICAL SURVEY under the auspices of the NATIONAL SCIENCE FOUNDATION -N V'l 0 0 0 0 U.S. ANTARCTIC RESEARCH PROGRAM MAP Published by the U.S. Geological Survey, 1978 G GEOLOGIC MAP SYMBOLS COMMONLY USED ON MAPS OF THE UNITED STATES GEOLOGICAL SURVEY (Special symbols are shown in explanation) Contact-Dashed where approximately Strike and dip of beds-Ball indicates located; short dashed where inferred; top of beds known from sedimentary dotted where concealed structures _1!_ Inclined EB Horizontal Contact-Showing dip; well exposed at -+- Vertical Overturned triangle -..J!. Strike and dip of foliation Fault-Dashed where approximately located; short dashed where inferred; ~ Inclined -+·Vertical +Horizontal dotted where concealed Strike and dip of cleavage Fault, showing dip-Ball and bar on ~ Inclined ~Vertical +Horizontal downthrown side Bearing and plunge of lineation Normal fault-Hachured on down­ '~Inclined • Vertical - Horizontal thrown side Strike and dip of joints Fault-Showing relative horizontal -~ Inclined --Vertical +Horizontal movement Note: Planar symbols (strike and dip + + + + + + Thrust fault-Sawteeth on upper plate of beds, foliation or schistosity, and cleav­ age) may be combined with linear symbols to record data observed at ~ Anticline-Showing direction of plunge; same locality by superimposed symbols dashed where approximately located; at point of observation. Coexisting dotted where concealed planar symbols are shown intersecting at point of observation.
    [Show full text]
  • Geological Studies of the Dufek Intrusion, Pensacola Mountains
    study of the Pensacola Mountains, for much helpful discus- was established at the LC-130 ski-plane landing site near sion of the geologic relations here reported. Walker Peak, from which motor toboggan and ski traverses This research is supported by National Science Founda- were made to sites of investigations. The massif and nearby tion interagency agreement DDP 76-21663 with the nunataks are underlain by layered mafic igneous rocks of Geologic Division, U.S. Geological Survey. cumulus origin that make up the lower part of the Dufek intrusion, a Jurassic stratiform complex of immense size in the northern third of the Pensacola Mountains. References The U.S. Geological Survey (USGS) made reconnaissance studies using Army helicopters of all outcropping parts of the intrusion in the summer 1965-1966. This work showed Clarkson, P.D. 1972. Geology of the Shackleton Range: a that all of the Forrestal Range, located about 50 kilometers preliminary report. British Antarctic Survey Bulletin, 31: 1-15. southeast of Dufek Massif, is also underlain by part—the Craddock, Campbell. 1970. Tectonic map of Antarctica. Antarctic iron-enriched upper part - of the Dufek intrusion (Ford and Map Folio Series, 12: plate XXI. Boyd, 1968), and that the body probably has an area of at Ford, A.B. 1972. The Weddell orogeny—latest Permian to early least 24,000 square kilometers (Behrendt et al., 1974). As Mesozoic deformation at the Weddell Sea margin of the Trans. the thickness is estimated to be on the order of 8 to 9 antarctic Mountains. In: Antarctic Geology and Geophysics kilometers (Ford, 1976), the original magma volume may (Adie, R.J., editor).
