Transiting Exoplanets from the Corot Space Mission II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Chapter (PDF)
The CoRoT Legacy Book c The authors, 2016 DOI: 10.1051/978-2-7598-1876-1.c031 III.1 Transit features detected by the CoRoT/Exoplanet Science Team M. Deleuil1, C. Moutou1, J. Cabrera2, S. Aigrain3, F. Bouchy1, H. Deeg4, P. Bord´e5, and the CoRoT Exoplanet team 1 Aix Marseille Universite,´ CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 2 Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489 Berlin, Germany 3 Department of Physics, Denys Wilkinson Building Keble Road, Oxford, OX1 3RH 4 Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife, Spain and Universidad de La Laguna, Dept. de Astrof´ısica, 38206 La Laguna, Tenerife, Spain 5 Institut d’astrophysique spatiale, Universite´ Paris-Sud 11 & CNRS (UMR 8617), Bat.ˆ 121, 91405 Orsay, France While this is reliable on a statistical point of view, individ- 1. Introduction ual targets could be misclassified (Damiani et al. this book) CoRoT has observed 26 stellar fields located in two oppo- and these numbers are mostly indicative of the overall stel- site directions for transiting planet hunting. The fields ob- lar population properties. They show however that, in a served near 6h 50m in right ascension are referred as (galac- given field, classes V and IV represent the majority of the tic) \anti-center fields”, and those near 18h 50m as \center targets. Figure III.1.2 displays how these stars classified fields”. The observing strategy consisted in staring a given as class IV and V distribute over spectral types F, G, K, star field for durations that ranged from 21 to 152 days. -
The False Positive Probability of Corot and Kepler Planetary Candidates
EPSC Abstracts Vol. 6, EPSC-DPS2011-1243, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The False Positive probability of CoRoT and Kepler planetary candidates. R.F. Díaz (1,2), J.M. Almenara (3), A. Bonomo (3), F. Bouchy (1,2), M. Deleuil (3), G. Hébrard (1,2), C. Moutou (3) and A. Santerne (3) (1) Institut d’astrophysique de Paris, FRANCE, (2) Observatoire de Haute-Provence, FRANCE, (3) Laboratoire d’Astrophysique de Marseille, FRANCE ([email protected]) Abstract tified, similarly to what is done for planet candidates detected from RV surveys, a fraction of which are in We estimate the False Positive Probability of CoRoT actuality low-mass objects in low-inclination orbits. and Kepler planetary candidates, and review critically Therefore, since the rapidly-growing number of previous results present in the literature. The ob- transiting planet candidates makes it increasingly dif- tained estimates are compared with the results from ficult to confirm each one individually by means of RV the ground-based radial velocity follow-up carried out measurements, a precise and reliable estimation of the with the HARPS and SOPHIE spectrographs for these FPP is of great importance to obtain the greatest sci- two space missions. entific return from the data acquired by CoRoT and Kepler, as well as to fully exploit the data that will be 1. Introduction obtained from future missions, like PLATO. The CoRoT and Kepler space missions are dedicated to finding transit-like events caused by extrasolar plan- 2. The False Positives ets in orbits aligned with the line of sight from Earth. -
The Trilogy Is Complete -- Gigagalaxy Zoom Phase 3 28 September 2009
The trilogy is complete -- GigaGalaxy Zoom Phase 3 28 September 2009 "globules" and the most prominent ones have been catalogued by the astronomer Edward Emerson Barnard. The Lagoon Nebula hosts the young open stellar cluster known as NGC 6530. This is home for 50 to 100 stars and twinkles in the lower left portion of the nebula. Observations suggest that the cluster is slightly in front of the nebula itself, though still enshrouded by dust, as revealed by reddening of the starlight, an effect that occurs when small dust particles scatter light. The third image of ESO's GigaGalaxy Zoom project is an amazing vista of the Lagoon Nebula taken with the 67-million-pixel Wide Field Imager attached to the MPG/ESO 2.2-meter telescope at the La Silla Observatory in Chile. The image covers more than one and a half square degree -- an area eight times larger than that of the Full Moon -- with a total of about 370 million pixels. It is based on images acquired using three different broadband filters (B, V, R) and one narrow- band filter (H-alpha). Credit: ESO The newly released image extends across a field of view of more than one and a half square degree — an area eight times larger than that of the full Moon — and was obtained with the Wide Field Imager attached to the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. This 67-million-pixel camera has already created several of ESO's iconic pictures. The intriguing object depicted here — the Lagoon Nebula — is located four to five thousand light- years away towards the constellation of Sagittarius The three images of ESO’s GigaGalaxy Zoom project (the Archer). -
