Clonal Lineages, Antimicrobial Resistance, and PVL Carriage Of

Total Page:16

File Type:pdf, Size:1020Kb

Clonal Lineages, Antimicrobial Resistance, and PVL Carriage Of antibiotics Article Clonal Lineages, Antimicrobial Resistance, and PVL Carriage of Staphylococcus aureus Associated to Skin and Soft-Tissue Infections from Ambulatory Patients in Portugal Carolina Ferreira 1 , Sofia Santos Costa 1, Maria Serrano 1, Ketlyn Oliveira 1, Graça Trigueiro 2, Constança Pomba 3,4 and Isabel Couto 1,* 1 Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal; [email protected] (C.F.); [email protected] (S.S.C.); [email protected] (M.S.); [email protected] (K.O.) 2 Laboratório de Análises Clínicas Dr. Joaquim Chaves, Av. General Norton de Matos, 71 R/C, 1495-148 Algés, Portugal; [email protected] 3 CIISA, Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; [email protected] 4 GeneVet, Laboratório de Diagnóstico Molecular Veterinário, Rua Quinta da Nora Loja 3B, 2790-140 Carnaxide, Portugal * Correspondence: [email protected]; Tel.: +351-21-3652652; Fax: +351-21-3632105 Abstract: Staphylococcus aureus (S. aureus) is a leading cause of skin and soft-tissue infections (SSTIs) in the community. In this study, we characterized a collection of 34 S. aureus from SSTIs in ambulatory Citation: Ferreira, C.; Costa, S.S.; patients in Portugal and analyzed the presence of Panton–Valentine leucocidin (PVL)-encoding genes Serrano, M.; Oliveira, K.; Trigueiro, and antibiotic-resistance profile, which was correlated with genetic determinants, plasmid carriage, G.; Pomba, C.; Couto, I. Clonal and clonal lineage. Nearly half of the isolates (15, 44.1%) were methicillin-resistant Staphylococcus Lineages, Antimicrobial Resistance, aureus (MRSA) and/or multidrug resistant (MDR). We also detected resistance to penicillin (33/34, and PVL Carriage of Staphylococcus 97.1%), fluoroquinolones (17/34, 50.0%), macrolides and lincosamides (15/34, 44.1%), aminoglyco- aureus Associated to Skin and sides (6/34, 17.6%), and fusidic acid (2/34, 5.9%), associated with several combinations of resistance Soft-Tissue Infections from blaZ erm erm msr mph aacA-aphD aadD aph 0 IIIa fusC Ambulatory Patients in Portugal. determinants ( , (A), (C), (A), (C), , , (3 )- , ), or mutations Antibiotics 2021, 10, 345. https:// in target genes (fusA, grlA/gyrA). The collection presented a high genetic diversity (Simpson’s index doi.org/10.3390/antibiotics10040345 of 0.92) with prevalence of clonal lineages CC5, CC22, and CC8, which included the MRSA and also most MDR isolates (CC5 and CC22). PVL-encoding genes were found in seven isolates (20.6%), three Academic Editor: Giovanna Batoni methicillin-susceptible Staphylococcus aureus (MSSA) (ST152-agrI and ST30-agrIII), and four MRSA (ST8-agrI). Plasmid profiling revealed seventeen distinct plasmid profiles. This work highlights the Received: 19 February 2021 high frequency of antimicrobial resistance and PVL carriage in SSTIs-related S. aureus outside of the Accepted: 19 March 2021 hospital environment. Published: 24 March 2021 Keywords: Staphylococcus aureus; skin and soft-tissue infections; antibiotic resistance; clonal lineages; Publisher’s Note: MDPI stays neutral plasmids; Panton–Valentine leucocidin with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Staphylococcus aureus (S. aureus) is a major human pathogen responsible for a wide range of infections both in hospitals and in the community. It is one of the main causes Copyright: © 2021 by the authors. of severe nosocomial infections such as bacteremia and infective endocarditis and in the Licensee MDPI, Basel, Switzerland. community is a frequent cause of skin and soft-tissue infections (SSTIs) [1]. Besides their This article is an open access article potential severity, infections caused by S. aureus are usually difficult to treat due to the distributed under the terms and conditions of the Creative Commons frequent acquisition of antimicrobial resistance determinants. In the last decades, there has Attribution (CC BY) license (https:// been an emergence and dissemination of methicillin-resistant S. aureus (MRSA) as well as creativecommons.org/licenses/by/ of multidrug-resistant (MDR) strains [2,3]. Consequently, MRSA are now included in the 4.0/). Antibiotics 2021, 10, 345. https://doi.org/10.3390/antibiotics10040345 https://www.mdpi.com/journal/antibiotics Antibiotics 2021, 10, 345 2 of 15 World Health Organization (WHO) list of high-priority bacteria for development of new drugs [4]. S. aureus is the most frequent pathogen associated with SSTIs, which can range from minor or