Mary River Environmental Values and Water Quality Objectives Basin No

Total Page:16

File Type:pdf, Size:1020Kb

Mary River Environmental Values and Water Quality Objectives Basin No ATTACHMENT 4 Attachment 4, Item 3, Planning & Organisation Committee Agenda, 2 February 2016 Environmental Protection (Water) Policy 2009 Mary River environmental values and water quality objectives Basin No. 138, including all tributaries of the Mary River July 2010 Document Set ID: 20002123 Version: 1, Version Date: 21/12/2015 Prepared by: Water Quality & Ecosystem Health Policy Unit Department of Environment and Resource Management © State of Queensland (Department of Environment and Resource Management) 2010 This publication is available in alternative formats (including large print and audiotape) on request. Contact (07) 322 48412 or email <[email protected]> July 2010 Document Ref Number Document Set ID: 20002123 Version: 1, Version Date: 21/12/2015 Main parts of this document and what they contain • Scope of waters covered Introduction • Key terms / how to use document (section 1) • Links to WQ plan (map) • Mapping / water type information • Further contact details • Amendment provisions • Source of EVs for this document Environmental Values • Table of EVs by waterway (EVs - section 2) - aquatic ecosystem - human use • Any applicable management goals to support EVs • How to establish WQOs to protect Water Quality Objectives all selected EVs (WQOs - section 3) • WQOs in this document, for - aquatic ecosystem EV - human use EVs • List of plans, reports etc containing Ways to improve management actions relevant to the water quality waterways in this area (section 4) • Definitions of key terms including an Dictionary explanation table of all (section 5) environmental values • An accompanying map that shows Accompanying WQ Plan water types, levels of protection and (map) other information contained in this document iii Document Set ID: 20002123 Version: 1, Version Date: 21/12/2015 CONTENTS 1 INTRODUCTION ............................................................................................................................. 1 1.1 WATERS TO WHICH THIS DOCUMENT APPLIES .............................................................................. 1 1.2 GUIDANCE ON USING THIS DOCUMENT ......................................................................................... 2 1.2.1 Key terms............................................................................................................................ 2 1.2.2 Main parts of this document................................................................................................ 4 1.2.3 Use of this document .......................................................................................................... 4 1.3 INFORMATION ABOUT MAPPED AREAS AND BOUNDARIES ............................................................... 4 1.4 WATER TYPES AND BASIS FOR BOUNDARIES ................................................................................ 5 1.4.1 Water types......................................................................................................................... 5 1.4.2 Water type boundaries........................................................................................................ 5 1.5 MATTERS FOR AMENDMENT ....................................................................................................... 6 2 ENVIRONMENTAL VALUES (EVS) ............................................................................................... 7 2.1 ENVIRONMENTAL VALUES .......................................................................................................... 7 2.2 MANAGEMENT GOALS TO SUPPORT EV S..................................................................................... 7 3 WATER QUALITY OBJECTIVES (WQOS) TO PROTECT ENVIRONMENTAL VALUES.......... 10 3.1 WATER QUALITY OBJECTIVES (WQO S) TO PROTECT AQUATIC ECOSYSTEMS ............................... 11 3.1.1 Physico-chemical WQOs .................................................................................................. 11 3.1.2 Riparian WQOs................................................................................................................. 17 3.1.3 Stormwater design objectives........................................................................................... 17 3.2 WATER QUALITY OBJECTIVES (WQO S) FOR HUMAN USE EV S .................................................... 18 4 WAYS TO IMPROVE WATER QUALITY ..................................................................................... 28 5 DICTIONARY................................................................................................................................. 