The Role of Native Diversity and Successional Processes on Communityinvasibility in Riparian Primary Forest

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Native Diversity and Successional Processes on Communityinvasibility in Riparian Primary Forest The Role of Native Diversity and Successional Processes on Communityinvasibility in Riparian Primary Forest by Sean Satterlee Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Biology Program YOUNGSTOWN STATE UNIVERSITY December, 2012 ii The role of native diversity and successional processes on community invasibility riparian primary forest Sean Satterlee I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Sean Satterlee, Student Date Approvals: Dr. Thomas Diggins, Thesis Advisor Date Dr. Ian Renne, Committee Member Date Prof Carl Chuey, Committee Member Date Peter J. Kasvinsky, Dean of School of Graduate Studies and Research Date iii ABSTRACT Numerous investigations have elucidated patterns and processes which govern community invasibility but relatively few have examined invasibility in a successional context. Explored here is the potential for biotic resistance to reduce invasibility of riparian successional forests at the landscape scale (~100ha) and address the following: 1) Does exotic species richness and percent cover change across successional time? 2) What is the relationship between native and non-native diversity and does that relationship change through succession? Vegetation surveys were conducted to quantify plant species richness on four raised terraces (understory reinitiation to multi-age old growth), six lower terraces (stem exclusion to understory reinitiation), and seven active channel margins, mid-channel islands, or abandoned channels (stand initiation). Exotic species richness and cover declined throughout succession and no exotic species were found on landforms greater than 136 years of age. However, although native richness remained constant throughout succession, native assemblages changed markedly. Thus landform diversity patterns in Zoar Valley likely reflect contemporary and/or past states of high community invasibility, which suggests that invasibility either does not change throughout succession, or that the regional species pool of native species adapted to particular successional stages is similar in size. This finding suggests that minimally invaded, closed canopy forests is due to a lack of exotic species in the regional species pools that are well adapted for establishing in forest understories and opposes the view that these communities are intrinsically less invasible. Future studies of community invasibility, in forests and other systems, may be better served by examining the traits and life-history strategies to which a community is susceptible to being invaded by. iv ACKNOWLEDGEMENTS I would like to thank Dr. Tom Diggins for being the best thesis advisor that I could hope for. Our many trips to Zoar Valley inspired me to become an ecologist and from our interactions over the past seven years I learned what it was to be a great one. His enthusiasm for science and mentoring, patience, and tirelessness allowed this project to be completed and was instrumental in my personal and professional development. I would also like to thank Dr. Ian Renne for going above and beyond in service as my thesis advisor. His intellectual input was instrumental to making this project the best that it could be. More importantly, the many hours we spent discussing ecology was among the most important drivers of my intellectual development. I am grateful for Professor Carl Chuey serving as a thesis advisor and for allowing me to draw on his considerable botanical knowledge and for his valuable editorial suggestions Finally I would like to thank my family who has supported me in every way possible throughout this process. I am particularly grateful for my parents who taught me the value of hard work and for always making me feel like I could accomplish anything. v Table of contents Abstract…………………………………………………………………………………...iii Acknowledgements…………………………………………………………………….....iv Table of Contents………………………………………………………………………….v List of Figures………………………………………………………………………….….v List of Tables……………………………………………………………………………..vi Introduction………………………………………………………………………………..1 Methods…………………………………………………………………………………..15 Results……………………………………………………………………………………18 Discussion………………………………………………………………………………..24 Works Cited……………………………………………………………………………...29 List of Figures Figure 1. Study site …………………………………………………………………….. 5 Figure 2. Stand initiation…………………………………………………………… 8-10 Figure 3. Stem exclusion……………………………………………………………… 11 Figure 4. Understory reinitiation……………………………………………............12-13 Figure 5. Multi-age old-growth……………………………………………………….. 14 Figure 6. Regression of total richness, exotic richness, and native richness vs. age…. 19 Figure 7. Regression of proportion exotic vs. age……………………………………. 20 Figure 8. Regression of native richness vs. exotic richness…………………………... 21 Figure 9. Cover vs. age (Honeysuckle and shade tolerant exotics)…………………... 22 Figure 10. Total richness vs. Area……………………………………………………... 23 vi List of Tables Table 1. Landform, area, overstory stand age, native richness, exotic richness, total richness, and proportion exotic…………………………………………………………. 