    [Show full text]
  • Davis Valley and Forlidas Pond, Dufek Massif
    Measure 2 (2005) Annex D Management Plan for Antarctic Specially Protected Area No. 119 DAVIS VALLEY AND FORLIDAS POND, DUFEK MASSIF 1. Description of Values to be Protected Forlidas Pond (82°27'28"S, 51°16'48"W) and several ponds along the northern ice margin of the Davis Valley (82°27'30"S, 51°05'W), in the Dufek Massif, Pensacola Mountains, were originally designated as a Specially Protected Area through Recommendation XVI-9 (1991, SPA No. 23) after a proposal by the United States of America. The Area was designated on the grounds that it “contains some of the most southerly freshwater ponds known in Antarctica containing plant life” which “should be protected as examples of unique near-pristine freshwater ecosystems and their catchments”. The original Area comprised two sections approximately 500 metres apart with a combined total area of around 6 km2. It included Forlidas Pond and the meltwater ponds along the ice margin at the northern limit of the Davis Valley. The site has been rarely visited and until recently there has been little information available on the ecosystems within the Area. This Management Plan reaffirms the original reason for designation of the Area, recognizing the ponds and their associated plant life as pristine examples of a southerly freshwater habitat. However, following a field visit made in December 2003 (Hodgson and Convey, 2004) the values identified for special protection and the boundaries for the Area have been expanded as described below. The Davis Valley and the adjacent ice-free valleys is one of the most southerly ‘dry valley’ systems in Antarctica and, as of May 2005, is the most southerly protected area in Antarctica.
    [Show full text]
  • The Transantarctic Mountains These Watercolor Paintings by Dee Molenaar Were Originally Published in 1985 with His Map of the Mcmurdo Sound Area of Antarctica
    The Transantarctic Mountains These watercolor paintings by Dee Molenaar were originally published in 1985 with his map of the McMurdo Sound area of Antarctica. We are pleased to republish these paintings with the permission of the artist who owns the copyright. Gunter Faure · Teresa M. Mensing The Transantarctic Mountains Rocks, Ice, Meteorites and Water Gunter Faure Teresa M. Mensing The Ohio State University The Ohio State University School of Earth Sciences School of Earth Sciences and Byrd Polar Research Center and Byrd Polar Research Center 275 Mendenhall Laboratory 1465 Mt. Vernon Ave. 125 South Oval Mall Marion, Ohio 43302 Columbus, Ohio 43210 USA USA [email protected] [email protected] ISBN 978-1-4020-8406-5 e-ISBN 978-90-481-9390-5 DOI 10.1007/978-90-481-9390-5 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010931610 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: A tent camp in the Mesa Range of northern Victoria Land at the foot of Mt. Masley. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) We dedicate this book to Lois M. Jones, Eileen McSaveny, Terry Tickhill, and Kay Lindsay who were the first team of women to conduct fieldwork in the Transantarctic Mountains during the 1969/1970 field season.
    [Show full text]
  • November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
    JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States.
    [Show full text]
  • (ASPA) No. 119 DAVIS VALLEY and FORLIDAS POND
    Measure 6 (2010) Annex Management Plan for Antarctic Specially Protected Area (ASPA) No. 119 DAVIS VALLEY AND FORLIDAS POND, DUFEK MASSIF, PENSACOLA MOUNTAINS (51° 05' W, 82° 29' S) Introduction Davis Valley and Forlidas Pond Antarctic Specially Protected Area (ASPA) is situated within the Dufek Massif, Pensacola Mountains at 51°4'53"W, 82°29'21"S. Approximate area: 57.3 km2. The primary reason for the designation of the Area is that it contains some of the most southerly freshwater ponds with plant life known to exist in Antarctica, which represent unique examples of near-pristine freshwater ecosystems and their catchments. The geomorphology of the Area represents a unique scientific resource for the reconstruction of previous glacial and climatic events. As a consequence of its extreme remoteness and inaccessibility, the Area has experienced very little human activity and with the total number of visitors estimated to be less than 50 people. As a result, the Area has outstanding potential as a scientific reference site. Furthermore, the Area possesses outstanding wilderness and aesthetic values. The Area is one of the most southerly ‘dry valley’ systems in Antarctica and, as of March 2010, is the most southerly Antarctic Specially Protected Area (ASPA) in Antarctica. The Area was originally proposed by the United States of America and adopted through Recommendation through Recommendation XVI-9 (1991, SPA No. 23) and included Forlidas Pond (82°27'28"S, 51°16'48"W) and several ponds along the northern ice margin of the Davis Valley. The boundaries of the Area were extended to include the entire ice-free region centered on the Davis Valley through Measure 2 (2005).