superficial infections such as impetigo to life-threating infections such as necrotiz- ing fasciitis [5]. Topical antibiotics that are often used for the prevention or treatment of milder infections include mupirocin, fusidic acid, neomycin, and bacitracin [6,7]. The use of some of these topical antibiotics is particularly relevant in the community/ambulatory settings, where they may not require medical prescription. Other antibiotics for systemic use, such as clindamycin, trimethoprim-sulfamethoxazole, tetracyclines, and linezolid, are also indicated for treatment of severe forms of SSTIs caused by S. aureus [6,8]. The frequency of antibiotic-resistant S. aureus isolates associated with SSTIs is rising worldwide [9–12], particularly to fusidic acid and mupirocin, which is probably linked with the widespread use of these antibiotics [3]. Resistance to antibiotics in S. aureus can be mediated by several mechanisms, such as antibiotic modification or degradation, target mutation, or antibiotic efflux. Resistance to penicillins can occur by inactivation of the antibiotic molecule through the action of the β-lactamase BlaZ. The blaZ gene occurs frequently in S. aureus clinical isolates. Resistance to penicillins and other β-lactams, with the exception of fifth-generation cephalosporins, is mediated by the acquisition of the mecA gene, which is part of the mobile genetic element SCCmec (staphylococcal cassette chromosome mec) and encodes for an additional penicillin- binding protein, PBP2a, with low affinity for the β-lactam antibiotics [3]. Resistance to macrolides and lincosamides can occur through several mechanisms, including the acquisition of rRNA methylases-encoding erm genes that methylate the binding site of the antibiotics [3]. Resistance to aminoglycosides is associated with acquisition of several genes, like aacA-aphD or aadD that encode enzymes that modify the antibiotic molecule rendering it inactive [3]. Resistance to fluoroquinolones is usually linked to the occurrence of mutations in the quinolone-resistant determining region (QRDR) of the grlA/B and gyrA/B genes that encode the DNA topoisomerase IV and DNA gyrase, respectively. Fluoroquinolone resistance can also be conveyed by overexpression of chromosomally-encoded efflux pump genes such as norA/B/C and mepA [13]. Resistance to fusidic acid can be achieved by the acquisition of the fusB/C genes that encode ribosomal protection proteins or by mutations in the fusA gene [3]. S. aureus produces several virulence factors, including toxins, proteins associated with immune evasion, and tissue-degrading enzymes [1]. The cytotoxin Panton–Valentine leucocidin (PVL), encoded by the genes lukF-PV and lukS-PV carried on bacteriophage 'Sa2, is a two-component pore-forming protein that has been strongly associated with S. aureus isolates causing skin infections in the community and with necrotizing pneumo- nia [1]. Nevertheless, the role of PVL in S. aureus infection pathogenesis is still not fully elucidated [14]. The S. aureus accessory gene regulator (agr) locus regulates the expression of several virulence factors like cell-wall-associated and extracellular proteins, contributing to infection severity and persistence. The polymorphism of the agr locus allows the clas- sification of S. aureus in four predominant agr types (I to IV), that may differ in terms of infection type, carriage of virulence factors, and temporal patterns of autoinduction [15]. Most antimicrobial resistance and virulence genes of S. aureus are located on mo- bile genetic elements (MGEs) such as plasmids, bacteriophages, pathogenicity islands, transposons, integrative conjugative elements (ICEs), integrons, and staphylococcal chro- mosome cassettes (SCCs), which make up to 15–20% of its genome [16]. The acquisition of antimicrobial resistance by S. aureus is mostly due to horizontal gene transfer (HGT), and plasmids have been identified as one of the main responsible for the dissemination of resistance genes [17]. Several studies have evaluated the main clones of MRSA circulating both in hospitals and in the community in Portugal, a country with a high prevalence of MRSA [18–22]. However, there have been fewer studies focusing on S. aureus, both methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA causing SSTIs. The aim of this work was to per- Antibiotics 2021, 10, 345 3 of 15 form a phenotypic and genotypic characterization of a collection of S. aureus isolated from SSTIs in ambulatory patients and to assess their virulence determinants and susceptibility to the main antibiotics used in SSTI therapeutics, correlating their resistance profile to genetic determinants and identifying their main mechanisms of dissemination among S. aureus strains. 2. Results 2.1. Antimicrobial Susceptibility Profile and Correlation with Resistance Determinants
