Smart Defender: Um Sistema De Detecção E Mitigação De Ataques Dos/Ddos Usando Aprendizagem De Máquina

Total Page:16

File Type:pdf, Size:1020Kb

Smart Defender: Um Sistema De Detecção E Mitigação De Ataques Dos/Ddos Usando Aprendizagem De Máquina UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DE COMPUTAÇÃO Smart Defender: Um Sistema de Detecção e Mitigação de Ataques DoS/DDoS usando Aprendizagem de Máquina Francisco Sales de Lima Filho Orientador: Prof. Dr. Luiz Felipe de Queiroz Silveira Tese de Doutorado apresentada ao Pro- grama de Pós-Graduação em Engenharia Elétrica e de Computação da UFRN (área de concentração: Engenharia de Computação) como parte dos requisitos para obtenção do título de Doutor em Ciências. Número de ordem PPgEEC: D265 Natal, RN, 20 de dezembro de 2019 Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI Catalogação de Publicação na Fonte. UFRN - Biblioteca Central Zila Mamede Filho, Francisco Sales de Lima. Smart Defender: um sistema de detecção e mitigação de ataques DoS/DDoS usando aprendizagem de máquina / Francisco Sales de Lima Filho. - 2019. 104 f.: il. Tese (doutorado) - Universidade Federal do Rio Grande do Norte, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica e de Computação, Natal, RN, 2020. Orientador: Prof. Dr. Luiz Felipe de Queiroz Silveira. 1. DoS - Tese. 2. DDoS - Tese. 3. Attack Detection - Tese. 4. Attack Mitigation - Tese. 5. Machine Learning - Tese. 6. Network Security - Tese. I. Silveira, Luiz Felipe de Queiroz. II. Título. RN/UF/BCZM CDU 004.85 Elaborado por Ana Cristina Cavalcanti Tinôco - CRB-15/262 Smart Defender: Um Sistema de Detecção e Mitigação de Ataques DoS/DDoS usando Aprendizagem de Máquina Francisco Sales de Lima Filho Tese de Doutorado aprovada em 20 de dezembro de 2019 pela banca examinadora com- posta pelos seguintes membros: Prof. Dr. Luiz Felipe de Queiroz Silveira (orientador) . DCA/UFRN Profa Dra Genoveva Vargas Solar . CNRS Prof. Dr. Plácido Antônio de Souza Neto . DIATINF/IFRN Prof. Dr. Agostinho de Medeiros Brito Junior . DCA/UFRN Prof. Dr. Paulo Sérgio da Motta Pires . DCA/UFRN Prof. Dr. Ivanovitch Medeiros Dantas da Silva . IMD/UFRN Dedico este trabalho ao meu tio Antônio Neto da Costa pelo fundamental apoio no desenvolvimento dos meus estudos. Agradecimentos Agradeço a Deus por preparar o caminho, por permitir a caminhada e por dar forças para concluí-la. Agradeço aos meus pais por todo o amor, dedicação e confiança. À minha amada esposa Érika pela compreensão, cumplicidade, companheirismo, sinceri- dade e amor. À minha amada filha Sofia, que mesmo em sua inocência soube compreender minhas ausências em nossas deliciosas brincadeiras cotidianas. Aos meus irmãos Claudinho (em memória), Maik e Claudinha pelo amor fraterno, apoio e confiança. Aos demais familiares que contribuíram nessa jornada e souberam entender minha dis- tância em eventos da família. Ao meu orientador Prof. Luiz Felipe pelo trabalho exemplar, conduzido com esmero, profissionalismo, dedicação e amizade. Ao Prof. Agostinho Medeiros pelo acolhimento no Laboratório de Segurança da Infor- mação - LabSIN, pelo companheirismo, dedicação e amizade. Aos demais colegas de pós-graduação, pelas críticas e sugestões. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo apoio financeiro. Resumo O ataque de negação de serviço (DoS) e sua variante distribuída (DDoS) representa um dos riscos mais significativos para a disponibilidade de serviços operando na Internet. Essa ameaça cibernética continua a crescer em todo o mundo, e é prejudicial mesmo com o avanço das tecnologias de proteção de rede. O desenvolvimento de mecanismos que possam detectar e mitigar os impactos do tráfego malicioso gerado por ataques DDoS é um desafio atual na área de segurança de redes, com um impacto direto na vida da popula- ção mundial. Este trabalho propõe o sistema Smart Defender como uma