29 List of Tables Table 1 Environmental values (EVs) for Mary River catchment waters ........................................................8 Table 2 Water quality objectives to protect aquatic ecosystem environmental value (refer to Plan WQ1381 for location of waters) .........................................................................................................................12 Table 3 Water quality objectives to protect human use environmental values ...........................................18 Table 4 Primary contact recreation EV: Water quality objectives for management of cyanobacteria in contact recreation areas .....................................................................................................................................21 Table 5 Aquaculture EV: Water quality objectives for tropical aquaculture ................................................22 Table 6 Aquaculture EV: Water quality objectives for optimal growth of particular species in freshwater ................................................................................................................................................................................22 Table 7 Aquaculture EV: Water quality objectives for optimal growth of particular marine species ........23 Table 8 Irrigation EV: Water quality objectives for thermotolerant (faecal) coliforms in irrigation waters used for food and non-food crops .....................................................................................................................24 Table 9 Irrigation EV: Water quality objectives for heavy metals and metalloids in agricultural irrigation water – long-term trigger value (LTV), short-term trigger value (STV) and soil cumulative contamination loading limit (CCL) ...............................................................................................................................................25 Table 10 Stock watering EV: Water quality objectives for tolerances of livestock to total dissolved solids (salinity) in drinking water ........................................................................................................................26 Table 11 Stock watering EV: Water quality objectives (low risk trigger values) for heavy metals and metalloids in livestock drinking water ................................................................................................................26 Table 12 Drinking water EV: Priority water quality objectives for drinking water supply in the vicinity of off-takes, including groundwater, before treatment ........................................................................................27 Table 13 Suite of environmental values that can be chosen for protection ................................................30 iv Document Set ID: 20002123 Version: 1, Version Date: 21/12/2015 Mary River environmental values and water quality objectives 1 Introduction This document is made pursuant to the provisions of the Environmental Protection (Water) Policy 2009 (the EPP [Water]), which is subordinate legislation under the Environmental Protection Act 1994 . The EPP (Water) provides a framework for: • identifying environmental values for Queensland waters, and deciding the water quality objectives to protect or enhance those environmental values; and • including the identified environmental values and water quality objectives under Schedule 1 of the EPP (Water). This document contains environmental values and water quality objectives for waters in the Mary River catchment, and is listed under schedule 1 of the EPP (Water). 1.1 Waters to which this document applies This document applies to fresh and estuarine surface waters and ground waters draining the Mary River catchment as represented in the accompanying plan (WQ1381) 1. These waters fall within the Mary basin (basin 138) 2, and include: • Amamoor Creek; • Coondoo Creek • Eel Creek; • Kandanga Creek; • Glastonbury Creek; • Little Yabba Creek; • Mary River; • Munna Creek; • Obi Obi Creek; • Six Mile Creek; • Susan River; • Tinana Creek; • Wide Bay Creek; • Widgee Creek; • Yabba Creek; • all other rivers and creeks of the Mary River catchment; • wetlands; and • ground waters. The geographical extent of waters addressed by this document is shown in plan WQ1381, and is broadly: • all freshwaters and tributaries of the Mary River; • the upper, mid and lower estuary/enclosed coastal waters of the Mary River and Susan River and tidal tributaries including Tinana Creek; • tidal canals, constructed estuaries, marinas and boat harbours and entrance buffers; • wetlands; and • ground waters. 1This document and the accompanying plan are available in electronic form from the Environmental Values web page on the Department of Environment and Resource Management (DERM) website : http://www.derm.qld.gov.au/ . The boundaries in the accompanying plan WQ1381 are indicative only. The water types and management intent
Recommended publications
  • Mary River Environmental Values and Water Quality Objectives (Plan)
    ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! M A R Y R I V E R , I N C L U D I N G A L L T R I B U T A R I E S O F T H E R I V E! R ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Basin 138 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 152°E 152°20'E ! 152°40'E 153°E ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! H E R V E Y B AY ! ! ! B ! ! ! ! ! ! ! ! ! ! Grego R ! ! ry i ! ! v u er ! ! ! ! ! ! ! r ! ! ! ! CORDALBA ! n ! ! ! ! ! WALKERS ! ! ! ! ! ! ! ! ! ! e ! ! ! POINT ! Environmental Protection (Water) Policy 2009 S ! ! ! ! ! ! ! ! ! ! ! t ! ! ! ! ! ! ! ! ! t t ! ! ! o ! ! Users must refer to plans WQ1372 k c ! ! ! ! ! ! ! ! k ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! e ! y ! ! ! ! ! ! ! ! ! ! R ! r e a and WQ1402 for information on South-east Queensland Map Series ! r ! i d ! ! C v BURRUM