Recommended publications
  • Antibiotic and Antibiotic Resistance
    ANTIBIOTIC AND ANTIBIOTIC RESISTANCE Helle Ericsson Unnerstad Veterinarian, Associate Professor Department of Animal Health and Antimicrobial Strategies National Veterinary Institute, Uppsala, Sweden ITP, SVA, 28 September, 2018 Antibiotics or antimicrobials? • Old definition: Antibiotics are naturally produced by microorganisms. • Perhaps more useful definitions today: Antimicrobials are compounds with direct action on microorganisms. They are used for treatment or prevention of infections. Antimicrobials are inclusive of anti-bacterials, anti-virals, anti-fungals and anti-protozoals. Antibiotics are synonymous with anti-bacterials. • “Antibiotic resistance” more familiar for the public than “antimicrobial resistance” according to WHO survey. • In many contexts antibiotic resistance and antimicrobial resistance are used synonymously. Antibiotics – toxins for bacteria Antibiotic Antibiotic activity • Bactericidal activity – kill bacteria • Bacteriostatic activity – inhibit or delay bacterial growth Mechanisms of action for antibiotics Inhibition of Inhibition of cell wall synthesis protein synthesis • Aminoglycosides • Beta lactams • Tetracyclines • Cephalosporins • Macrolides • Glycopeptides • Lincosamides • Chloramphenicol • Fusidic acid • Pleuromutilins Inhibition of Inhibition of folic acid synthesis DNA/RNA synthesis • Sulphonamides • Quinolones • Trimethoprim • Coumarins • Rifamycins Spectra of activity • Broad-spectrum antibiotics Ex. tetracyclines, fluoroquinolones, 3:d and 4:th gen cephalosporins, carbapenems (G+, G-, aerobes,
    [Show full text]
  • Farrukh Javaid Malik
    I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent.
    [Show full text]
  • Topical Antibiotics
    Topical antibiotics Microbiological point of view [email protected] • Topical antibiotics • Efficacy • Antibiotic resistance – Propionibacteria/acne • Tetracyclines • macrolides – Staphylococci/impetigo • Fusidic acid • Mupirocin • Epilogue Topical antibiotics in dermatology • Bacitracin • Chloramphénicol • Clindamycin • Erythromycin • Fusidic acid • Gentamicin • Miconazol • Mupirocin • Neomycin • Polymyxin B • Sulfamides • Tétracyclines • Benzoyle peroxyde • Azelaic acid + “bactéries (filtrat polyvalent) + huile de foie de morue 125 mg + sulfanilamide 200 mg/1 g “ Topical antibiotics in ophtalmology / ORL • Bacitracine • Chloramphénicol • Fusidic acid • Gentamicin • Gramicidin* • Quinolones: o-,nor-, cipro-, lome- floxacin* • Neomycin • Polymyxin B • Rifamycin* • Sulfamides • Tétracyclines • Trimethoprim* • Tobramycin* • Tyrothricine* Topical antibiotics: efficacy • Impetigo: mupirocin & fusidic acid*: + ** • Acne: + ~ benzoyl peroxyde • Chronic suppurative otitis media*: + ** • Acute bacterial conjunctivitis*: + * (Cochrane review) ** better than antiseptics Topical antibiotics: resistance • Propionibacterium spp: resistance to erythromycin: – mutation in the genes encoding 23S ribosomal RNA (3 phenotypes) resistance to tetracycline: – Mutation of the gene encoding 16S ribosomal RNA Propionibacteria Distribution and differentiation of human commensal propionibacterium P. acnes P. avidum P. granulosum P. propionicum distribution Skin +++ +++ +++ - Eye + - - +++ Mouth ++ - + +++ Gut +++ - - - differentiation Esculin - + - - Catalase +
    [Show full text]
  • The Prevalence of Genotypes That Determine Resistance to Macrolides
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 111(3): 155-160, March 2016 155 The prevalence of genotypes that determine resistance to macrolides, lincosamides, and streptogramins B compared with spiramycin susceptibility among erythromycin-resistant Staphylococcus epidermidis Marek Juda/+, Beata Chudzik-Rzad, Anna Malm Medical University of Lublin, Department of Pharmaceutical Microbiology, Lublin, Poland Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, can be regarded as potential reser- voirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus. The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following differ- ent types of MLSB resistance: ermA, ermB, ermC, msrA, mphC, and l i n A /A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistant S. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination was ermC, mphC, l i n A /A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S.