HATS-3B: an Inflated Hot Jupiter Transiting an F-Type Star
Draft version January 5, 2018 A Preprint typeset using LTEX style emulateapj v. 5/2/11 HATS-3b: AN INFLATED HOT JUPITER TRANSITING AN F-TYPE STAR D. Bayliss1, G. Zhou1, K. Penev2,3, G. A.´ Bakos2,3,⋆,⋆⋆, J. D. Hartman2,3, A. Jordan´ 4, L. Mancini5, M. Mohler5, V. Suc4, M. Rabus4, B. Beky´ 3, Z. Csubry2,3, L. Buchhave6, T. Henning5, N. Nikolov5, B. Csak´ 5, R. Brahm4, N. Espinoza4, R. W. Noyes3, B. Schmidt1, P. Conroy1, D. J. Wright,7,8, C. G. Tinney,7,8, B. C. Addison,7,8, P. D. Sackett,1, D. D. Sasselov3, J. Laz´ ar´ 9, I. Papp9, P. Sari´ 9 Draft version January 5, 2018 ABSTRACT We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F dwarf star. HATS-3b has a period of P =3.5479d, mass of Mp =1.07 MJ, and radius of Rp =1.38 RJ. Given the radius of the planet, the brightness of the host star, and the stellar rotational 1 velocity (v sin i = 9.0kms− ), this system will make an interesting target for future observations to measure the Rossiter-McLaughlin effect and determine its spin-orbit alignment. We detail the low/medium-resolution reconnaissance spectroscopy that we are now using to deal with large numbers of transiting planet candidates produced by the HATSouth survey. We show that this important step in discovering planets produces log g and Teff parameters at a precision suitable for efficient candidate vetting, as well as efficiently identifying stellar mass eclipsing binaries with radial velocity 1 semi-amplitudes as low as 1 km s− . -
Search for Wide Substellar Companions to Young Nearby Stars with the VISTA Hemisphere Survey
Highlights on Spanish Astrophysics X, Proceedings of the XIII Scientific Meeting of the Spanish Astronomical Society held on July 16 – 20, 2018, in Salamanca, Spain. B. Montesinos, A. Asensio Ramos, F. Buitrago, R. Schödel, E. Villaver, S. Pérez-Hoyos, I. Ordóñez-Etxeberria (eds.), 2019 Search for wide substellar companions to young nearby stars with the VISTA Hemisphere Survey. P. Chinchilla1;2, V.J.S. B´ejar1;2, N. Lodieu1;2, M.R. Zapatero Osorio3, B. Gauza4, R. Rebolo1;2;5, and A. P´erezGarrido6 1 Instituto de Astrof´ısicade Canarias (IAC), c/V´ıaL´acteaS/N, 38200 La Laguna, Tenerife, Spain 2 Dpto. de Astrof´ısica,Universidad de La Laguna (ULL), 38206 La Laguna, Tenerife, Spain 3 Centro de Astrobiolog´ıa(CSIC-INTA), Ctra. de Ajalvir km 4, 28850 Torrej´onde Ardoz, Madrid, Spain 4 Dpto. de Astronom´ıa,Universidad de Chile, Camino el Observatorio 1515, Casilla 36-D, Las Condes, Santiago, Chile 5 Consejo Superior de Investigaciones Cient´ıficas(CSIC), Spain 6 Dpto. de F´ısicaAplicada, Universidad Polit´ecnicade Cartagena, 30202 Cartagena, Murcia, Spain Abstract We have performed a search for substellar objects as common proper motion companions to young nearby stars (including members of the Young Moving Groups AB Doradus, TW Hydrae, Tucana-Horologium and Beta Pictoris, and the Upper Scorpius young association) up to separations of 50,000 AU, using the VISTA Hemisphere Survey and 2MASS astro- metric and photometric data. We have found tens of candidates with spectral types from M to L, and estimated masses from low-mass stars to the deuterium-burning limit mass. -
197 3Apj. . .186.1107S the Astrophysical Journal, 186:1107
The Astrophysical Journal, 186:1107-1125, 1973 December 15 .186.1107S . © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A. 3ApJ. 197 PHASE EQUILIBRIA IN MOLECULAR HYDROGEN-HELIUM MIXTURES AT HIGH PRESSURES* W. B. Streett Science Research Laboratory, U.S. Military Academy, West Point, New York Received 1973 June 11 ABSTRACT Experiments on phase behavior in hydrogen-helium mixtures have been carried out at pressures up to 9.3 kilobars, at temperatures from 26° to 100° K. Two distinct fluid phases are shown to exist at supercritical temperatures and high pressures. Both the trend of the experimental results and an analysis based on the van der Waals theory of mixtures suggest that this fluid-fluid phase separation persists at temperatures and pressures beyond the range of these experiments, perhaps even to the limits of stability of the molecular phases. The results confirm earlier