abordagem para reduzir o impacto desses ataques. Este sistema é formado por duas ferramentas, o Smart Detection (SD) e o Smart Protection (SP), que operam de maneira integrada e distribuída. O sistema de detecção proposto toma decisões com base em assinaturas preexistentes, usando técnicas de Aprendizagem de Máquina (AM), para classificar o tráfego de rede. O sistema de proteção aplica regras para controlar o tráfego indesejado e mitigar os efei- tos do DDoS, considerando as informações compartilhadas pelo sistema de detecção e a política de segurança da rede local. Nos experimentos realizados, foram utilizados moder- nos conjuntos de dados de referência e testes controlados em laboratório. Os resultados mostram que a solução proposta é capaz de detectar precocemente ataques DDoS com alta taxa de acertos e baixa taxa de alarmes falsos, além de isolar a ameaça no primeiro minuto de ataque. Palavras-chave: DoS, DDoS, Detecção de ataques, Mitigação de ataques, Aprendi- zagem de Máquina, Segurança de Redes. Abstract Denial of Service Attack (DoS) and its distributed variant (DDoS) represent one of the most significant risks to the availability of services operating on the Internet. This cy- ber threat continues to grow worldwide and is detrimental even with the advancement of network protection technologies. Developing mechanisms that can detect and mitigate the impacts of malicious traffic generated by DDoS attacks is a current challenge in network security, with a direct impact on the lives of the world’s population. This work proposes the Smart Defender system as an approach to reduce the impact of these attacks. This system consists of two tools, Smart Detection (SD) and Smart Protection (SP), which operate in an integrated and distributed manner. The proposed detection system makes decisions based on pre-existing signatures using Machine Learning (ML) techniques to classify network traffic. The protection system enforces rules to control unwanted traffic and mitigate the effects of DDoS, given the information shared by the detection system and the security policy of the local network. In the experiments performed, modern re- ference data sets and controlled laboratory tests were used. The results show that the proposed solution is capable of early detection of high hit rate and low false alarm rate DDoS attacks, as well as isolating the threat in the first minute of attack. Keywords: DoS, DDoS, Attack Detection, Attack Mitigation, Machine Learning, Network Security. Sumário Sumário i Lista de Figuras iii Lista de Tabelas v Lista de Símbolos e Abreviaturas vii 1 Introdução 1 1.1 Contribuições . .4 1.2 Organização do Documento . .5 2 Estado da Arte 7 2.1 Negação de Serviços em Sistemas Computacionais . .7 2.2 Negação de Serviços em Redes Convencionais . .9 2.3 Negação de Serviços em Redes SDN . 12 2.4 Resumo . 14 3 Ataques de Negação de Serviços 17 3.1 Ataques Distribuídos de Negação de Serviços . 17 3.2 Ataques de Camada de Rede/Transporte . 19 3.3 Ataques de Camada de Aplicação . 22 3.4 Datasets de referência . 24 3.4.1 Dataset ISCXIDS2012 . 24 3.4.2 Dataset CIC-DoS . 24 3.4.3 Dataset CICIDS2017 . 25 3.4.4 Dataset CSE-CIC-IDS2018 . 26 3.4.5 Dataset Autoral . 26 3.5 Resumo . 27 i 4 Aprendizagem de Máquina 31 4.1 Classificação de dados . 31 4.2 Classificação usando árvores de decisão . 33 4.3 Classificação usando comitê de árvores de decisão . 35 4.4 Métricas de Avaliação . 37 4.5 Resumo . 40 5 Smart Defender 41 5.1 Arquitetura . 41 5.2 Smart Detection . 42 5.2.1 Arquitetura . 43 5.2.2 Extração de Características . 46 5.2.3 Seleção de variáveis e algoritmo de aprendizagem . 49 5.2.4 Experimentos . 52 5.2.5 Análise de Resultados . 54 5.3 Smart Protection . 59 5.3.1 Arquitetura . 59 5.3.2 Gerenciador de Topologia . 61 5.3.3 Controle de Tráfego . 62 5.3.4 Experimentos . 63 5.3.5 Análise de Resultados . 64 5.4 Resumo . 