Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification?

Total Page:16

File Type:pdf, Size:1020Kb

Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification? Reviews 843 Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification? Authors Marie-Aude Tribalat 1, Maria V. Marra2, Grace P. McCormack 2, Olivier P. Thomas1, 3 Affiliations 1 Géoazur UMR Université Nice Sophia Antipolis-CNRS‑IRD‑OCA, Valbonne, France 2 National University of Ireland Galway, Zoology, School of Natural Sciences, University Road, Galway, Ireland 3 National University of Ireland Galway, Marine Biodiscovery, School of Chemistry, University Road, Galway, Ireland Key words Abstract help in the revision of this large group of marine l" sponges ! invertebrates. We focus only on 3-alkylpyridine l" Haplosclerida Sponges and their associated microbiota are well derivatives and polyacetylenic compounds, as l" alkaloids known to produce a large diversity of natural these two groups of natural products are charac- l" polyacetylenic products, also called specialized metabolites. In teristic of haplosclerid species and are highly di- l" chemotaxonomy addition to their potential use in the pharmaceu- verse. A close collaboration between chemists tical industry, these rather species-specific com- and biologists is required in order to fully apply pounds may help in the classification of some par- chemotaxonomical approaches, and whenever ticular sponge groups. We review herein com- possible biological data should include morpho- pounds isolated from haplosclerid sponges (Class logical and molecular data and some insight into Demospongia, Order Haplosclerida) in order to their microbial abundance. Introduction marine natural products, including alkaloids, ! polyacetylenes, or terpene derivatives. This group Sponges (Phylum Porifera) are sessile inverte- is also one of the most diverse of the sponge received Nov. 29, 2015 brates distributed in most aquatic ecosystems. In groups in terms of numbers of species and habi- revised March 8, 2016 accepted March 22, 2016 marine areas like the Caribbean Sea, they may tats, and its members also have few distinguish- represent the largest substrate cover and/or the ing morphologial characteristics. The current Bibliography largest organic biomass of living organisms, thus classification of the order as outlined in Systema DOI http://dx.doi.org/ contributing significantly to several nutrient Porifera, based primarily on morphology, is com- 10.1055/s-0042-105879 Published online May 2, 2016 cycles due to their outstanding filtering capabil- prised of three suborders [two marine (Haplo- Planta Med 2016; 82: 843–856 ities [1,2]. In addition, during their long evolu- sclerina and Petrosina) and one freshwater (Spon- © Georg Thieme Verlag KG tionary history, most, if not all, of the diverse spe- gillina)]. The marine suborders together comprise Stuttgart · New York · cies of this group (> 8000 described species to six families; Callyspongiidae, Chalinidae, Niphati- ISSN 0032‑0943 date) together with their associated microbiota dae, Petrosiidae, Phloeodictyidae, and Calcifibro- Correspondence have developed unique metabolic pathways lead- spongiidae [5]. Analysis of sterol chemistry had Prof. Grace P. McCormack ing to a huge diversity of natural products, also indicated possible difficulties with their classifi- Ryan Institute School of Natural Sciences called specialized metabolites [3]. Taxonomic cation [6], suggesting patterns of relatedness that National University of Ireland classification in this particular group of marine did not agree with morphological data, while in University Road invertebrates is still highly challenging due to a contrast, a review of 3-alkylpiperidine alkaloids Galway Ireland paucity of morphological characters and a dis- appeared to agree with the current classification Phone: + 35391492321 crepancy between molecular and morpological [7]. Subsequent molecular phylogenetic studies Fax: + 353 91494535 data in many cases. For this reason, biochemical reveal an evolutionary history that is not com- [email protected] Correspondence information has been recently used as a comple- pletely compatible with Systema Porifera, indicat- Prof. Olivier P. Thomas mentary tool (particularly within the framework ing that the freshwater sponges belong elsewhere School of Chemistry of targeted or untargeted metabolomic ap- in the Demospongiae, and that while the marine National University of Ireland University Road proaches), leading to the recent concept of inte- Haplosclerida do form a clade, the