predictions concerning the form of the hydrogen-helium phase diagram in the region of pressure-induced solidification of the molecular phases at supercritical temperatures. The implications of this phase diagram for planetary interiors are discussed. Subject headings: gas dynamics — interiors, planetary — molecules I. INTRODUCTION The properties of hydrogen-helium mixtures are of interest for several reasons. From a theoretical standpoint, they are of interest because they are composed of the two elements with the simplest atomic and molecular structures, and would seem to be among the mixtures most amenable to a theoretical treatment based on first principles. However, it is fair to say that a satisfactory theory of dense mixtures of molecular hydrogen and helium has yet to be developed. -
Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets
Accepted to ApJ, February, 2004 A Preprint typeset using L TEX style emulateapj v. 11/12/01 EFFECTS OF HELIUM PHASE SEPARATION ON THE EVOLUTION OF EXTRASOLAR GIANT PLANETS Jonathan J. Fortney1, W. B. Hubbard1 Accepted to ApJ, February, 2004 ABSTRACT We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15 to 3.0 MJ. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ∼ 2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets’ evolution at ∼ 700 Myr for a 0.15 MJ object and ∼ 10 Gyr for a 3.0 MJ object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets will cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several Gyr. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn. -
Letter of Interest La Silla Schmidt Southern Survey
Snowmass2021 - Letter of Interest La Silla Schmidt Southern Survey Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (CF3) Dark Matter: Cosmic Probes (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities (CF7) Cosmic Probes of Fundamental Physics (Other) [Please specify frontier/topical group] Contact Information: Peter Nugent (LBNL) [[email protected]]: Collaboration: LS4 Authors: Greg Aldering (LBNL) [email protected]; Thomas Diehl (FNAL) [email protected]; Alex Kim (LBNL) [email protected]; Antonella Palmese (FNAL) [email protected]; Saul Perlmutter (LBNL) [email protected]; David Schlegel (LBNL) [email protected]; Yuanyuan Zhang (FNAL) [email protected] Abstract: We are proposing a 5-year public, wide-field, optical survey using an upgraded 20 square degree QUEST Camera on the ESO Schmidt Telescope at the La Silla Observatory in Chile – The La Silla Schmidt Southern Survey (LS4). We will use LBNL fully-depleted CCDs to maximize the sensitivity in the optical up to 1 micron. This survey will complement the Legacy Survey of Space and Time (LSST) being conducted at the Vera C. Rubin Observatory in two ways. First, it will provide a higher cadence than the LSST over several thousand square degrees of sky each night, allowing a more accurate characterization of brighter and faster evolving transients to 21st magnitude. Second, it will open up a new phase-space for discovery when coupled with the LSST by probing the sky between 12–16th magnitude – a region where the Rubin Observatory saturates. -
Transiting Exoplanets from the Corot Space Mission-XIX. Corot-23B: A
Astronomy & Astrophysics manuscript no. corot-23b˙v5 c ESO 2018 November 8, 2018 Transiting exoplanets from the CoRoT space mission ⋆ XIX. CoRoT-23b: a dense hot Jupiter on an eccentric orbit Rouan, D.1, Parviainen, H.2,20, Moutou, C.4, Deleuil, M.4, Fridlund, M.5, A. Ofir6, Havel, M.7, Aigrain, S.8, Alonso, R.15, Auvergne, M.1, Baglin, A.1, Barge, P.4, Bonomo, A.4, Bord´e, P.9, Bouchy, F.10,11, Cabrera, J.3, Cavarroc, C.9, Csizmadia, Sz.3, Deeg, H.J.2,20, Diaz, R.F.4, Dvorak, R.12, Erikson, A.3, Ferraz-Mello, S.13, Gandolfi, D.5, Gillon, M.15, Guillot, T.7, Hatzes, A.14, H´ebrard, G.10,11, Jorda, L.4, L´eger, A.9, Llebaria, A.4, Lammer, H.19, Lovis, C.15, Mazeh, T.6, Ollivier, M.9, P¨atzold, M.17, Queloz, D.15, Rauer, H.3, Samuel, B.1, Santerne, A.4, Schneider, J.16, Tingley, B.2,20, and Wuchterl, G.14 (Affiliations can be found after the references) v5 - Received August 23, 2011; accepted October 4, 2011 ABSTRACT We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 ± 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. -
The VVV Templates Project Towards an Automated Classification of VVV
