Interactive Proofs for Verifying Machine Learning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reproducibility and Pseudo-Determinism in Log-Space
Reproducibility and Pseudo-determinism in Log-Space by Ofer Grossman S.B., Massachusetts Institute of Technology (2017) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 c Massachusetts Institute of Technology 2020. All rights reserved. Author...................................................................... Department of Electrical Engineering and Computer Science May 15, 2020 Certified by.................................................................. Shafi Goldwasser RSA Professor of Electrical Engineering and Computer Science Thesis Supervisor Accepted by................................................................. Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Reproducibility and Pseudo-determinism in Log-Space by Ofer Grossman Submitted to the Department of Electrical Engineering and Computer Science on May 15, 2020, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science Abstract Acuriouspropertyofrandomizedlog-spacesearchalgorithmsisthattheiroutputsareoften longer than their workspace. This leads to the question: how can we reproduce the results of a randomized log space computation without storing the output or randomness verbatim? Running the algorithm again with new -
On Uniformity Within NC
On Uniformity Within NC David A Mix Barrington Neil Immerman HowardStraubing University of Massachusetts University of Massachusetts Boston Col lege Journal of Computer and System Science Abstract In order to study circuit complexity classes within NC in a uniform setting we need a uniformity condition which is more restrictive than those in common use Twosuch conditions stricter than NC uniformity RuCo have app eared in recent research Immermans families of circuits dened by rstorder formulas ImaImb and a unifor mity corresp onding to Buss deterministic logtime reductions Bu We show that these two notions are equivalent leading to a natural notion of uniformity for lowlevel circuit complexity classes Weshow that recent results on the structure of NC Ba still hold true in this very uniform setting Finallyweinvestigate a parallel notion of uniformity still more restrictive based on the regular languages Here we givecharacterizations of sub classes of the regular languages based on their logical expressibility extending recentwork of Straubing Therien and Thomas STT A preliminary version of this work app eared as BIS Intro duction Circuit Complexity Computer scientists have long tried to classify problems dened as Bo olean predicates or functions by the size or depth of Bo olean circuits needed to solve them This eort has Former name David A Barrington Supp orted by NSF grant CCR Mailing address Dept of Computer and Information Science U of Mass Amherst MA USA Supp orted by NSF grants DCR and CCR Mailing address Dept of -
Constantinos Daskalakis
The Work of Constantinos Daskalakis Allyn Jackson How long does it take to solve a problem on a computer? This seemingly innocuous question, unanswerable in general, lies at the heart of computa- tional complexity theory. With deep roots in mathematics and logic, this area of research seeks to understand the boundary between which problems are efficiently solvable by computer and which are not. Computational complexity theory is one of the most vibrant and inven- tive branches of computer science, and Constantinos Daskalakis stands out as one of its brightest young lights. His work has transformed understand- ing about the computational complexity of a host of fundamental problems in game theory, markets, auctions, and other economic structures. A wide- ranging curiosity, technical ingenuity, and deep theoretical insight have en- abled Daskalakis to bring profound new perspectives on these problems. His first outstanding achievement grew out of his doctoral dissertation and lies at the border of game theory and computer science. Game the- ory models interactions of rational agents|these could be individual people, businesses, governments, etc.|in situations of conflict, competition, or coop- eration. A foundational concept in game theory is that of Nash equilibrium. A game reaches a Nash equilibrium if each agent adopts the best strategy possible, taking into account the strategies of the other agents, so that there is no incentive for any agent to change strategy. The concept is named after mathematician John F. Nash, who proved in 1950 that all games have Nash equilibria. This result had a profound effect on economics and earned Nash the Nobel Prize in Economic Sciences in 1994. -
Fault-Tolerant Distributed Computing in Full-Information Networks