    [Show full text]
  • The Freshwater Crayfish (Family Parastacidae) of Queensland
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Riek, E. F., 1951. The freshwater crayfish (family Parastacidae) of Queensland. Records of the Australian Museum 22(4): 368–388. [30 June 1951]. doi:10.3853/j.0067-1975.22.1951.615 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia 11ft! FRESHWATER CRAYFISH (FAMILY PARASTACIDAE) OF QUEENSLAND WITH AN ApPENDIX DESORIBING OTHlm AV5'lHALIAN SPEClEf'. By E. F. HIEK. (;ommonwealth Scientific and Industrial l~csearch Organization - Divhdon of Entomology, Canberra, A.C.T. (Figures 1-13.) Freshwater crayfish occur in almost every body of fresh water from artificial damfl and natural billabongs (I>tanding water) to headwater creeks and large rivers (flowing water). Generally the species are of considerable size and therefore easily collected, but even so many of the larger forms are unknown scientifically. This paper deals with all the species that have been collected from Queensland. It also includes a few species from New South Wales and other States. No doubt additional species will be found and some of the mOre variable series, at present included under the one specific namc, will be further subdivided. From Queensland nine species are described as new, making a total of seventeen species (of three genera) recorded from that State. The type localities of all but two of these species are in Queensland but some are not restricted to the State. Clark's 1936 and subsequent papers have been used as the basis for further taxonomic studies of the Australian freshwater crayfish.
    [Show full text]
  • Renewable Energy Across Queensland's Regions
    Renewable Energy across Queensland’s Regions July 2018 Enlightening environmental markets Green Energy Markets Pty Ltd ABN 92 127 062 864 2 Domville Avenue Hawthorn VIC 3122 Australia T +61 3 9805 0777 F +61 3 9815 1066 [email protected] greenmarkets.com.au Part of the Green Energy Group Green Energy Markets 1 Contents 1 Introduction ........................................................................................................................6 2 Overview of Renewable Energy across Queensland .....................................................8 2.1 Large-scale projects ..................................................................................................................... 9 2.2 Rooftop solar photovoltaics ........................................................................................................ 13 2.3 Batteries-Energy Storage ........................................................................................................... 16 2.4 The renewable energy resource ................................................................................................. 18 2.5 Transmission .............................................................................................................................. 26 3 The renewable energy supply chain ............................................................................. 31 3.1 Construction activity .................................................................................................................... 31 3.2 Equipment manufacture
    [Show full text]
  • Chapter 3—Relative Risks to the Great Barrier Reef from Degraded Water Quality
    Scientific Consensus Statement 2013 – Chapter 3 ©The State of Queensland 2013. Published by the Reef Water Quality Protection Plan Secretariat, July 2013. Copyright protects this publication. Excerpts may be reproduced with acknowledgement to the State of Queensland. Image credits: TropWATER James Cook University, Tourism Queensland. This document was prepared by an independent panel of scientists with expertise in Great Barrier Reef water quality. This document does not represent government policy. 2 Relative risks to the Great Barrier Reef from degraded water quality Scientific Consensus Statement 2013 – Chapter 3 Table of Contents Executive summary .......................................................................................................................... 4 Introduction ..................................................................................................................................... 6 Synthesis process ............................................................................................................................. 7 Previous Consensus Statement findings ........................................................................................ 19 Current evidence on the relative risks of water quality pollutants to the Great Barrier Reef ...... 21 What is the current relative risk of priority pollutants to Great Barrier Reef marine systems? .............. 21 Where are the risks highest or the benefits of improved management greatest? .................................. 26 When are the risks