71 6 Conclusões 73 6.1 Trabalhos Futuros . 74 6.2 Produção Científica . 75 Referências bibliográficas 76 Lista de Figuras 3.1 Arquitetura de ataque distribuído de negação de serviço (DDoS) na Internet. 18 3.2 Dinâmica da taxa de ataque DDoS. Em (a) ataque de taxa constante, (b) ataque de taxa crescente, (c) ataque de taxa constante com pequenas vari- ações e (d) ataque de taxa pulsante. 21 3.3 Topologia utilizada na construção do dataset autoral. 27 3.4 Resumo dos principais tipos, vítimas, taxas e impactos dos ataques de negação de serviços. 28 4.1 Abordagem de aprendizagem de máquina, adaptado de Géron (2017). 32 4.2 Sistema de classificação. 32 4.3 Exemplo de árvore de decisão com 3 atributos e 3 níveis de profundidade. 34 4.4 Processo de treinamento do algoritmo Random Forest, adaptado de (Géron 2017). 36 4.5 Exemplo de matriz de confusão de classificação binária. 38 5.1 Arquitetura do sistema Smart Defender. 42 5.2 Construção do modelo e esquema de operação do sistema Smart Detection. 43 5.3 Visão geral do esquema de classificação de tráfego. 44 5.4 Algoritmo do sistema de detecção. 45 5.5 Processo de extração, transformação e rotulagem das instâncias do banco de dados. 49 5.6 Número de variáveis versus número de modelos. 51 5.7 Variáveis selecionadas pelo algoritmo de seleção proposto. 52 5.8 Esquema de validação on-line do Smart Detection. 54 5.9 Tráfego de rede em experimento on-line usando o dataset CICIDS2017. 56 5.10 Classificação de tráfego e uso de CPU em experimento on-line usando o dataset CICIDS2017. 57 5.11 Visão geral da arquitetura do Smart Protection para redes SDN. 60 5.12 Fluxograma do módulo de controle de tráfego do Smart Protection. 63 5.13 Topologia da rede experimental de validação do Smart Protection. 64 iii 5.14 Tráfego em pps no RT-CORE (Experimento-01). 67 5.15 Tráfego em bps no RT-CORE (Experimento-01). 67 5.16 Tráfego em pps no RT-REDE-40 (Experimento-01). 68 5.17 Tráfego em bps no RT-REDE-40 (Experimento-01).
Recommended publications
  • Impact of Distributed Denial-Of-Service Attack On
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sheffield Hallam University Research Archive Impact of Distributed Denial-of-Service Attack on Advanced Metering Infrastructure Satin Asri1 and Bernardi Pranggono2 1Department of Computer Science and Engineering Manipal Institute of Technology Manipal, India Email: [email protected] 2School of Engineering and Built Environment Glasgow Caledonian University Glasgow, UK Email: [email protected] Abstract The age of Internet of Things (IoT) has brought in new challenges specifically in areas such as security. The evolution of classic power grids to smart grids is a prime example of how everything is now being connected to the Internet. With the power grid becoming smart, the information and communication systems supporting it is subject to both classical and emerging cyber-attacks. The article investigates the vulnerabilities caused by distributed denial-of-service (DDoS) attack on the smart grid advanced metering infrastructure (AMI). Attack simulations have been conducted on a realistic electrical grid topology. The simulated network consisted of smart meters, power plant and utility servers. Finally, the impact of large scale DDoS attacks on the distribution system’s reliability is discussed. Keywords advanced metering infrastructure (AMI); distributed denial-of- service (DDoS); smart grid; smart meter 1 Introduction In 2011 McAfee reported over 60% of critical infrastructure companies regularly found malware designed to attack their systems. Smart grid is arguably the most fundamental cyber-physical infrastructures of the humankind and modern society. Smart grid and advanced metering infrastructure (AMI) or commonly known as the smart meter are considered as the main signs of classical electrical grids evolution toward smarter grids.