Fault-Tolerant Distributed Computing in Full-Information Networks Shafi Goldwasser∗ Elan Pavlov Vinod Vaikuntanathan∗ CSAIL, MIT MIT CSAIL, MIT Cambridge MA, USA Cambridge MA, USA Cambridge MA, USA December 15, 2006 Abstract In this paper, we use random-selection protocols in the full-information model to solve classical problems in distributed computing. Our main results are the following: • An O(log n)-round randomized Byzantine Agreement (BA) protocol in a synchronous full-information n network tolerating t < 3+ faulty players (for any constant > 0). As such, our protocol is asymp- totically optimal in terms of fault-tolerance. • An O(1)-round randomized BA protocol in a synchronous full-information network tolerating t = n O( (log n)1.58 ) faulty players. • A compiler that converts any randomized protocol Πin designed to tolerate t fail-stop faults, where the n source of randomness of Πin is an SV-source, into a protocol Πout that tolerates min(t, 3 ) Byzantine ∗ faults. If the round-complexity of Πin is r, that of Πout is O(r log n). Central to our results is the development of a new tool, “audited protocols”. Informally “auditing” is a transformation that converts any protocol that assumes built-in broadcast channels into one that achieves a slightly weaker guarantee, without assuming broadcast channels. We regard this as a tool of independent interest, which could potentially find applications in the design of simple and modular randomized distributed algorithms. ∗Supported by NSF grants CNS-0430450 and CCF0514167. 1 1 Introduction The problem of how n players, some of who may be faulty, can make a common random selection in a set, has received much attention. -
On the NP-Completeness of the Minimum Circuit Size Problem
On the NP-Completeness of the Minimum Circuit Size Problem John M. Hitchcock∗ A. Pavany Department of Computer Science Department of Computer Science University of Wyoming Iowa State University Abstract We study the Minimum Circuit Size Problem (MCSP): given the truth-table of a Boolean function f and a number k, does there exist a Boolean circuit of size at most k computing f? This is a fundamental NP problem that is not known to be NP-complete. Previous work has studied consequences of the NP-completeness of MCSP. We extend this work and consider whether MCSP may be complete for NP under more powerful reductions. We also show that NP-completeness of MCSP allows for amplification of circuit complexity. We show the following results. • If MCSP is NP-complete via many-one reductions, the following circuit complexity amplifi- Ω(1) cation result holds: If NP\co-NP requires 2n -size circuits, then ENP requires 2Ω(n)-size circuits. • If MCSP is NP-complete under truth-table reductions, then EXP 6= NP \ SIZE(2n ) for some > 0 and EXP 6= ZPP. This result extends to polylog Turing reductions. 1 Introduction Many natural NP problems are known to be NP-complete. Ladner's theorem [14] tells us that if P is different from NP, then there are NP-intermediate problems: problems that are in NP, not in P, but also not NP-complete. The examples arising out of Ladner's theorem come from diagonalization and are not natural. A canonical candidate example of a natural NP-intermediate problem is the Graph Isomorphism (GI) problem. -
Week 1: an Overview of Circuit Complexity 1 Welcome 2
Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes). -
The Complexity Zoo
The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/. -
University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St John's Road
INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependant upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You w ill find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
The Correlation Among Software Complexity Metrics with Case Study
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970) Volume-4 Number-2 Issue-15 June-2014 The Correlation among Software Complexity Metrics with Case Study Yahya Tashtoush1, Mohammed Al-Maolegi2, Bassam Arkok3 Abstract software product attributes such as functionality, quality, complexity, efficiency, reliability or People demand for software quality is growing maintainability. For example, a higher number of increasingly, thus different scales for the software code lines will lead to greater software complexity are growing fast to handle the quality of software. and so on. The software complexity metric is one of the measurements that use some of the internal The complexity of software effects on maintenance attributes or characteristics of software to know how activities like software testability, reusability, they effect on the software quality. In this paper, we understandability and modifiability. Software cover some of more efficient software complexity complexity is defined as ―the degree to which a metrics such as Cyclomatic complexity, line of code system or component has a design or implementation and Hallstead complexity metric. This paper that is difficult to understand and verify‖ [1]. All the presents their impacts on the software quality. It factors that make program difficult to understand are also discusses and analyzes the correlation between responsible for complexity. So it is necessary to find them. It finally reveals their relation with the measurements for software to reduce the impacts of number of errors using a real dataset as a case the complexity and guarantee the quality at the same study. time as much as possible. -