    [Show full text]
  • Dam Threat to a Decade of Restoration of the Mary River, Queensland
    Dam threat to a decade of restoration of the Mary River, Queensland Glenda Pickersgill1, Steve Burgess2 and Brad Wedlock3 1 Save the Mary River Coordinating Group. Web: www.savethemaryriver.com 2 Gympie and District Landcare Group. Web: www.gympielandcare.org.au 3 Mary River Catchment Coordinating Committee (MRCCC). Web: www.wb2020.qld.gov.au/icm/mrccc/main.htm Abstract The banks of the Mary River and its tributaries were once covered with rainforest species that protected the banks from erosion during floods. However these streams have generally become wider and shallower as a result of clearing, with many banks actively eroding, destroying valuable ecosystems and river flats in the process. The Mary Catchment has been identified in studies as an aquatic biodiversity hotspot and contains a number of endemic endangered species. Over the past decade, millions of dollars in government funding for river restoration has helped landholders and other interested community members to establish programs for restoration of the Mary River catchment. In 2004, the Mary River community was awarded the coveted National Rivercare Award. Now legislative and policy changes empowering the State Government and water corporations to capture, store and transfer large quantities of water out of the catchment into the proposed South East Queensland water grid, place these successful restoration activities and the community that has participated since 1995 at risk. This paper describes restoration works conducted in the Mary Catchment, and outlines the present and future impacts of the Traveston Crossing Dam proposal on the catchment, the restoration projects and communities. Keywords Traveston Crossing, endangered species, Ramsar wetlands Introduction South East Queensland is one of the fastest growing areas in Australia.
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS)
    Information Sheet on Ramsar Wetlands (RIS) Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). This Ramsar Information Sheet has been converted to meet the 2009 – 2012 format, but the RIS content has not been updated in this conversion. The new format seeks some additional information which could not yet be included. This information will be added when future updates of this Ramsar Information Sheet are completed. Until then, notes on any changes in the ecological character of the Ramsar site may be obtained from the Ecological Character Description (if completed) and other relevant sources. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. Department of Environment and Heritage DD MM YY PO Box 155 BRISBANE ALBERT STREET QLD 4002. 2. Date this sheet was completed/updated: Designation date Site Reference Number May 1999 3. Country: Australia 4. Name of the Ramsar site: The precise name of the designated site in one of the three official languages (English, French or Spanish) of the Convention. Alternative names, including in local language(s), should be given in parentheses after the precise name. Great Sandy Strait (including Great Sandy Strait, Tin Can Bay and Tin Can Inlet). 5. Designation of new Ramsar site or update of existing site: Great Sandy Strait was designated on 14 June 1999 This RIS is for (tick one box only): a) Designation of a new Ramsar site ; or b) Updated information on an existing Ramsar site 6.
    [Show full text]
  • The Historical Ecology of Queensland's Australian Saltwater
    Colby College Digital Commons @ Colby Honors Theses Student Research 2016 The Historical Ecology of Queensland’s Australian Saltwater Crocodile (Crocodylus porosus) Emily M. Walker Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Animal Studies Commons, and the Environmental Studies Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Walker, Emily M., "The Historical Ecology of Queensland’s Australian Saltwater Crocodile (Crocodylus porosus)" (2016). Honors Theses. Paper 815. https://digitalcommons.colby.edu/honorstheses/815 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. The Historical Ecology of Queensland’s Australian Saltwater Crocodile (Crocodylus porosus) Emily Walker Environmental Studies Program Colby College Waterville, Maine May 6, 2016 A thesis submitted to the faculty of the Environmental Studies Program in partial fulfillment of the graduation requirements for the Degree of Bachelor of Arts with honors in Environmental Studies __________________ __________________ __________________ Loren McClenachan, Advisor Manuel Gimond, Reader Philip Nyhus, Reader Copyright © 2016 by the Environmental Studies Program, Colby College. All rights reserved. ABSTRACT Human wildlife conflict is a critical aspect of many societies, as it often plays a large role in government decisions. The iconic saltwater Australian crocodile (Crocodylus porosus) is one example of a species that has become the subject of human-wildlife conflict in Queensland, Australia.
