186.Full.Pdf
186 CHEMISTR Y: BA NCROFT AND R UTZLER. JR. PROC. N. A. S. I This work is part of the programme now being carried out at Cornell University under a grant from the Heckscher Foundation for the Advancement of Research estab- lished by August Heckscher at Cornell University. 2 Holleman, Rec. trav. chim., 24, 140 (1905). 3 Holleman, Ibid., 23, 225 (1904). 4Drogin and Rosanoff, J. Am. Chem. Soc., 38, 711 (1916). 5 Kraay, Rec. trav. chim., 48, 1055 (1929). 6 De Grauw, Ibid., 48, 1061 (1929). RE VERSIBLE COAGULA TION IN LIVING TISSUE. II By WILDER D. BANCROFTr AND J. E. RUTZLER, JR.2 BAKER CHEMICAL LABORATORY, CORNELL UNIVERSITY Communicated March 3, 1931 Since relief from the addiction to drugs is one of the important problems of the civilized world, it seems wise to see what the outcome is from the application of Claude Bernard's theory of anesthesia to morphinism. Gwathmey' says: "The ganglion cell, according to Binz, is the point of attack of the anesthetic agent. In his experiments, fresh sections of the brain cortex of rabbits were placed in a one per cent solution of morphine hydrochloride, or exposed to chlorine vapors. The effect of coagulation- necrosis was produced, as is seen when protoplasmic poisons of neutral reaction are allowed to act upon large transparent infusoria. The proto- plasm is first darkened, and the movements become sluggish; later the protoplasm becomes granulated, and the movements cease. Recupera- tion may take place from the first stage by washing away the poisons [it can be seen that this is the same as the peptization of gels by washing out the coagulating agent]; but not from the last stage.
[Show full text]