More Revenue from Two Samples Via Factor Revealing Sdps
EC’20 Session 2e: Revenue Maximization More Revenue from Two Samples via Factor Revealing SDPs CONSTANTINOS DASKALAKIS, Massachusetts Institute of Technology MANOLIS ZAMPETAKIS, Massachusetts Institute of Technology We consider the classical problem of selling a single item to a single bidder whose value for the item is drawn from a regular distribution F, in a “data-poor” regime where F is not known to the seller, and very few samples from F are available. Prior work [9] has shown that one sample from F can be used to attain a 1/2-factor approximation to the optimal revenue, but it has been challenging to improve this guarantee when more samples from F are provided, even when two samples from F are provided. In this case, the best approximation known to date is 0:509, achieved by the Empirical Revenue Maximizing (ERM) mechanism [2]. We improve this guarantee to 0:558, and provide a lower bound of 0:65. Our results are based on a general framework, based on factor-revealing Semidefnite Programming relaxations aiming to capture as tight as possible a superset of product measures of regular distributions, the challenge being that neither regularity constraints nor product measures are convex constraints. The framework is general and can be applied in more abstract settings to evaluate the performance of a policy chosen using independent samples from a distribution and applied on a fresh sample from that same distribution. CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design; Algo- rithmic mechanism design. Additional Key Words and Phrases: revenue maximization, two samples, mechanism design, semidefnite relaxation ACM Reference Format: Constantinos Daskalakis and Manolis Zampetakis. -
On the Computational Complexity of Maintaining GPS Clock in Packet Scheduling
On the Computational Complexity of Maintaining GPS Clock in Packet Scheduling Qi (George) Zhao Jun (Jim) Xu College of Computing Georgia Institute of Technology qzhao, jx ¡ @cc.gatech.edu Abstract— Packet scheduling is an important mechanism to selects the one with the lowest GPS virtual finish time provide QoS guarantees in data networks. A scheduling algorithm among the packets currently in queue to serve next. generally consists of two functions: one estimates how the GPS We study an open problem concerning the complexity lower (General Processor Sharing) clock progresses with respect to the real time; the other decides the order of serving packets based bound for computing the GPS virtual finish times of the ' on an estimation of their GPS start/finish times. In this work, we packets. This complexity has long been believed to be 01%2 answer important open questions concerning the computational per packe [11], [12], [3], [9], where 2 is the number of complexity of performing the first function. We systematically sessions. For this reason, many scheduling algorithms such study the complexity of computing the GPS virtual start/finish 89,/. ,4,/. 8!:1,/. as +-,435.76 [2], [7], [11], and [6] times of the packets, which has long been believed to be ¢¤£¦¥¨§ per packet but has never been either proved or refuted. We only approximate the GPS clock (with certain error), trading also answer several other related questions such as “whether accuracy for lower complexity. However, it has never been the complexity can be lower if the only thing that needs to be carefully studied whether the complexity lower bound of computed is the relative order of the GPS finish times of the ' tracking GPS clock perfectly is indeed 01;2 per packet. -
A Decade of Lattice Cryptography
Full text available at: http://dx.doi.org/10.1561/0400000074 A Decade of Lattice Cryptography Chris Peikert Computer Science and Engineering University of Michigan, United States Boston — Delft Full text available at: http://dx.doi.org/10.1561/0400000074 Foundations and Trends R in Theoretical Computer Science Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is C. Peikert. A Decade of Lattice Cryptography. Foundations and Trends R in Theoretical Computer Science, vol. 10, no. 4, pp. 283–424, 2014. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-113-9 c 2016 C. Peikert All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for in- ternal or personal use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on the internet at: www.copyright.com For those organizations that have been granted a photocopy license, a separate system of payment has been arranged.