17 1 Introduction The establishment and spread of invasive species are of great concern as they present ecological (Vitousek et al. 1997) and economic (Pimentel et al. 2005) problems, but can also serve as natural experiments for addressing fundamental questions in ecology (Sax et al. 2007). Numerous studies examine how recipient community traits affect invasibility and primarily focus on those that resist invasion. Elton’s (1958) niche-based hypothesis proposes species- and functionally- rich communities are less susceptible to invasion because high diversity assemblages limit establishment opportunities for invaders by reducing access to resources. Subsequent investigations have emphasized the importance of temporal resource availability, disturbance, and competitive interactions in determining community invasibility (Davis et al. 2000, Davis and Pelsor 2001, Tillman 2004, Renne et al. 2006). The view that species richness increases community invasion resistance has been generally supported by small scale experimental studies (i.e., plots ≤ 10m2; Fridley et al. 2007) and species richness is positively correlated with low resource availability (Tillman 1997, Levine 2000, 2001, Naeem et al. 2000, and Kennedy et al. 2002). However, despite experimental and theoretical support for the Eltonian view, observational studies at larger scales (plots > 10m2) have generally found opposing results (Fridley et al. 2007). Stohlgren et al. (1998, 1999, 2003) argue that plot-scale experiments are not supported by observations at landscape scale because their studies, the strong effects of 2 competition observed in small plot studies become dominated by landscape scale processes (also see Levine 2000, Brown and Peet 2003). At larger spatial scales, community composition is more likely to be driven by immigration processes such as high propagule pressure or low-intensity disturbance (Stohlgren et al. 1999, Levine 2000, Brown and Peet 2003). Other hypotheses suggest that extrinsic, covarying factors across large spatial scales promote both native and non-native species diversity (Levine and D’Antonio 1999, Shea and Chesson 2002) and that resource heterogeneity increases with scale (Davies et al. 2005). Within sites (i.e. at small scales), densities of individuals and their competitive interactions limit diversity of both native and non-native species (Levine 2000). In contrast, among sites (i.e. at large scales) resource heterogeneity contributes to higher species richness for both native and non-native species (Shea and Chesson 2002, Davies et al. 2005). Stohlgren et al. (2003) suggests that environmental factors that promote native species diversity also contribute to exotic species diversity. The positive correlation between native and nonnative species richness may also emerge with the presence of “weak invaders” (nonnative species that are present but do not dominate habitats), while a negative correlation exists in environments with high native species richness and presence of dominant nonnative species (Ortega and Pearson 2005). While the diversity of native and non-native assemblages is often thought to reflect exogenous influences (thus driving a positive relationship between native and non- native diversity), relatively few studies have examined the relationship in communities where native assemblages are largely driven by endogenous (biotic) processes, particularly strongly directional primary successional communities. Davis et al. (2001) suggests that there has been a historical disassociation between invasion ecology and 3 successional ecology, and that insights into the fundamental drivers of community invasibility may be gained from merging these approaches. Interestingly, strongly directional successional communities are minimally disturbed, but instead are structured by biotic interactions (factors which promote Eltonian resistance), however the community may be inherently invasible by native non-residents through time. Understanding the drivers of invasibility in these communities and identifying potential differences in the susceptibility of the community to establishment by non-native residents may help to address the fundamental drivers of the establishment
Recommended publications
  • Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L
    United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Research Station Ecosystems General Technical Report RMRS-GTR-42- volume 6 Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L. 2008. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 355 p. Abstract—This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradi- cation or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between wildland fire and nonnative invasive plants, identify the nonnative invasive species currently of greatest concern in major bioregions of the United States, and describe emerging fire-invasive issues in each bioregion and throughout the nation. This volume can help increase understanding of plant invasions and fire and can be used in fire management and ecosystem-based management planning. The volume’s first part summarizes fundamental concepts regarding fire effects on invasions by nonnative plants, effects of plant invasions on fuels and fire regimes, and use of fire to control plant invasions. The second part identifies the nonnative invasive species of greatest concern and synthesizes information on the three topics covered in part one for nonnative inva- sives in seven major bioregions of the United States: Northeast, Southeast, Central, Interior West, Southwest Coastal, Northwest Coastal (including Alaska), and Hawaiian Islands.
