Vacuum Energy of Quantum Fields in Classical Background Configurations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dispersion Relations in Loop Calculations
LMU–07/96 MPI/PhT/96–055 hep–ph/9607255 July 1996 Dispersion Relations in Loop Calculations∗ Bernd A. Kniehl† Institut f¨ur Theoretische Physik, Ludwig-Maximilians-Universit¨at, Theresienstraße 37, 80333 Munich, Germany Abstract These lecture notes give a pedagogical introduction to the use of dispersion re- lations in loop calculations. We first derive dispersion relations which allow us to recover the real part of a physical amplitude from the knowledge of its absorptive part along the branch cut. In perturbative calculations, the latter may be con- structed by means of Cutkosky’s rule, which is briefly discussed. For illustration, we apply this procedure at one loop to the photon vacuum-polarization function induced by leptons as well as to the γff¯ vertex form factor generated by the ex- change of a massive vector boson between the two fermion legs. We also show how the hadronic contribution to the photon vacuum polarization may be extracted + from the total cross section of hadron production in e e− annihilation measured as a function of energy. Finally, we outline the application of dispersive techniques at the two-loop level, considering as an example the bosonic decay width of a high-mass Higgs boson. arXiv:hep-ph/9607255v1 8 Jul 1996 1 Introduction Dispersion relations (DR’s) provide a powerful tool for calculating higher-order radiative corrections. To evaluate the matrix element, fi, which describes the transition from some initial state, i , to some final state, f , via oneT or more loops, one can, in principle, adopt | i | i the following two-step procedure. -
The Vacuum Polarization of a Charged Vector Field
SOVIET PHYSICS JETP VOLUME 21, NUMBER 2 AUGUST, 1965 THE VACUUM POLARIZATION OF A CHARGED VECTOR FIELD V. S. VANYASHIN and M. V. TERENT'EV Submitted to JETP editor June 13, 1964; resubmitted October 10, 1964 J. Exptl. Theoret. Phys. (U.S.S.R.) 48, 565-573 (February, 1965) The nonlinear additions to the Lagrangian of a constant electromagnetic field, caused by the vacuum polarization of a charged vector field, are calculated in the special case in which the gyromagnetic ratio of the vector boson is equal to 2. The result is exact for an arbri trarily strong electromagnetic field, but does not take into account radiative corrections, which can play an important part in the unrenormalized electrodynamics of a vector boson. The anomalous character of the charge renormalization is pointed out. 1. INTRODUCTION IN recent times there have been frequent discus sions in the literature on the properties of the charged vector boson, which is a possible carrier virtual photons gives only small corrections to the of the weak interactions. At present all that is solution. If we are dealing with a vector particle, known is that if such a boson exists its mass must then we come into the domain of nonrenormal be larger than 1. 5 Be V. The theory of the electro izable theory and are not able to estimate in any magnetic interactions of such a particle encounters reasonable way the contribution of the virtual serious difficulties in connection with renormali photons to the processes represented in the figure. zation. Without touching on this difficult problem, Although this is a very important point, all we can we shall consider a problem, in our opinion not a do here is to express the hope that in cases in trivial one, in which the nonrenormalizable char which processes of this kind occur at small ener acter of the electrodynamics of the vector boson gies of the external field the radiative corrections makes no difference. -
Arxiv:Cond-Mat/0203258V1 [Cond-Mat.Str-El] 12 Mar 2002 AS 71.10.-W,71.27.+A PACS: Pnpolmi Oi Tt Hsc.Iscoeconnection Close Its High- of Physics
Large-N expansion based on the Hubbard-operator path integral representation and its application to the t J model − Adriana Foussats and Andr´es Greco Facultad de Ciencias Exactas Ingenier´ıa y Agrimensura and Instituto de F´ısica Rosario (UNR-CONICET). Av.Pellegrini 250-2000 Rosario-Argentina. (October 29, 2018) In the present work we have developed a large-N expansion for the t − J model based on the path integral formulation for Hubbard-operators. Our large-N expansion formulation contains diagram- matic rules, in which the propagators and vertex are written in term of Hubbard operators. Using our large-N formulation we have calculated, for J = 0, the renormalized O(1/N) boson propagator. We also have calculated the spin-spin and charge-charge correlation functions to leading order 1/N. We have compared our diagram technique and results with the existing ones in the literature. PACS: 71.10.-w,71.27.+a I. INTRODUCTION this constrained theory leads to the commutation rules of the Hubbard-operators. Next, by using path-integral The role of electronic correlations is an important and techniques, the correlation functional and effective La- open problem in solid state physics. Its close connection grangian were constructed. 1 with the phenomena of high-Tc superconductivity makes In Ref.[ 11], we found a particular family of constrained this problem relevant in present days. Lagrangians and showed that the corresponding path- One of the most popular models in the context of high- integral can be mapped to that of the slave-boson rep- 13,5 Tc superconductivity is the t J model. -
Configuration Interaction Study of the Ground State of the Carbon Atom