    [Show full text]
  • Cosmogenic-Nuclide Exposure Ages from the Pensacola Mountains Adjacent to the Foundation Ice Stream, Antarctica
    [American Journal of Science, Vol. 316, June, 2016,P.542–577, DOI 10.2475/06.2016.02] COSMOGENIC-NUCLIDE EXPOSURE AGES FROM THE PENSACOLA MOUNTAINS ADJACENT TO THE FOUNDATION ICE STREAM, ANTARCTICA GREG BALCO*,†, CLAIRE TODD**, KATHLEEN HUYBERS***, SETH CAMPBELL§, MICHAEL VERMEULEN**, MATTHEW HEGLAND**, BRENT M. GOEHRING§§, AND TREVOR R. HILLEBRAND*** ABSTRACT. We describe glacial-geological observations and cosmogenic-nuclide exposure ages from the Schmidt, Williams, and Thomas Hills in the Pensacola Mountains of Antarctica adjacent to the Foundation Ice Stream (FIS). Our aim is to learn about changes in the thickness and grounding line position of the Antarctic Ice Sheet in the Weddell Sea embayment between the Last Glacial Maximum (LGM) and the present. Glacial-geological observations from all three regions indicate that currently- ice-free areas were covered by ice during one or more past ice sheet expansions, and that this ice was typically frozen to its bed and thus non-erosive, permitting the accumulation of multiple generations of glacial drift. Cosmogenic-nuclide exposure- age data from glacially transported erratics are consistent with this interpretation in that we observe both (i) samples with Holocene exposure ages that display a systematic age-elevation relationship recording LGM-to-present deglaciation, and (ii) samples with older and highly scattered apparent exposure ages that were deposited in previous glacial-interglacial cycles and have experienced multiple periods of surface exposure and ice cover. Holocene exposure ages at the Thomas and Williams Hills, upstream of the present grounding line of the FIS, show that the FIS was at least 500 m thicker prior to 11 ka, and that 500 m of thinning took place between 11 and 4 ka.
    [Show full text]
  • Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica KEVIN RAY EVANS1, LAWRENCE W
    Antarctic Science 30(1), 29–43 (2018) © Antarctic Science Ltd 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102017000396 Geology of the Nelson Limestone, Postel Nunatak, Patuxent Range, Antarctica KEVIN RAY EVANS1, LAWRENCE W. MCKENNA III2, BRUCE S. LIEBERMAN3, WESLEY DONALD WEICHERT1 and KENNETH G. MACLEOD4 1Department of Geography, Geology & Planning, Missouri State University, 901 S. National Avenue, Springfield, MO 65897, USA 2Department of Physics & Earth Science, Framingham State University, 100 State Street, PO Box 9101, Framingham, MA 01701-9101, USA 3Department of Ecology & Evolutionary Biology & Biodiversity Institute, 1345 Jayhawk Boulevard, The University of Kansas, Lawrence, KS 66045, USA 4Department of Geological Sciences, University of Missouri – Columbia, 101 Geological Sciences Building, Columbia, MO 65211, USA [email protected] Abstract: Postel Nunatak in the Patuxent Range has been previously mapped as Nelson Limestone but there was no biostratigraphic support for that interpretation until now. We confirm that limestone exposures at Postel Nunatak are at least partly correlated with the Nelson Limestone of the Neptune Range, 160 km north-east, and are not correlative with the lower Cambrian Schneider Hills Limestone of the Argentina Range. Upper beds have yielded the trilobites Suludella? davnii Palmer & Gatehouse, 1972 and Solenopleura pruina Palmer & Gatehouse, 1972, which provide a basis for assignment to Cambrian Series 3 (late middle Cambrian), within the Drumian or lower Guzhangian stages. Limestone beds were deposited in a shallow marine setting, ranging from supratidal to lagoonal facies with rare subtidal intervals.