    [Show full text]
  • Land Use, Landscapes, and Biological Invasions
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 1-2012 Land Use, Landscapes, and Biological Invasions Karie L. Decker USGS Nebraska Cooperative Fish and Wildlife Research Unit, [email protected] Craig R. Allen USGS Nebraska Cooperative Fish and Wildlife Research Unit, University of Nebraska, [email protected] Leonardo Acosta University of Nebraska-Lincoln Michelle L. Hellman University of Nebraska-Lincoln Christopher F. Jorgensen University of Nebraska-Lincoln See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Other Environmental Sciences Commons Decker, Karie L.; Allen, Craig R.; Acosta, Leonardo; Hellman, Michelle L.; Jorgensen, Christopher F.; Stutzman, Ryan J.; Unstad, Kody M.; Williams, Amy; and Yans, Matthew, "Land Use, Landscapes, and Biological Invasions" (2012). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 99. https://digitalcommons.unl.edu/ncfwrustaff/99 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Karie L. Decker, Craig R. Allen, Leonardo Acosta, Michelle L. Hellman, Christopher F. Jorgensen, Ryan J. Stutzman, Kody M. Unstad, Amy Williams, and Matthew Yans This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ ncfwrustaff/99 Invasive Plant Science and Management 2012 5:108–116 Land Use, Landscapes, and Biological Invasions Karie L.
    [Show full text]
  • Biogeographically Distinct Controls on C3 and C4 Grass Distributions: Merging
    Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and physiological ecology Griffith, D. M., Anderson, T. M., Osborne, C. P., Strömberg, C. A. E., Forrestel, E. J., & Still, C. J. (2015). Biogeographically distinct controls on C₃ and C₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 24(3), 304–313. doi:10.1111/geb.12265 10.1111/geb.12265 John Wiley & Sons Ltd. Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse 1 1 Article Title: Biogeographically distinct controls on C3 and C4 grass distributions: merging 2 community and physiological ecology 3 Authors: 4 Daniel M. Griffith; Department of Biology, Wake Forest University, Winston-Salem, NC, 5 27109, USA; [email protected] 6 T. Michael Anderson; Department of Biology, Wake Forest University, Winston-Salem, NC, 7 27109, USA; [email protected] 8 Colin P. Osborne; Department of Animal and Plant Sciences, University of Sheffield, Western 9 Bank, Sheffield S10 2TN, UK; [email protected] 10 Caroline A.E. Strömberg; Department of Biology & Burke Museum of Natural History and 11 Culture, University of Washington, WA, 98195, USA; [email protected] 12 Elisabeth J. Forrestel; Department of Ecology and Evolution, Yale University, New Haven, 13 CT, 06520, USA; [email protected] 14 Christopher J. Still; Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 15 97331, USA; [email protected] 16 Short running title (45): Climate disequilibrium in C4 grass distributions 17 Keywords: Biogeography, C3, C4, crossover temperature, tree cover, invasive, fire 18 Type: Research Paper 19 Number of words in the abstract including key words (10): 300 of 300 20 Main text, including Biosketch (32): 5632 of 5000 21 Number of references: 50 of 50 22 Number of figures: 4 of 6 23 Tables: 1 2 24 Corresponding author: 25 Daniel M.