Configuration Interaction Study of the Ground State of the Carbon Atom María Belén Ruiz* and Robert Tröger Department of Theoretical Chemistry Friedrich-Alexander-University Erlangen-Nürnberg Egerlandstraße 3, 91054 Erlangen, Germany In print in Advances Quantum Chemistry Vol. 76: Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems 30th July 2017 Abstract Configuration Interaction (CI) calculations on the ground state of the C atom are carried out using a small basis set of Slater orbitals [7s6p5d4f3g]. The configurations are selected according to their contribution to the total energy. One set of exponents is optimized for the whole expansion. Using some computational techniques to increase efficiency, our computer program is able to perform partially-parallelized runs of 1000 configuration term functions within a few minutes. With the optimized computer programme we were able to test a large number of configuration types and chose the most important ones. The energy of the 3P ground state of carbon atom with a wave function of angular momentum L=1 and ML=0 and spin eigenfunction with S=1 and MS=0 leads to -37.83526523 h, which is millihartree accurate. We discuss the state of the art in the determination of the ground state of the carbon atom and give an outlook about the complex spectra of this atom and its low-lying states. Keywords: Carbon atom; Configuration Interaction; Slater orbitals; Ground state *Corresponding author: e-mail address: [email protected] 1 1. Introduction The spectrum of the isolated carbon atom is the most complex one among the light atoms. The ground state of carbon atom is a triplet 3P state and its low-lying excited states are singlet 1D, 1S and 1P states, more stable than the corresponding triplet excited ones 3D and 3S, against the Hund’s rule of maximal multiplicity. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s. -
The Heisenberg Uncertainty Principle*
OpenStax-CNX module: m58578 1 The Heisenberg Uncertainty Principle* OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to: • Describe the physical meaning of the position-momentum uncertainty relation • Explain the origins of the uncertainty principle in quantum theory • Describe the physical meaning of the energy-time uncertainty relation Heisenberg's uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we know everything about where a particle is located (the uncertainty of position is small), we know nothing about its momentum (the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle also exist for other quantities as well, such as energy and time. We discuss the momentum-position and energy-time uncertainty principles separately. 1 Momentum and Position To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the x- direction. The particle moves with a constant velocity u and momentum p = mu. According to de Broglie's relations, p = }k and E = }!. As discussed in the previous section, the wave function for this particle is given by −i(! t−k x) −i ! t i k x k (x; t) = A [cos (! t − k x) − i sin (! t − k x)] = Ae = Ae e (1) 2 2 and the probability density j k (x; t) j = A is uniform and independent of time. The particle is equally likely to be found anywhere along the x-axis but has denite values of wavelength and wave number, and therefore momentum. -
8 the Variational Principle
8 The Variational Principle 8.1 Approximate solution of the Schroedinger equation If we can’t find an analytic solution to the Schroedinger equation, a trick known as the varia- tional principle allows us to estimate the energy of the ground state of a system. We choose an unnormalized trial function Φ(an) which depends on some variational parameters, an and minimise hΦ|Hˆ |Φi E[a ] = n hΦ|Φi with respect to those parameters. This gives an approximation to the wavefunction whose accuracy depends on the number of parameters and the clever choice of Φ(an). For more rigorous treatments, a set of basis functions with expansion coefficients an may be used. The proof is as follows, if we expand the normalised wavefunction 1/2 |φ(an)i = Φ(an)/hΦ(an)|Φ(an)i in terms of the true (unknown) eigenbasis |ii of the Hamiltonian, then its energy is X X X ˆ 2 2 E[an] = hφ|iihi|H|jihj|φi = |hφ|ii| Ei = E0 + |hφ|ii| (Ei − E0) ≥ E0 ij i i ˆ where the true (unknown) ground state of the system is defined by H|i0i = E0|i0i. The inequality 2 arises because both |hφ|ii| and (Ei − E0) must be positive. Thus the lower we can make the energy E[ai], the closer it will be to the actual ground state energy, and the closer |φi will be to |i0i. If the trial wavefunction consists of a complete basis set of orthonormal functions |χ i, each P i multiplied by ai: |φi = i ai|χii then the solution is exact and we just have the usual trick of expanding a wavefunction in a basis set. -
Arxiv:1202.1557V1
The Heisenberg-Euler Effective Action: 75 years on ∗ Gerald V. Dunne Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA On this 75th anniversary of the publication of the Heisenberg-Euler paper on the full non- perturbative one-loop effective action for quantum electrodynamics I review their paper and discuss some of the impact it has had on quantum field theory. I. HISTORICAL CONTEXT After the 1928 publication of Dirac’s work on his relativistic theory of the electron [1], Heisenberg immediately appreciated the significance of the new ”hole theory” picture of the quantum vacuum of quantum electrodynamics (QED). Following some confusion, in 1931 Dirac associated the holes with positively charged electrons [2]: A hole, if there were one, would be a new kind of particle, unknown to experimental physics, having the same mass and opposite charge