    [Show full text]
  • Guide to Ddos Attacks November 2017
    TLP: WHITE Guide to DDoS Attacks November 2017 This Multi-State Information Sharing and Analysis Center (MS-ISAC) document is a guide to aid partners in their remediation efforts of Distributed Denial of Service (DDoS) attacks. This guide is not inclusive of all DDoS attack types and references only the types of attacks partners of the MS-ISAC have reported experiencing. Table Of Contents Introduction .................................................................................................................................................................. 1 Standard DDoS Attack Types ................................................................................................................................... 4 SYN Flood ................................................................................................................................................................ 4 UDP Flood................................................................................................................................................................ 5 SMBLoris .................................................................................................................................................................. 7 ICMP Flood .............................................................................................................................................................. 8 HTTP GET Flood .................................................................................................................................................
    [Show full text]
  • A Contemporary Survey and Taxonomy of the Distributed Denial-Of- Service Attack in Server
    International Journal of Computer Trends and Technology (IJCTT) – Volume 63 Number 1 – September 2018 A Contemporary Survey and Taxonomy of the Distributed Denial-of- Service Attack in Server B.Hemalatha#1, Dr.N.Sumathi#2 #1 Research Scholar, Department of Information Technology,Ramakrishna College of Arts and Science, Coimbatore,Tamil Nadu, India #2 Head ,Department of Information Technology,Ramakrishna College of Arts and Science, Coimbatore,Tamil Nadu, India Abstract Distributed Denial-of-service (DDoS) attack is instigate DDoS attacks from number of compromised one of the most perilous threats that could cause host and take down virtually any connection, any overwhelming effects on the web. The name entails, it’s network on the Internet or web by just a little command an attack with the purpose of denying service to keystrokes. legitimate users, Distributed Denial of Service (DDoS) is defined as an attack in which several conciliation DDoS attack works in different faces like flooding systems are made to attack and make the targeted attack or SYN flooding attack, logic attack and systems services unavailable, this attack deliberately protocol-based attack. designed to render a system or network incapable of providing normal services. DDoS attack affects the (a)Flooding attack or SYN flooding attack is an computing environment, communication and server attack in which it sends unwanted malicious packets to resources such as connectivity sockets, processing the network, i.e. either the node may send duplicated elements, memory, data bandwidth, network routing packets or the node systems may send the unique process etc for mutually connected system environment packets which exceed its appropriate limit.
    [Show full text]
  • Distributed Denial of Service Attacks, Tools and Defence Mechanisms
    International Journal of Pure and Applied Mathematics Volume 120 No. 6 2018, 3423-3437 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ Special Issue http://www.acadpubl.eu/hub/ DISTRIBUTED DENIAL OF SERVICE ATTACKS, TOOLS AND DEFENCE MECHANISMS Mr. KISHORE BABU DASARI1, Dr. D NAGARAJU2, ASST. PROFESSOR, DEPT OF CSE, KMIT PROFESSOR HOD, DEPT OF IT, LBRCE [email protected] dnagaraj [email protected] June 11, 2018 Abstract Denial Of Service (DOS) attacks are the eminent network attacks in todays internet world. Their target is to wreck the resources of the victim machine. A DOS is assayed by a person, the DOS attack essayed by apportioned persons, is called Distributed Denial Of Service (DDOS). This paper evinces, the DDOS attack architecture, DDOS attack types, DDOS attack tools, and DDoS attack defence mechanisms. This paper, essentially unveils the DDoS attack defence, based on location posit and on activity deployment. This paper presents the boon and bane, of the different DDoS defence mechanisms. The desired objective of this paper, is to sort and properly organize the attacks and existing mechanisms, in codified order, for a better know-how and understanding, of DDOS attacks. Keywords: Denial Of Service; Distributed Denial Of Service; DDOS tools; DDOS Defence. 1 3423 International Journal of Pure and Applied Mathematics Special Issue 1 INTRODUCTION Networks attacks, repudiate the access of computer network resources by using malignant node, known as availability based network attacks. Denial Of Service(DOS)[1][5][23], is sort of an active information security attack, which is an emphatic trial to squander the victim resources, like a machine or network resource provisionally or perpetually, for legitimate users by an enormous amount of pernicious packets which are sent from a single machine.