    [Show full text]
  • Effects of Elevated Co⇇ on a Forest Understory Community Dominated
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2003 Effects of elevated CO₂ on a forest understory community dominated by two invasive plants Russell Travis Belote Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Belote, Russell Travis, "Effects of elevated CO₂ on a forest understory community dominated by two invasive plants. " Master's Thesis, University of Tennessee, 2003. https://trace.tennessee.edu/utk_gradthes/5192 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Russell Travis Belote entitled "Effects of elevated CO₂ on a forest understory community dominated by two invasive plants." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. Jake Weltzin, Major Professor We have read this thesis and recommend its acceptance: Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Russell Travis Belote entitled "Effects of elevated CO2 on a forest understory community dominated by two invasive plants." I have examined the final paper copy of this thesis for form and content and recommend that it be accepted in partialfulfillment of the requirements for the degree o aster of Science, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • The Diversity-Invasibility Hypothesis - Models, Field Studies and the Importance of Scale
    The diversity-invasibility hypothesis - models, field studies and the importance of scale Andrea Kölzsch Theoretical Ecology, AGNLD Outline 1) The diversity-inasibility hypothesis – Elton 2) A LV model assessing invasibility 3) Spatial pattern studies 4) The influence of extrinsic factors in an experimental study 5) An extended model accounting for scale and resources 6) Conclusions Community Invasibility ● One component of community stability is “resistance” to abiotic and biotic disturbances. ● Invasion success = propagule pressure + invasiveness + invasibility ● Invasibility = ease at which invasive species from low numbers become established members of a community ● Is there influence of community diversity on invasibility? What kind of influence? Elton 1958 “the balance of relatively simple communities of plants and animals is more easily upset than that of richer ones; that is more subject to destructive oscillations in populations ... and more vulnerable to invasions” “oceanic islands and crop monocultures are simple ecosystems that show high vulnerability to invasions ... and frequent outbreaks of population subsequently” The diversity-invasibility hypothesis High native diversity decreases community invasibility The diversity-invasibility hypothesis SUPPORT ● classical niche theory (MacArthur): – strongly structured (interconnected) communities – competition for resources – limited niche space ● “sampling effect” for strong competitor in community The diversity-invasibility hypothesis CAUTION ● indirect facilitation ● loosely
    [Show full text]
  • Comparison of the Carbon and Water Fluxes of Some Aggressive Invasive Species in Baltic Grassland and Shrub Habitats
    atmosphere Article Comparison of the Carbon and Water Fluxes of Some Aggressive Invasive Species in Baltic Grassland and Shrub Habitats Ligita Baležentiene˙ * , Vitas Marozas and Ovidijus Mikša Faculty of Forestry and Ecology, Institute of Environment and Ecology, Vytautas Magnus University, LT-43357 Kaunas, Lithuania; [email protected] (V.M.); [email protected] (O.M.) * Correspondence: [email protected]; Tel.: +370-68257665 Abstract: Biological systems are shaped by environmental pressures. These processes are imple- mented through the organisms exploiting their adaptation abilities and, thus, improving their spreading. Photosynthesis, transpiration, and water use efficiency are major physiological parame- ters that vary among organisms and respond to abiotic conditions. Invasive species exhibited special physiological performance in the invaded habitat. Photosynthesis and transpiration intensity of Fallopia japonica, Heracleum sosnowskyi, and Rumex confertus of northern and trans-Asian origin were performed in temperate extensive seminatural grassland or natural forest ecotones. The observed photosynthetically active radiation (PAR) ranged from 36.0 to 1083.7 µmol m−2 s−1 throughout the growing season depending on the meteorological conditions and habitat type. F. japonica and H. sosnowskyi settled in naturally formed shadowy shrub habitats characterized by the lowest mean PAR rates of 58.3 and 124.7 µmol m−2 s−1, respectively. R. confertus located in open seminatural Citation: Baležentiene,˙ L.; Marozas, grassland habitats where the mean PAR was 529.35 µmol m−2 s−1. Correlating with the available V.; Mikša, O. Comparison of the sunlight radiation (r = 0.9), the highest average photo assimilation rate was observed for R. confertus Carbon and Water Fluxes of Some p F.