suborders and Galway grative systematics [4]. the families (where there is enough data) are Ireland Within the Class Demospongiae, sponges belong- polyphyletic [8]. For this reason, a reassessment Phone: + 35391493563 Fax: + 353 91495576 ing to the Order Haplosclerida are considered of the Order Haplosclerida is underway by multi- [email protected] among the most prolific sources of bioactive ple research groups, as an assessment of chemical Tribalat M-A et al. Does the Chemical… Planta Med 2016; 82: 843–856 844 Reviews diversity may help in the development of a robust integrative Family Niphatidae classification of the group and, in return, current systematic Within the family Niphatidae, an outstanding diversity of alka- studies in this group may also direct the search for related com- loids has been isolated from members of the genus Amphimedon. pounds of interest. Monomers of 3-alkylpyridines named hachijodines E–Gaswell This review will focus on two major classes of specialized metab- as glycosylated monomers named amphimedosides A–E were olites found in the Order Haplosclerida (3-alkylpyridine deriva- isolated from Amphimedon sp. collected off Hachijo-Jima Island tives and polyacetylene derivatives) and will discuss them in (Japan; l" Fig. 1) [10,11]. Additional mono- and dimers, pyrino- view of the currently accepted classification for five of the six demins B–I, were reported from Amphimedon sp. found in the families described in Systema Porifera [5], with no compound same area (Nakijin, Okinawa) along with a high number of being reported so far from sponges of the sixth family Calcifibro- dimers bearing a hydroxylamine moiety, starting with the bis-3- spongiidae [9]. Sterols and fatty acids have been reported for alkylpyridine derivative pyrinodemin A and nakinadines A–F some members of this group in 1994 [6], and the large chemical (with a β-aminoacid) [12–16]. All of the compounds mentioned diversity produced by this prolific sponge group was last collated were found to exhibit cytotoxicity. Niphates sp. yielded some in 1996 for 3-alkylpiperidine derivatives [7]. This review is not mono-3-alkylpyridine derivatives named niphatynes A–B, again aimed to be exhaustive but discusses representatives of 3-alkyl- from the Northwestern Pacific (Fiji; l" Fig. 2) [17], and Kobaya- pyridine derivatives and polyacetylene derivatives. Given that shiʼs group more recently described some very close analogues they are both widely distributed amongst haplosclerid species, named niphatesines A–H from a Japanese sponge of the same ge- are largely restricted to this group, and are rather unique in the nus (l" Fig. 2) [18,19]. Pyrinadines A–G have been isolated from field of natural products, we consider that focusing our review Cribrochalina sp., also from the Japanese coast (l" Fig. 2) [20,21]. on these two chemical families provides ample information to It is not known if the two Amphimedons or Niphates sp. men- help identify discrepancies in the classification, areas for focus tioned here are the same species or two separate species in each in the construction of a revised integrative classification and case given that the specimens were collected in the same geo- valuable avenues for future research focus. graphical area. Comparison of the specimen vouchers from the Major issues with publishing descriptions of compounds from various studies will have to be performed to confirm if this is species that have not been fully identified will become apparent. the case and preferably also comparison of DNA sequences. This issue is relevant not only for the group of marine sponges in- It would appear that simple mono- and bis-3-alkylpyridine de- cluded here, but for any organism of interest for bioprospecting. rivatives are restricted to species belonging to the genera Amphi- Accompanying morphological identification with a DNA se- medon, Cribrochalina,andNiphates, all belonging to the family quence is a highly recommended way forward (in addition to Niphatidae (l" Table 1). While molecular data confirms that cer- deposition of a specimen voucher in a respected institute/muse- tain Niphates and Amphimedon species are related to each other, um). We intend this review to encourage better connections be- the position of Cribrochalina and Pachychalina in relation to other tween chemists and biologists in an effort to identify novel com- members of the Niphatidae family remains unresolved [22]. As pounds of interest while also striving to understand the origins more focus is placed on resolving haplosclerid taxonomy, and and evolution of the same. A solid taxonomic description and compounds are isolated from more fully described species, it will classification will help in the rational collection of closely related be interesting to confirm if this pattern remains. species that will produce a large diversity of analogues of a tar- Also, within the family Niphatidae, a dimeric cyclostellettamine geted natural product family. Greater collaborative efforts will (3 alkylpyridiniums) was isolated from the Northwestern