    [Show full text]
  • S. Shiaeles: Real Time Detection and Response of Distributed Denial of Service Attacks for Web Services
    Contents Real time detection and response of distributed denial of service attacks for web services A thesis submitted for the degree of Doctor of Philosophy by Stavros Shiaeles Democritus University of Thrace Department of Electrical and Computer Engineering Xanthi, October 2013 i Contents Copyright ©2013 Stavros Shiaeles Democritus University of Thrace Department of Electrical and Computer Engineering Building A, ECE, University Campus – Kimmeria, 67100 Xanthi, Greece All rights reserved. No parts of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author. ii Contents I would like to dedicate this thesis to my parents. iii Contents iv Contents Contents Advising Committee of this Doctoral Thesis .................................... ix Approved by the Examining Committee .......................................... xi Acknowledgements ........................................................................ xiii Abstract ......................................................................................... xv Extended Abstract in Greek (Περίληψη) ......................................... xvii List of Figures ................................................................................ xxiii List of Tables .................................................................................. xxv Abbreviations ................................................................................. xxvii Chapter 1: Introduction
    [Show full text]
  • Distributed Denial of Service Attacks on the Rise: What Community Bank Ceos Should Know
    Illinois Department of Financial and Professional Regulation Division of Banking PAT QUINN MANUEL FLORES Governor Acting Secretary Memorandum To: All Illinois Financial Institutions From: Manny Flores, Acting Secretary Subject: Distributed Denial of Service Attacks planned for May 7, 2013 As you are probably aware, cyber thieves and hacktivist groups (hackers that disrupt online services for social causes) are increasingly in the news for their use of distributed denial of service (DDoS) attacks on the banking system. Recently a group of hacktivists announced on Pastebin (a publicly available website where hacktivists post announcements) that they plan to initiate a campaign of cyber-attacks, named OpUSA, against U.S. financial institutions’ websites beginning today, May 7th. Previous efforts by this group have had limited impact; however, there have been additional Pastebin postings inviting other hacktivists groups to join or support the planned attacks. The FBI has been reaching out to financial institutions directly to inform them of these postings. I’ve enclosed information about Distributed Denial of Service Attacks and the steps you can take to help minimize the risk of an attack. Please share this information with your institutions Incident Response Team. Also enclosed you will find the latest FBI Liaison Alert System (FLASH Message) message. FLASH message contains critical technical information collected by the FBI for use by both interagency and private sector partners. This report is intended for liberal distribution throughout the financial sector to provide recipients with actionable intelligence, which will aid in timely victim notification and response. Every FLASH Message has a unique alpha-numeric tag, which can be located at the top of each report.