A&A 567, A100 (2014) Astronomy DOI: 10.1051/0004-6361/201423904 & c ESO 2014 Astrophysics The VVV Templates Project Towards an automated classification of VVV light-curves I. Building a database of stellar variability in the near-infrared R. Angeloni1,2,3, R. Contreras Ramos1,4, M. Catelan1,2,4,I.Dékány4,1,F.Gran1,4, J. Alonso-García1,4,M.Hempel1,4, C. Navarrete1,4,H.Andrews1,6, A. Aparicio7,21,J.C.Beamín1,4,8,C.Berger5, J. Borissova9,4, C. Contreras Peña10, A. Cunial11,12, R. de Grijs13,14, N. Espinoza1,15,4, S. Eyheramendy15,4, C. E. Ferreira Lopes16, M. Fiaschi12, G. Hajdu1,4,J.Han17,K.G.Hełminiak18,19,A.Hempel20,S.L.Hidalgo7,21,Y.Ita22, Y.-B. Jeon23, A. Jordán1,2,4, J. Kwon24,J.T.Lee17, E. L. Martín25,N.Masetti26, N. Matsunaga27,A.P.Milone28,D.Minniti4,20,L.Morelli11,12, F. Murgas7,21, T. Nagayama29,C.Navarro9,4,P.Ochner12,P.Pérez30, K. Pichara5,4, A. Rojas-Arriagada31, J. Roquette32,R.K.Saito33, A. Siviero12, J. Sohn17, H.-I. Sung23,M.Tamura27,24,R.Tata7,L.Tomasella12, B. Townsend1,4, and P. Whitelock34,35 (Affiliations can be found after the references) Received 29 March 2014 / Accepted 13 May 2014 ABSTRACT Context. The Vista Variables in the Vía Láctea (VVV) ESO Public Survey is a variability survey of the Milky Way bulge and an adjacent section of the disk carried out from 2010 on ESO Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey will eventually deliver a deep near-IR atlas with photometry and positions in five passbands (ZYJHKS) and a catalogue of 1−10 million variable point sources – mostly unknown – that require classifications. -
The Case for Irish Membership of the European Southern Observatory Prepared by the Institute of Physics in Ireland June 2014
The Case for Irish Membership of the European Southern Observatory Prepared by the Institute of Physics in Ireland June 2014 The Case for Irish Membership of the European Southern Observatory Contents Summary 2 European Southern Observatory Overview 3 European Extremely Large Telescope 5 Summary of ESO Telescopes and Instrumentation 6 Technology Development at ESO 7 Big Data and Energy-Efficient Computing 8 Return to Industry 9 Ireland and Space Technologies 10 Astrophysics and Ireland 13 Undergraduate Teaching 15 Outreach and Astronomy 17 Education and Training 19 ESO Membership Fee 20 Conclusions 22 References 24 1 Summary The European Southern Observatory (ESO) is universally acknowledged as being the world leading facility for observational astronomy. The astrophysics community in Ireland is united in calling for Irish membership of ESO believing that this action would strongly support the Irish government’s commitment to its STEM (science, technology, engineering and maths) agenda. An essential element of the government’s plans for the Irish economy is to substantially grow its high-tech business sector. Physics is a core part of that base, with 86,000 jobs in Ireland in this sector1 while astrophysics, in particular, is a key driver both of science interest and especially of innovation. To support this agenda, Irish scientists and engineers need access to the best research facilities and with this access comes the benefits of spin-off technology, contracts and the jobs which this can bring. ESO is currently expanding its membership to include Brazil and is considering some eastern European countries. The cost of membership will increase as more states join and as Ireland’s GDP increases. -
Part 1: the 1.7 and 3.9 Earth Radii Rule
Hi this is Steve Nerlich from Cheap Astronomy www.cheapastro.com and this is What are exoplanets made of? Part 1: The 1.7 and 3.9 earth Radii rule. As of August 2016, the current count of confirmed exoplanets is up around 3,400 in 2,617 systems – with 590 of those systems confirmed to be multiplanet systems. And the latest thinking is that if you want to understand what exoplanets are made of you need to appreciate the physical limits of planet-hood, which are defined by the boundaries of 1.7 and 3.9 Earth radii . Consider that the make-up of an exoplanet is largely determined by the elemental make up of its protoplanetary disk. While most material in the Universe is hydrogen and helium – these are both tenuous gases. In order to generate enough gravity to hang on to them, you need a lot of mass to start with. So, if you’re Earth, or anything up to 1.7 times the radius of Earth – you’ve got no hope of hanging onto more than a few traces of elemental hydrogen and helium. Indeed, any exoplanet that’s less than 1.7 Earth radii has to be primarily composed of non-volatiles – that is, things that don’t evaporate or blow away easily – to have any chance of gravitationally holding together. A non-volatile exoplanet might be made of rock – which for our Solar System is a primarily silicon/oxygen based mineral matrix, but as we’ll hear, small sub-1.7 Earth radii exoplanets could be made of a whole range of other non-volatile materials.