    [Show full text]
  • A Mathematical Perspective of Community Ecology
    A mathematical perspective of community ecology Priyanga Amarasekare Department of Ecology and Evolutionary Biology University of California Los Angeles Mechanisms that maintain diversity Diversity: Species coexistence Coexistence: Non-linear * Environmental dynamics heterogeneity (density-dependence) (temporal, spatial) Coexistence mechanisms 1. Non-linearity: negative feedback (negative density-dependence) 2. Heterogeneity (Jensenʼs inequality) Jensenʼs Inequality Sources of non-linearity and heterogeneity Non-linearity: resources, natural enemies (Species interactions) Heterogeneity: spatial/temporal variation in biotic/abiotic environment Sources of non-linearity Species interactions: Exploitative competition (-/-) Apparent competition (-/-) Mutualism (+/+) Consumer-resource (+/-) Exploitative competition Indirect interactions between individuals (of the same or different species) as the result of acquiring a resource that is in limiting supply. Each individual affects others solely by reducing abundance of shared resource. Exploitative competition Consumer 1 Consumer 2 Resource Exploitative competition Coexistence: Mutual invasibility: each species must be able to increase when rare Stability: coexistence equilibrium stable to perturbations Exploitative competition Consumer 1 Invasion criteria: Consumer 2 R* rule: consumer species that drives resource abundance to the lowest level will exclude others Exploitative competition In a constant environment, R* rule operates and the superior competitor excludes inferior competitors Coexistence
    [Show full text]
  • Fluctuating Resources in Plant Communities: a General Theory of Invasibility
    Journal of FORUM Ecology 2000, 88, 528±534 Fluctuating resources in plant communities: a general theory of invasibility MARK A. DAVIS, J. PHILIP GRIME* and KEN THOMPSON* Department of Biology, Macalester College, Saint Paul, Minnesota 55105, USA; and *Unit of Comparative Plant Ecology, Department of Animal and Plant Sciences, The University, Sheeld S10 2TN, UK Summary 1 The invasion of habitats by non-native plant and animal species is a global phe- nomenon with potentially grave consequences for ecological, economic, and social systems. Unfortunately, to date, the study of invasions has been primarily anecdo- tal and resistant to generalization. 2 Here, we use insights from experiments and from long-term monitoring studies of vegetation to propose a new theory in which ¯uctuation in resource availability is identi®ed as the key factor controlling invasibility, the susceptibility of an envir- onment to invasion by non-resident species. The theory is mechanistic and quanti- tative in nature leading to a variety of testable predictions. 3 We conclude that the elusive nature of the invasion process arises from the fact that it depends upon conditions of resource enrichment or release that have a vari- ety of causes but which occur only intermittently and, to result in invasion, must coincide with availability of invading propagules. Key-words: plant invasions, invasibility, resource availability, ¯uctuating resources, disturbance, exotic species Journal of Ecology (2000) 88, 528±534 Introduction region's climate, the environment's disturbance regime, and the competitive abilities of the resident The invasion of habitats by non-native species is a species (Lonsdale 1999). Invasibility may also be global phenomenon with serious consequences for aected by the presence (or absence) of herbivores ecological, economic, and social systems (Vitousek and pathogens (D'Antonio 1993; Lonsdale 1999), et al.
    [Show full text]
  • Weak Vs. Strong Invaders of Natural Plant Communities: Assessing Invasibility and Impact
    Ecological Applications, 15(2), 2005, pp. 651±661 q 2005 by the Ecological Society of America WEAK VS. STRONG INVADERS OF NATURAL PLANT COMMUNITIES: ASSESSING INVASIBILITY AND IMPACT YVETTE K. ORTEGA1 AND DEAN E. PEARSON USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, P.O. Box 8089, Missoula, Montana 59807 USA Abstract. In response to the profound threat of exotic species to natural systems, much attention has been focused on the biotic resistance hypothesis, which predicts that diverse communities should better resist invasions. While studies of natural communities generally refute this hypothesis, reporting positive relationships between native species diversity and invasibility, some local-scale studies have instead obtained negative relationships. Most treatments of the topic have failed to recognize that all exotic invaders do not behave alike: while ``weak'' invaders become minor components of communities, ``strong'' invaders become community dominants at the expense of native species. At the same time, the speci®c impacts of strong invaders on communities are poorly documented yet critical to understanding implications of diversity loss. With these shortfalls in mind, we examined local-scale relationships between native and exotic plant taxa in bunchgrass communities of western Montana, USA. We found that measures of native species diversity and inva- sibility were positively correlated in communities with low levels of invasion where both weak and strong invaders occurred at low densities, but negatively correlated in communities with high levels of invasion where the strong invader Centaurea maculosa dominated. Furthermore, at both low and high levels of invasion, weak invaders tended to vary pos- itively with native species richness while strong invaders varied negatively.