    [Show full text]
  • Ice-Free Valleys in the Neptune Range of the Pensacola Mountains, Antarctica: Glacial Geomorphology, Geochronology and Potential
    Antarctic Science 33(4), 428–455 (2021) © The Author(s), 2021. Published by Cambridge University Press on behalf of Antarctic Science Ltd. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102021000237 Ice-free valleys in the Neptune Range of the Pensacola Mountains, Antarctica: glacial geomorphology, geochronology and potential as palaeoenvironmental archives DAVID SMALL 1, MICHAEL J. BENTLEY 1, DAVID J.A. EVANS1, ANDREW S. HEIN 2 and STEWART P.H.T. FREEMAN 3 1Department of Geography, Durham University, Durham, DH1 3LE, UK 2School of Geosciences, University of Edinburgh, Edinburgh, EH8 9XP, UK 3Scottish Universities Environmental Research Centre, East Kilbride, G75 0QF, UK [email protected] Abstract: We describe the glacial geomorphology and initial geochronology of two ice-free valley systems within the Neptune Range of the Pensacola Mountains, Antarctica. These valleys are characterized by landforms associated with formerly more expanded ice sheet(s) that were at least 200 m thicker than at present. The most conspicuous features are areas of supraglacial debris, discrete debris accumulations separated from modern-day ice and curvilinear ridges and mounds. The landsystem bears similarities to debris-rich cold-based glacial landsystems described elsewhere in Antarctica and the Arctic where buried ice is prevalent. Geochronological data demonstrate multiple phases of ice expansion. The oldest, occurring > 3 Ma, overtopped much of the landscape. Subsequent, less expansive advances into the valleys occurred > 2 Ma and > ∼1 Ma.
    [Show full text]
  • US Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and Their Postal Cachets: US Navy (1946–48, 1954–60), International
    Prepared in cooperation with United States Antarctic Program, National Science Foundation U.S. Geological Survey Scientific Activities in the Exploration of Antarctica: 1946–2006 Record of Personnel in Antarctica and their Postal Cachets: U.S. Navy (1946–48, 1954–60), International Geophysical Year (1957–58), and USGS (1960–2006) By Tony K. Meunier Richard S. Williams, Jr., and Jane G. Ferrigno, Editors Open-File Report 2006–1116 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Cover: 2006 postal cachet commemorating sixty years of USGS scientific innovation in Antarctica (designed by Kenneth W. Murphy and Tony K. Meunier, art work by Kenneth W. Murphy). ii Table of Contents Introduction......................................................................................................................................................................1 Selected.References.........................................................................................................................................................2
    [Show full text]
  • US Geological Survey Polar Research Symposium
    U.S. Geological Survey Polar Research Symposium­ Abstracts with Program GEOLOGICAL SURVEY CIRCULAR 911 f I .. t I ,. r v· ~ r u. 1aI l In celebration of the 1OOth anniversary of the First International Polar Year, the 50th anniversary of the Second International Polar Year, and the 25th anniversary of the International Geophysical Year The U.S. Geological Survey Polar Research Symposium celebrates the lOOth and 50th anniversaries of the First and Second International Polar Years, respectively, and the 25th anniversary of the International Geophysical Year. The symposium is part of a series of worldwide activities that include lectures, symposia, and exhibits organized at the request of the International Council of Scientific Unions. The International Polar Years and especially the Interna­ tional Geophysical Year profoundly influenced the evolution of geophysics and served as models for international multidisciplinary cooperation in science. U.S. Geological Survey Polar Research Symposium­ Abstracts with Program GEOLOGICAL SURVEY CIRCULAR 9 l l In celebration of the 1OOth anniversary of the First International Polar Year, the 50th anniversary of the Second International Polar Year, and the 25th anniversary of the International Geophysical Year October 12-14, 1983 United States Department of the Interior JAMES G. WATT, Secretary Geological Survey Dallas L. Peck, Director Free on application to Distribution Branch, Text Products Section, U. S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Progrmn--------------------------------------------------------------------
    [Show full text]