to an electron. With the discovery of the positron in 1932, soon thereafter [but, interestingly, not immediately [3]], Dirac proposed at the 1933 Solvay Conference that the negative energy solutions [holes] should be identified with the positron [4]: Any state of negative energy which is not occupied represents a lack of uniformity and this must be shown by observation as a kind of hole. It is possible to assume that the positrons are these holes. Positron theory and QED was born, and Heisenberg began investigating positron theory in earnest, publishing two fundamental papers in 1934, formalizing the treatment of the quantum fluctuations inherent in this Dirac sea picture of the QED vacuum [5, 6]. It was soon realized that these quantum fluctuations would lead to quantum nonlinearities [6]: Halpern and Debye have already independently drawn attention to the fact that the Dirac theory of the positron leads to the scattering of light by light, even when the energy of the photons is not sufficient to create pairs. -
Canonical Quantization of the Self-Dual Model Coupled to Fermions∗
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Canonical Quantization of the Self-Dual Model coupled to Fermions∗ H. O. Girotti Instituto de F´ısica, Universidade Federal do Rio Grande do Sul Caixa Postal 15051, 91501-970 - Porto Alegre, RS, Brazil. (March 1998) Abstract This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally cou- pled to fermions is also quantized through the Dirac-bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the in- teraction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interac- tions terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elas- tic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non- renormalizable. -
Renormalizability of the Center-Vortex Free Sector of Yang-Mills Theory
PHYSICAL REVIEW D 101, 085007 (2020) Renormalizability of the center-vortex free sector of Yang-Mills theory † ‡ D. Fiorentini ,* D. R. Junior, L. E. Oxman , and R. F. Sobreiro § UFF—Universidade Federal Fluminense, Instituto de Física, Campus da Praia Vermelha, Avenida Litorânea s/n, 24210-346 Niterói, RJ, Brasil. (Received 11 February 2020; accepted 30 March 2020; published 17 April 2020) In this work, we analyze a recent proposal to detect SUðNÞ continuum Yang-Mills sectors labeled by center vortices, inspired by Laplacian-type center gauges in the lattice. Initially, after the introduction of appropriate external sources, we obtain a rich set of sector-dependent Ward identities, which can be used to control the form of the divergences. Next, we show the all-order multiplicative renormalizability of the center-vortex free sector. These are important steps towards the establishment of a first-principles, well-defined, and calculable Yang-Mills ensemble. DOI: 10.1103/PhysRevD.101.085007 I. INTRODUCTION was obtained in Euclidean spacetime [12,13], which provides a calculational tool similar to the one used in As is well known, the Fadeev-Popov procedure to the perturbative regime. Beyond the linear covariant quantize Yang-Mills (YM) theories [1], so successful in gauges, many efforts were also devoted to the maximal making contact with experiments at high energies, cannot Abelian gauges; see Ref. [14] and references therein. BRST be extended to the infrared regime [2,3]. In covariant invariance is an important feature to have predictive power gauges, this was established by Singer’s theorem [4]: for (renormalizability), as well as to show the independence of any gauge fixing, there are orbits with more than one gauge observables on gauge-fixing parameters. -
Download This Article in PDF Format
EPJ Web of Conferences 245, 06009 (2020) https://doi.org/10.1051/epjconf/202024506009 CHEP 2019 Emergent Structure in QCD James Biddle1;∗, Waseem Kamleh1;∗∗, and Derek Leinweber1;∗∗∗ 1Centre for the Subatomic Structure of Matter, Department of Physics, The University of Adelaide, SA 5005, Australia Abstract. The structure of the SU(3) gauge-field vacuum is explored through visualisations of centre vortices and topological charge density. Stereoscopic visualisations highlight interesting features of the vortex vacuum, especially the frequency with which singular points appear and the important connection between branching points and topological charge. This work demonstrates how visualisations of the QCD ground-state fields can reveal new perspectives of centre-vortex structure. 1 Introduction Quantum Chromodynamics (QCD) is the fundamental relativistic quantum field theory un- derpinning the strong interactions of nature. The gluons of QCD carry colour charge and self-couple. This self-coupling makes the empty vacuum unstable to the formation of non- trivial quark and gluon condensates. These non-trivial ground-state “QCD-vacuum” field configurations form the foundation of matter. There are eight chromo-electric and eight chromo-magnetic fields composing the QCD vacuum. An stereoscopic illustration of one of these chromo-magnetic fields is provided in Fig. 1. Animations of the fields are also available [1–3]. The essential, fundamentally-important, nonperturbative features of the QCD vacuum fields are the dynamical generation of mass through chiral symmetry breaking, and the con- finement of quarks. But what is the fundamental mechanism of QCD that underpins these phenomena? What aspect of the QCD vacuum causes quarks to be confined? Which aspect is responsible for dynamical mass generation? Do the underlying mechanisms share a common origin? One of the most promising candidates is the centre vortex perspective [4, 5].