    [Show full text]
  • Third ESVAC Report
    Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency.
    [Show full text]
  • Macrolides and Associated Antibiotics Based on Similar Mechanism Of
    Gaillard et al. Malar J (2016) 15:85 DOI 10.1186/s12936-016-1114-z Malaria Journal REVIEW Open Access Macrolides and associated antibiotics based on similar mechanism of action like lincosamides in malaria Tiphaine Gaillard1,2,3, Jérôme Dormoi1,2,4, Marylin Madamet2,5,6 and Bruno Pradines1,2,4,6* Abstract Malaria, a parasite vector-borne disease, is one of the biggest health threats in tropical regions, despite the availability of malaria chemoprophylaxis. The emergence and rapid extension of Plasmodium falciparum resistance to various anti-malarial drugs has gradually limited the potential malaria therapeutics available to clinicians. In this context, mac- rolides and associated antibiotics based on similar mechanism of action like lincosamides constitute an interesting alternative in the treatment of malaria. These molecules, whose action spectrum is similar to that of tetracyclines, are typically administered to children and pregnant women. Recent studies have examined the effects of azithromycin and the lincosamide clindamycin, on isolates from different continents. Azithromycin and clindamycin are effective and well tolerated in the treatment of uncomplicated malaria in combination with quinine. This literature review assesses the roles of macrolides and lincosamides in the prophylaxis and treatment of malaria. Keywords: Antibiotics, Antimalarial drug, Malaria, Plasmodium falciparum, Macrolides, Lincosamides, Treatment, Resistance Background with 14-20 membered macrolactone ring. Another class Malaria, a parasite vector-borne disease, is one of the of antibiotics, licosamides whose chemical structure dif- largest health threats in tropical regions, despite the fers from the macrolides, are associated with the mac- availability of malaria chemoprophylaxis and the use of rolides based on similar mechanism of action.
    [Show full text]
  • Intracellular Penetration and Effects of Antibiotics On
    antibiotics Review Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review Suzanne Bongers 1 , Pien Hellebrekers 1,2 , Luke P.H. Leenen 1, Leo Koenderman 2,3 and Falco Hietbrink 1,* 1 Department of Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] (S.B.); [email protected] (P.H.); [email protected] (L.P.H.L.) 2 Laboratory of Translational Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; [email protected] 3 Department of Pulmonology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands * Correspondence: [email protected] Received: 6 April 2019; Accepted: 2 May 2019; Published: 4 May 2019 Abstract: Neutrophils are important assets in defense against invading bacteria like staphylococci. However, (dysfunctioning) neutrophils can also serve as reservoir for pathogens that are able to survive inside the cellular environment. Staphylococcus aureus is a notorious facultative intracellular pathogen. Most vulnerable for neutrophil dysfunction and intracellular infection are immune-deficient patients or, as has recently been described, severely injured patients. These dysfunctional neutrophils can become hide-out spots or “Trojan horses” for S. aureus. This location offers protection to bacteria from most antibiotics and allows transportation of bacteria throughout the body inside moving neutrophils. When neutrophils die, these bacteria are released at different locations. In this review, we therefore focus on the capacity of several groups of antibiotics to enter human neutrophils, kill intracellular S. aureus and affect neutrophil function. We provide an overview of intracellular capacity of available antibiotics to aid in clinical decision making.
