Testing the Silicic Acid Leakage Hypothesis As a Cause of CO2 Drawdown During Marine Isotope Stage 4
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 1 – Introduction Testing the Silicic Acid Leakage Hypothesis as a cause of CO2 drawdown during Marine Isotope Stage 4 James D. Griffiths A dissertation submitted for the Degree of Doctor of Philosophy Cardiff University August 2012 i Chapter 1 – Introduction Declaration This dissertation is the result of my own work and includes nothing which is the outcome of collaboration except where specifically indicated in the text. It does not exceed the word limit and is not substantially the same as any work that has been or is being submitted to any other university for any degree, diploma or other qualification. James Griffiths August 2012 ii Chapter 1 – Introduction Testing the Silicic Acid Leakage Hypothesis as a cause of CO2 drawdown during Marine Isotope Stage 4 James D. Griffiths The ‘Silicic Acid Leakage Hypothesis’ (SALH) is a mechanism by which the increased supply of silicic acid to the low latitude ocean allows diatoms (silica producers) to outcompete coccolithophorids (carbonate producers). This would result in a decrease in the export of carbonate, and drawdown of atmospheric CO2 through changes in surface- and whole-ocean alkalinity. Here I test the SALH as a potential cause of CO2 drawdown during glacial Marine Isotope Stage (MIS) 4 (~70-59 ka). Firstly, I measure opal (biogenic silica) accumulation rates in a suite of cores from the equatorial Atlantic, to determine whether the export productivity of diatoms increased during MIS 4. I found that opal accumulation rates increased ~100% in MIS 4 relative to interglacial MIS 5a (~84-77 ka), in agreement with the SALH; however the timing of the changes make the SALH unlikely to be the direct cause of the CO2 drawdown. I then measured the calcium carbonate accumulation rates in the same suite of cores and found that carbonate accumulation decreased in MIS 4 relative to MIS 5a, also in agreement with the SALH. However, I found that this decrease may have been the result of enhanced carbonate dissolution. I also tested the SALH directly by reconstructing changes in the silicic acid concentration of AAIW, by using neodymium and silicon isotopic ratio measurements. I found that AAIW conveyed an increased amount of silicic acid into the western tropical Atlantic during MIS 4, and that the timing of this increase was coeval with increases in both low latitude opal accumulation, and also opal accumulation in the northwest Atlantic. Lastly, I tested the amount of atmospheric CO2 drawdown which could have been attributed to the SALH mechanism during MIS 4 by using a box model, and I estimated that ~35-50 ppmv of CO2 drawdown is achievable. iii Chapter 1 – Introduction Table of Contents 1. Introduction .................................................................................................................. 1 1.1 Carbon dioxide and the climate system ......................................................................... 1 1.2 pCO2 variations over geological time ............................................................................. 3 1.3 Climatic changes during the Marine Isotope Stage 5/4 transition .................................. 7 1.4 Carbon dioxide in the oceans ......................................................................................... 8 1.5 The Silicic Acid Leakage Hypothesis (SALH) ............................................................ 15 1.6 Aims and objectives ..................................................................................................... 20 1.7 Thesis layout ................................................................................................................ 21 2. Methods ....................................................................................................................... 23 2.1 Sedimentary calcium carbonate ................................................................................... 23 2.1.1 Operational principles ........................................................................... 23 2.1.2 Precision and accuracy of method............................................... 27 2.2 Sedimentary biogenic opal ........................................................................................... 27 2.2.1 Procedure .............................................................................................. 27 2.2.2 Calculation of dissolved silica and opal concentrations ....................... 28 2.2.3 Precision of method .............................................................................. 29 2.2.4 Accuracy of method .............................................................................. 30 2.2.5 Silica yield ............................................................................................ 31 2.3 Sedimentary 231Pa, 230Th, 232Th, 234U and 238U ............................................................. 32 2.3.1 Sample weighing and addition of spikes .............................................. 32 2.3.2 Total sediment digestion ....................................................................... 33 2.3.3 Column chemistry for U, Th, Pa and Be ............................................... 33 2.3.4 Final dry-down of samples ................................................................... 33 2.3.5 ICP-MS analysis ................................................................................... 33 2.3.6 Calculation of U, Th and Pa abundances from raw data ....................... 34 2.4 Foraminiferal fragmentation index (core ODP 663A) ................................................. 35 2.5 Determination of stable oxygen and carbon isotope ratios .......................................... 36 2.6 Determination of sedimentary TOC and TN ................................................................ 36 2.7 Measurement of sedimentary neodymium (Nd) isotopic ratios ................................... 37 2.7.1 Carbonate leaching procedure............................................................... 37 2.7.2 Fe-Mn oxide leaching procedure .......................................................... 37 2.7.3 Column chemistry pre-treatment .......................................................... 38 2.7.4 TRU-spec column chemistry ................................................................ 38 2.7.5 Sr-spec column chemistry ..................................................................... 38 2.7.6 Ln-spec column chemistry .................................................................... 38 2.7.7 Determination of Nd isotopic ratios by MC-ICP-MS ........................... 39 2.8 Measurement of silicon (Si) isotopic ratios in sponge spicules ................................... 40 iv Chapter 1 – Introduction 2.8.1 Picking sponge spicules ........................................................................ 40 2.8.2 Si separation from major ions ............................................................... 40 2.8.3 Determination of Si isotopic ratios by MC-ICP-MS ........................... 41 2.9 Sedimentary diatom frustule counts ............................................................................. 42 2.9.1 Preparation of slides.............................................................................. 42 2.9.2 Diatom fragment counts ........................................................................ 42 2.10 Determination of sedimentary biomarker ratios .......................................................... 42 2.10.1 Extraction .............................................................................................. 42 2.10.2 Separating the polar and apolar fractions .............................................. 43 2.10.3 Standard addition and derivitisation ..................................................... 43 2.10.4 Gas Chromatography (GC) analysis ..................................................... 43 2.10.5 Gas Chromatography-Mass Spectrometry (GC-MS) analysis ............. 43 2.10.6 Biomarker abundance ratios ................................................................. 43 3. Changes in equatorial Atlantic opal accumulation during MIS 5/4 transition ........................................................................................................................ 44 3.1 Introduction .................................................................................................................. 44 3.2 Previous tests of the SALH and MIS 4 CO2 drawdown ............................................... 45 3.3 Sampling rationale, core locations and oceanographic setting ..................................... 50 3.4 Thorium and protactinium proxy background ............................................................. 53 3.5 Core age model development ....................................................................................... 58 3.5.1 ODP 663A ............................................................................................ 58 3.5.2 VM19-296 ............................................................................................. 60 3.5.3 RC24-01 ................................................................................................ 62 3.5.4 VM30-40 ............................................................................................... 63 3.5.5 RC16-66 ............................................................................................... 64 3.6 Results .......................................................................................................................... 65 230 231 230 3.6.1 Comparison of Th-normalised opal