    [Show full text]
  • Belowground Meristem Density of Warm
    BELOWGROUND MERISTEM DENSITY OF WARM- SEASON GRASSES AS REGULATORS OF GRASSLAND INVASIBILITY By RAYMOND ROBERT WEST Bachelor of Science in Biology The University of Tulsa Tulsa, OK 1975 Master of Science in Soil and Water Chemistry Oklahoma State University Stillwater, OK 1992 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2013 BELOWGROUND MERISTEM DENSITY OF WARM- SEASON GRASSES AS REGULATORS OF GRASSLAND INVASIBILITY Dissertation Approved: Gail W. T. Wilson Dissertation Adviser Karen R. Hickman Kristen A. Baum Terry G. Bidwell ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor and mentor, Gail W.T. Wilson, for the guidance and support she has given towards accomplishing the goals of this dissertation, and for her role in my development as a grassland ecologist. Gail has provided invaluable assistance, lessons, and opportunities that will permeate my future endeavors in rangeland ecology. I am most grateful for the opportunity to work with Karen Hickman, Kristen Baum, and Terry Bidwell, the members of my PhD committee. I am appreciative of their efforts throughout this project to assure the quality and accuracy of my research. A special thanks to David Hartnett at Kansas State University for his suggestions, as well as John Briggs at KSU for allowing me to conduct my research at the Konza Prairie Biological Research Station. A genuine thanks to Chris Stansberry and Adam Gourley at the OSU Range Research Station for all their help. Deep appreciation is extended to all project team members and students who have helped me in my field work.
    [Show full text]
  • Community Invasibility Spatial Heterogeneity, Spatial Scale, and Productivity
    11 Community Invasibility Spatial Heterogeneity, Spatial Scale, and Productivity Kendi F. Davies, University of Colorado, Boulder INTRODUCTION: WHY ARE SOME COMMUNITIES MORE INVasiBLE THAN OTHERS? Invasive species are one of the most significant threats to native species diversity, and identifying the factors that make places more or less invasible has been one of the most important issues in the study of invasions (Wilcove et al., 1998; Pimentel et al., 2000). From a theoretical perspective, the reasons some communities are more invasible than others is a question that continues to intrigue ecologists (Levine et al., 2004; Davies et al., 2005; Fridley et al., 2007; Stohlgren et al., 2008; Cadotte et al., 2009) because it underlies fundamental concepts in community ecology: spe- cies coexistence and assembly (Chesson, 2000; Tilman, 2004). Therefore, its explo- ration offers insights into why communities are structured as they are. Serpentine systems have provided significant insight into the reasons some communities are more invasible than others because the environment within these systems is often extreme. Spatial heterogeneity, spatial scale, and productivity have all proven to be critical elements in understanding the invasibility of communities. Serpentine systems have allowed researchers to examine these elements in greater depth. First, serpentine systems are very spatially heterogeneous in soil chemistry, texture, rockiness, and toxicity. Importantly, this spatial heterogeneity can exist at very small scales, making it easier to examine the effects of it on communities. Second, because spatial heterogeneity can be at both small scales and large scales, Serpentine: The Evolution and Ecology of a Model System, edited by Susan Harrison and Nishanta Rajakaruna.
    [Show full text]
  • Inclusion of Facilitation Into Ecological Theory
    Opinion TRENDS in Ecology and Evolution Vol.18 No.3 March 2003 119 Inclusion of facilitation into ecological theory John F. Bruno1, John J. Stachowicz2 and Mark D. Bertness3 1Department of Marine Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA 2Section of Evolution and Ecology, The University of California at Davis, Davis, CA 95616, USA 3Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA Investigations of the role of competition, predation and during the development of modern ecological theory [1,2]. abiotic stress in shaping natural communities were a As a result, current theory considers only the negative staple for previous generations of ecologists and are interactions and abiotic factors that deplete populations still popular themes. However, more recent experimen- and remove species, and largely ignores the credit column tal research has uncovered the largely unanticipated, of the ecological ledger. Our purpose here is to begin to yet striking influence of facilitation (i.e. positive species amend this oversight. We consider how inclusion of facili- interactions) on the organization of terrestrial and tation into the theory, models and paradigms of population aquatic communities. Modern ecological concepts and and community ecology can alter many basic predictions, theories were well established a decade before the and argue that this is crucial to our understanding and current renaissance of interest in facilitation began, and conservation of natural communities. thus do not consider the importance of a wide variety of facilitative interactions. It is time to bring ecological Facilitation and the niche theory up to date by including facilitation.
    [Show full text]