    [Show full text]
  • Ddos Handbook.Pdf
    DDoS HANDBOOK THE ULTIMATE GUIDE TO EVERYTHING YOU NEED TO KNOW ABOUT DDoS ATTACKS SHARE THE DDoS HANDBOOK © 2015 Radware, Ltd. All Rights Reserved. Radware and all other Radware product and service names are registered trademarks of Radware in the U.S. and other countries. All other trademarks and names are the property of their respective owners. DDoS Handbook Table of Contents 1 Introduction ...........................................................................................................4 2 A Quick Look Back .................................................................................................5 3 Recent History: Notable Cyber-Attacks of 2014 ......................................................8 4 Attack Types ........................................................................................................10 5 Attack Tools .........................................................................................................19 6 Enterprise Security: Then and Now.......................................................................24 7 What Lies Ahead: Predictions for 2015 and Beyond ..............................................29 8 DDoS Mitigation Considerations ...........................................................................31 9 Checklist: How to Evaluate a Vendor for DDoS & Cyber-Attack Mitigation .............35 10 DDoS Dictionary ..................................................................................................37 1 Introduction Since the first denial of service (DoS) was
    [Show full text]
  • A Comprehensive Study on Distributed Denial of Service Attacks and Defense Mechanisms
    International Journal of Computer Applications (0975 – 8887) International Conference on Information and Communication Technologies (ICICT- 2014) A Comprehensive Study on Distributed Denial of Service Attacks and Defense Mechanisms Pavithra K.C Snitha Shetty Dr. Nagesh H.R IV Semester, M.Tech. IV Semester, M Tech. Professor & Head Dept. of CSE Dept. of CSE Dept. of CSE MITE, Moodabidri MITE, Moodabidri MITE, Moodabidri ABSTRACT Service (DDoS) attack. The result of a DDoS attack is The advances in information technologies in the internet are amplified and the problem of defence is made tougher by increasing the possibility of attacks exponentially. Denial of using multiple attackers. In such cases, it is harder to detect Service (DoS) and Distributed Denial of Service (DDoS) and block attackers manually, so special defences are needed attacks are increasing rapidly across the internet world. Denial to detect and defend against such large-scale attacks. of Service (DoS) is an attack on availability of a service. The Attackers infect thousands of computers spread across the attack aims at denying of an approved service to a legitimate world with sophisticated malware technologies in order to user. When a group of attackers perform DoS attack on a gain unauthorized access to such systems. Attackers do not common target, the attack is known as DDoS. The most really control their attacking machines.Thousands of common method of performing a DoS or a DDoS attacks is to compromised machines act as an army under the command of flood the target or network with unwanted traffic, causing one attacker. Such a collection of thousands of machines is interruptions to the communication of legitimate users.
    [Show full text]
  • The Ultimate Guide to Everything You Need to Know About Ddos Attacks
    DDoS SURVIVAL HANDBOOK The Ultimate Guide to Everything You Need To Know About DDoS Attacks How to: » Identify Attack Types and Understand Their Effects » Recognize Attack Tools » Protect Your Organization Against DoS and DDoS Attacks SHARE THE DDoS SURVIVAL HANDBOOK 1 © 2013 Radware, Ltd. All Rights Reserved. Radware and all other Radware product and service names are registered trademarks of Radware in the U.S. and other countries. All other trademarks and names are the property of their respective owners. Table of Contents 1 Introduction ................................................................................... 4 2 Understanding DoS and DDoS Attacks .......................................... 6 3 Evolution of DDoS .......................................................................12 4 Who is Behind the Attacks and What are the Motives? ................16 5 What It’s Like to Get Hit With a DDoS Attack – An Inside View ......20 6 Attack Types and Their Effects ......................................................25 7 Attack Tools .................................................................................38 8 Protecting Your Organization from DDoS Attacks ..........................43 9 Conclusion ..................................................................................52 Introduction 1 Although the Internet was designed to allow for easy sharing of information between various interconnected computers and networks, it was not designed with security in mind. The digital equivalents of viruses, pathogens, and
    [Show full text]
  • Methods and Techniques for Dynamic Deployability of Software-Defined
    ALMA MATER STUDIORUM · UNIVERSITA` DI BOLOGNA Dottorato di Ricerca in Ingegneria Elettronica, Telecomunicazioni e Tecnologie dell’Informazione Ciclo XXXII Settore concorsuale: 09/F2 - TELECOMUNICAZIONI Settore scientifico disciplinare: ING-INF/03 - TELECOMUNICAZIONI METHODS AND TECHNIQUES FOR DYNAMIC DEPLOYABILITY OF SOFTWARE-DEFINED SECURITY SERVICES Presentata da: Roberto Doriguzzi Corin Coordinatore dottorato: Supervisori: Prof. Alessandra Costanzo Prof. Franco Callegati Dr. Domenico Siracusa Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi” Esame finale anno 2020 1 Abstract ith the recent trend of “network softwarisation”, enabled by emerging tech- W nologies such as Software-Defined Networking (SDN) and Network Func- tion Virtualisation (NFV), system administrators of data centres and enterprise net- works have started replacing dedicated hardware-based middleboxes with virtualised network functions running on servers and end hosts. This radical change has facili- tated the provisioning of advanced and flexible network services, ultimately helping system administrators and network operators to cope with the rapid changes in service requirements and networking workloads. This thesis investigates the challenges of provisioning network security services in “softwarised” networks, where the security of residential and business users can be provided by means of sets of software-based network functions running on high performance servers or on commodity compute devices. The study is approached from the perspective of the telecom operator, whose goal is to protect the customers from network threats and, at the same time, maximize the number of provisioned services, and thereby revenue. Specifically, the overall aim of the research presented in this thesis is proposing novel techniques for optimising the resource usage of software-based security services, hence for increasing the chances for the operator to accommodate more service requests while respecting the desired level of network security of its customers.