    [Show full text]
  • Emergence of Cfr-Mediated Linezolid Resistance in Staphylococcus Aureus Isolated from Pig Carcasses
    antibiotics Communication Emergence of cfr-Mediated Linezolid Resistance in Staphylococcus aureus Isolated from Pig Carcasses Hee Young Kang, Dong Chan Moon , Abraham Fikru Mechesso, Ji-Hyun Choi, Su-Jeong Kim, Hyun-Ju Song, Mi Hyun Kim, Soon-Seek Yoon and Suk-Kyung Lim * Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; [email protected] (H.Y.K.); [email protected] (D.C.M.); [email protected] (A.F.M.); [email protected] (J.-H.C.); [email protected] (S.-J.K.); [email protected] (H.-J.S.); [email protected] (M.H.K.); [email protected] (S.-S.Y.) * Correspondence: [email protected]; Tel.: +82-54-912-0738 Received: 5 October 2020; Accepted: 30 October 2020; Published: 2 November 2020 Abstract: Altogether, 2547 Staphylococcus aureus isolated from cattle (n = 382), pig (n = 1077), and chicken carcasses (n = 1088) during 2010–2017 were investigated for linezolid resistance and were further characterized using molecular methods. We identified linezolid resistance in only 2.3% of pig carcass isolates. The linezolid-resistant (LR) isolates presented resistance to multiple antimicrobials, including chloramphenicol, clindamycin, and tiamulin. Molecular investigation exhibited no mutations in the 23S ribosomal RNA. Nevertheless, we found mutations in ribosomal proteins rplC (G121A) and rplD (C353T) in one and seven LR strains, respectively. All the LR isolates carried the multi-resistance gene cfr, and six of them co-carried the mecA gene. Additionally, all the LR isolates co-carried the phenicol exporter gene, fexA, and presented a high level of chloramphenicol resistance. LR S.
    [Show full text]
  • Reflection Paper on the Use of Macrolides, Lincosamides And
    14 November 2011 EMA/CVMP/SAGAM/741087/2009 Committee for Medicinal Products for Veterinary Use (CVMP) Reflection paper on the use of macrolides, lincosamides and streptogramins (MLS) in food-producing animals in the European Union: development of resistance and impact on human and animal health Draft agreed by Scientific Advisory Group on Antimicrobials (SAGAM) 2-3 June 2010 Adoption by CVMP for release for consultation 10 November 2010 End of consultation (for comments) 28 February 2011 Agreed by Scientific Advisory Group on Antimicrobials (SAGAM) 22 September 2011 Adoption by CVMP 12 October 2011 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7418 8416 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2011. Reproduction is authorised provided the source is acknowledged. Reflection paper on the use of macrolides, lincosamides and streptogramins (MLS) in food-producing animals in the European Union: development of resistance and impact on human and animal health CVMP recommendations for action Macrolides and lincosamides are used for treatment of diseases that are common in food producing animals including medication of large groups of animals. They are critically important for animal health and therefore it is highly important that they are used prudently to contain resistance against major animal pathogens. In addition, MLS are listed by WHO (AGISAR, 2009) as critically important for the treatment of certain zoonotic infections in humans and risk mitigation measures are needed to reduce the risk for spread of resistance between animals and humans.
    [Show full text]
  • Protein Synthesis Inhibitors Lecture Outline
    Protein Synthesis Inhibitors • Macrolides - Lincosamides • Aminoglycosides • Tetracyclines • Chloramphenicol • Oxazolidinones • Streptogramins Lecture Outline • Description of protein synthesis - translation • Antibiotics – Structure - function - classification – Mechanism(s) of action – Mechanism(s) of resistance – Spectrum of activity/Indications for use – Pharmacology – Toxicity • Clinical examples 1 Overview of Translation (1) Initiation: • 30S binds RBS of mRNA • AA binds tRNA using aminoacyl-tRNA synthetase • IF2 and fmet-tRNA binds 30S at P site • 50S binds complex 70S resulilting in th e f ormati on of the initiation complex Overview of Translation (2) Initiation – tRNA + AA binds translation elongation factor – Enters ribosome and attaches at the A site 2 Overview of Translation (3) Amino Acid Transfer – Petidyltransferase on 50S ribosome attaches the next AA to the polypeptide – Met added to Leu at A site Overview of Translation (4) Elongation tRNA moved to P site by EF-G creating room at A site for next tRNA Translation termination Occurs at nonsense codon sites e.g. UAA Release factors Ribosome dissociates 3 Mechanisms of Action - Protein Synthesis Inhibitors Macrolides • Broad spectrum antibiotics • Original agent: erythromycin • Azalides: azithromycin and clarithromycin – seltdtiilected antimicrobi bildhal and pharmacoki kitinetic advantages 4 Large 14 member macrolactone ring with one or more deoxy sugars attached. Inhibits formation of 50S ribosome blocking trans- peptidation or translocation. Large 14 member lactone ring
    [Show full text]
  • Guidelines for Atcvet Classification 2012
    Guidelines for ATCvet classification 2012 ISSN 1020-9891 ISBN 978-82-8082-479-0 Suggested citation: WHO Collaborating Centre for Drug Statistics Methodology, Guidelines for ATCvet classification 2012. Oslo, 2012. © Copyright WHO Collaborating Centre for Drug Statistics Methodology, Oslo, Norway. Use of all or parts of the material requires reference to the WHO Collaborating Centre for Drug Statistics Methodology. Copying and distribution for commercial purposes is not allowed. Changing or manipulating the material is not allowed. Guidelines for ATCvet classification 14th edition WHO Collaborating Centre for Drug Statistics Methodology Norwegian Institute of Public Health P.O.Box 4404 Nydalen N-0403 Oslo Norway Telephone: +47 21078160 Telefax: +47 21078146 E-mail: [email protected] Website: www.whocc.no Previous editions: 1992: Guidelines on ATCvet classification, 1st edition1) 1995: Guidelines on ATCvet classification, 2nd edition1) 1999: Guidelines on ATCvet classification, 3rd edition1) 2002: Guidelines for ATCvet classification, 4th edition2) 2003: Guidelines for ATCvet classification, 5th edition2) 2004: Guidelines for ATCvet classification, 6th edition2) 2005: Guidelines for ATCvet classification, 7th edition2) 2006: Guidelines for ATCvet classification, 8th edition2) 2007: Guidelines for ATCvet classification, 9th edition2) 2008: Guidelines for ATCvet classification, 10th edition2) 2009: Guidelines for ATCvet classification, 11th edition2) 2010: Guidelines for ATCvet classification, 12th edition2) 2011: Guidelines for ATCvet classification, 13th edition2) 1) Published by the Nordic Council on Medicines 2) Published by the WHO Collaborating Centre for Drug Statistics Methodology Preface The Anatomical Therapeutic Chemical classification system for veterinary medicinal products, ATCvet, has been developed by the Nordic Council on Medicines (NLN) in collaboration with the NLN’s ATCvet working group, consisting of experts from the Nordic countries.
    [Show full text]
  • Macrolides and Lincosamide-Resistance In
    Macrolides and lincosamide- resistance in Streptococcus sp Waleria© by Hryniewicz author National Medicines Institute, Poland ESCMID Online Lecture Library Macrolides, lincosamides, and streptogramins (MLS) are classified in the same group of antibiotics although they are chemically distinct © by author ESCMID Online Lecture Library Mechanism of action of Macrolides Lincosamides, Streptogramines, Ketolides (MLSK) antibiotics • Inhibition of protein synthesis by binding to the 50S ribosomal subunit and blocking peptide bond formation and/or© by authortranslation ESCMID Online Lecture Library Binding site of MLS antibiotics in ribosome (inhibitionof protein synthesis) © by author ESCMID Online Lecture Library Macrolides – classification MACROLIDES 14 membered ring 16 membered ring NATURAL ERYTHROMYCIN A derivatives SEMISYNTHETIC DERIVATIVES NATURAL SEMISYNTHETIC Erythromycin A (1952) DERIVATIVES Saccharopolyspora erythraea Spiramycin Miokamycin S. ambofaciens Substituent alterations Josamycin Sugar alterations S. narbonensis Midecamycin KETOLIDES S. mycarofaciens Roxitromycin © by author Clarithromycin Telithromycin Dirithromycin Aglycone A alterations ESCMID Online Lecture Library 15 MEMBERED RING AZALIDES Azithromycin Spectrum of activity of macrolides in vitro Active against: Lack or limited activity against: • Streptococcus group A, B, C, G • S. pneumoniae • Gram-negative rods of Enterobacteriaceae • Staphylococcus sp. (variable depending on species and drug) • C. diphtheriae (including toxinogenic strains) • Gram-negative non-fermenting
    [Show full text]