    [Show full text]
  • Mary River Aquatic Weed Strategy
    Mary River Aquatic Weed Strategy 2010 – 2014 Created June 2009 Mary River Pest Management Group i The Mary River Aquatic Weed Strategy has been prepared by Phil Moran, Noosa and District Landcare Group, under contract with the Burnett Mary Regional Group and for the Mary River Pest Management Group Mary River Pest Management Group Membership Fraser Coast Regional Council Gympie Regional Council Sunshine Coast Regional Council Burnett Mary Regional Group Department of Employment, Economic Development and Innovation – Biosecurity Queensland Mary River Catchment Coordinating Committee Mary River Pest Management Group National Aquatic Weed Management Group Noosa and District Landcare Group Seqwater SunWater Private landholders are also critical to the effectiveness of this strategy. Abbreviations Burnett Mary Regional Group (BMRG) Department of Employment, Economic Development and Innovation - Biosecurity Queensland (BQ) Fraser Coast Regional Council (FCRC) Gympie Regional Council (GRC) Mary River Catchment Coordinating Committee (MRCCC) Mary River Pest Management Group (MRPMG) National Aquatic Weed Management Group (NAWMG) Noosa and District Landcare Group (NDLG) Queensland Water Infrastructure (QWI) Sunshine Coast Regional Council (SCRC) Funded has been received through the Commonwealth Government’s Caring for our Country program ii EXECUTIVE SUMMARY Aquatic weeds have serious impacts on freshwater ecosystems. They adversely affect the biodiversity and function of wetland and riparian ecosystems, water quality, recreation and amenity values of the Mary River and tributaries. Environmental, social and economic costs of aquatic weed infestations are difficult to calculate but are recognised to be in the millions of dollars Australia wide. Once established, aquatic weeds are expensive and very difficult to manage. Eradication is often not possible.
    [Show full text]
  • Great Sandy Strait — a Wetland of International Significance Great Sandy Strait (Which Includes Tin Can Bay) Is a Wetland of International Significance
    Great Sandy Strait — A Wetland of International Significance Great Sandy Strait (which includes Tin Can Bay) is a Wetland of International Significance. It was inscribed as Ramsar site 992 in 1999. Its 93,160 ha includes marine, estuarine and intertidal wetlands and salt pans. The intertidal wetland habitats consist of: 15,500 ha of mangrove forests, 12,300 ha of intertidal and subtidal seagrass beds, 2,800 ha of saltmarshes, unvegetated mud, sand and salt flats, and estuarine and channel waters of varying depth and width. The main freshwater wetland types are Melaleuca swamp forest and other palustrine wetlands. It is a very special place deserving the highest level of protection. The Draft Great Sandy Marine Park Zoning offered it little extra protection. Located between the mainland and Fraser Island, Great leatherback turtles. The Great Sandy Strait is an important Sandy Strait is a complex landscape with shifting patterns feeding ground for juvenile turtles. of mangroves, sandbanks, intertidal sand, mud islands, salt Rare Butterflies: Old stands of grey mangrove support marshes, extensive sea grass beds and patterned fens. It is populations of the endangered Illidge's ant-blue butterfly. important habitat for breeding fish, crustaceans, dugongs, dolphins, marine turtles and migratory waders. It lies Marine Mammals: Great Sandy Strait contains some between the rapidly growing population centres of Hervey recognized “hot spots” for the endangered dugong with Bay and Tin Can Bay. high densities of these marine mammals dependent on the sea grass there. Three species of dolphins, the common Great Sandy Strait is a double-ended sand passage estuary.