    [Show full text]
  • Security Best Practices for Non-Voting Election Technology
    October 2019 v1.1 Security Best Practices Network & Hosting for Non-Voting Election Technology Recommendations: ★ ★ ★ ★★ ★ ★ ★ ★ Security Best Practices for Non-Voting Election Technology About CIS Center for Internet Security, Inc. (CIS®) is a forward-thinking, non-profit entity that harnesses the power of a global IT community to safeguard private and public organizations against cyber threats. Our CIS Controls® and CIS Benchmarks™ are the global standard and recognized best practices for securing IT systems and data against the most pervasive attacks. These proven guidelines are continuously refined and verified by a volunteer, global community of experienced IT professionals. CIS is home to the Multi-State Information Sharing and Analysis Center® (MS-ISAC®), the go-to resource for cyber threat prevention, protection, response, and recovery for U.S. State, Local, Tribal, and Territorial government entities, and the Elections Infrastructure Information Sharing and Analysis Center® (EI-ISAC®), which supports the cybersecurity needs of U.S. State, Local and Territorial elections offices. Except as otherwise specified herein, the content of this publication is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA-4.0). https://creativecommons.org/licenses/by-nc-sa/4.0/ 31 Tech Valley Drive East Greenbush, New York 12061 T: 518.266.3460 F: 518.266.2085 www.cisecurity.org Follow us on Twitter @CISecurity Security Best Practices for Non-Voting Election Technology Table of Contents 1 Acknowledgments
    [Show full text]
  • Towards Iot-Ddos Prevention Using Edge Computing
    Towards IoT-DDoS Prevention Using Edge Computing Ketan Bhardwaj, Joaquin Chung Miranda, Ada Gavrilovska Georgia Institute of Technology Abstract Google’s Project Shield [9], Akamai [11] or CloudFlare [12], Application-level DDoS attacks mounted using compro- who offer on-demand DDoS protection as a service. mised IoT devices are emerging as a critical problem. The Can the Edge Help? In this paper, we explore an approach application-level and seemingly legitimate nature of traffic which leverages computational resources in the edge of the in such attacks renders most existing solutions ineffective, network to accelerate the defense from IoT-DDoS attacks, and and the sheer amount and distribution of the generated traffic arrest them before they can cause considerable damage to both make mitigation extremely costly. This paper proposes a new the attack target as well the Internet infrastructure itself. approach which leverages edge computing to deploy edge We are motivated by the following observations. First, de- functions that gather information about incoming traffic and tection of a DDoS is best done close to the victim, whereas its communicate that information via a fast-path with a nearby mitigation and prevention are most effective close to the attack detection service. This accelerates the detection and the arrest source. Second, the emergence of a new infrastructure tier of such attacks, limiting their damaging impact. Preliminary at the edge of the network, including mobile edge computing investigation shows promise for up to 10x faster detection that (MEC) access points [33], fog computing gateways [26], and reduces up to 82% of the Internet traffic due to IoT-DDoS.
    [Show full text]