    [Show full text]
  • Summary of Weather and Flood Events
    1.Summary.of.weather. and.flood.events What follows is an overview of the weather events leading up to and during the 2010/2011 floods with a summary of their effects across the state. It is not intended as an exhaustive account. 1.1.Summary.of.weather.leading.to. 1 2010/2011.flood.events The Queensland wet season extends from October to April, with the initial monsoonal onset usually occurring in late December. The 2010/2011 wet season was different. In June 2010 the Australian Bureau of Meteorology warned that a La Niña event was likely to occur before the end of the year.1 The La Niña change has historically brought above average rainfall to most of Australia and an increased risk of tropical cyclone events for northern Australia. Previous La Niña effects had been associated with flooding in eastern Australia, including the large scale and devastating floods which occurred in 1955 and 1973/1974.2 As predicted, a strong La Niña event took place in the Pacific Ocean in late 2010. La Niñas are often described in terms of a positive Southern Oscillation Index, which represents the normalised pressure difference between Darwin and Tahiti and gives a positive reading when pressures are high in Tahiti and low in Darwin.3 The index ranges from about -35 to +35.4 During December 2010 the Southern Oscillation Index was +27.1, representing the highest December value on record and the highest monthly value since 1973.5 In turn, Australia experienced an extremely strong La Niña during the end of 2010 and beginning of 2011; the second strongest
    [Show full text]
  • Marine Aquaculture in the Great Sandy Region Background and Expression of Interest Information CS1634 07/12
    Department of Agriculture, Fisheries and Forestry Marine aquaculture in the Great Sandy region Background and expression of interest information CS1634 07/12 Disclaimer This publication has been prepared by the State of Queensland as an information only source. The State of Queensland makes no statements, representations or warranties about the accuracy or completeness of, and you and all other persons should not rely on, any information contained in this publication. Any reference to any specific organisation, product or service does not constitute or imply its endorsement or recommendation by the State of Queensland. The State of Queensland disclaims all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you might incur as a result of the information being inaccurate or incomplete in any way, and for any reason. © State of Queensland, 2012. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit www.creativecommons.org/licenses/by/3.0/au/deed.en Contents Introduction 4 Queensland aquaculture 5 Great Sandy region
    [Show full text]
  • Tom Petrie's Reminiscences
    I TOM PETRIE'S REMINISCENCES OF EARLY QUEENSLAND (Dating from 1837.) RECORDED BY HIS DAUGHTER. BRISBANE: WATSON , FERGUSON & CO.. 1904. [COPYRIGHT.] This is a blank page To MY FATHER, TOM PETRIE, WHOSE FAITHFUL MEMORY HAS SUPPLIED THE MATERIAL FOR THIS BOOK. PRINTED BY WATSON, FERGUSON &' CO. QUEEN ST., BRISBANE. This is a blank page This is a blank page NOTE. THE greater portion of the contents of this book first ap- peard in the " Queenslander " in the form of articles, and when those referring to the aborigines were pubished, Dr. Roth, author of " Ethnological Studies," etc., wrote the following letter to that paper :- TOM PETRIE' S REMINISCENCES (By C.C.P.) TO THE EDITOR. SIR,-lt is with extreme interest that I have perused the remarkable series of articles appearing in the Queenslander under the above heading, and sincerely trust that they will he subsequently reprinted. The aborigines of Australia are fast dying out, and with them one of the most interesting phases in the history and development of man. Articles such as these, referring to the old Brisbane blacks, of whom I believe but one old warrior still remains, are well worth permanently recording in convenient book form-they are, all of them, clear, straight-forward statements of facts- many of which by analogy, and from early records, I have been able to confirm and verify-they show an intimate and profound knowledge of the aboriginals with whom they deal, and if only to show with what diligence they have been written, the native names are correctly, i.e., rationally spelt.
    [Show full text]