Recommended publications
  • Marine Sponges: Repositories of Bioactive Compounds with Medicinal Applications International Journal of Chemtech Research
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.12 No.1, pp 26-48, 2019 Marine Sponges: Repositories of Bioactive compounds with Medicinal applications Sasireka Rajendran1 1Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, India Abstract : Marine Sponges and its associated symbiotic organisms are considered as the depositories of bioactive compounds and secondary metabolites naturally. Compounds in specific can be used for different applications as a drug candidate. It is believed that sponges have the potential to cure various diseases such as malaria, cancer and other viral infections. Eventhough the mechanism of action is still unclear for few cases, compounds in crude extracts interferes with the pathogenesis of different diseases. Based on the preliminary screening results of in vitro and in vivo studies, researchers are trying to formulate medicinal products out of this crude extract and to commercialize in the market. Chemical compounds of few sponges have varying carbon skeletons which have the ability to fight against different pathogens and may provide immunity to individuals affected by various diseases. Key Words : Sponges, Bioactive Compounds, Secondary Metabolites, Malaria, Cancer. Introduction: Marine environment is a reservoir of natural bioactive products which is of having pharmaceutical importance. Marine organisms normally produce naturalbioactive compounds for protection, communication and reproduction against predation, infection and competition. These natural products serve as a source for invention of new molecules and are considered as the most important drug lead in different fields. Marine sponges are sessile animals that look like plants which attached themselves to a rock, shell or seafloor when they are young and live there for the rest of their lives.Sponges belong to the phylum Porifera, are oldest and simplest of multicellular animals with bodies full of pores which show relatively little differentiation and tissue coordination1.
    [Show full text]
  • Description of Key Species Groups in the East Marine Region
    Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................
    [Show full text]
  • Callyptide A, a New Cytotoxic Peptide from the Red Sea Marine Sponge Callyspongia Species
    Natural Product Research Formerly Natural Product Letters ISSN: 1478-6419 (Print) 1478-6427 (Online) Journal homepage: http://www.tandfonline.com/loi/gnpl20 Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species Lamiaa A. Shaala, Diaa T. A. Youssef, Sabrin R. M. Ibrahim & Gamal A. Mohamed To cite this article: Lamiaa A. Shaala, Diaa T. A. Youssef, Sabrin R. M. Ibrahim & Gamal A. Mohamed (2016): Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species, Natural Product Research, DOI: 10.1080/14786419.2016.1155577 To link to this article: http://dx.doi.org/10.1080/14786419.2016.1155577 View supplementary material Published online: 07 Mar 2016. Submit your article to this journal Article views: 11 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gnpl20 Download by: [King Abdulaziz University] Date: 12 March 2016, At: 22:17 NATURAL PRODUCT RESEARCH, 2016 http://dx.doi.org/10.1080/14786419.2016.1155577 Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species Lamiaa A. Shaalaa,b, Diaa T. A. Youssefc, Sabrin R. M. Ibrahimd,e and Gamal A. Mohamedc,f aNatural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; bSuez Canal University Hospital, Suez Canal University, Ismailia, Egypt; cDepartment of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz Universrabiaity,
    [Show full text]
  • Inventory of Sponge Fauna from the Singapore Strait to Taiwan Strait Along the Western Coastline of the South China Sea
    Lim et al.: Inventory of sponges along the western coastline of South China Sea RAFFLES BULLETIN OF ZOOLOGY Supplement No. 34: 104–129 Date of publication: 29 June 2016 http://zoobank.org/urn:lsid:zoobank.org:pub:C725BB33-2729-4721-930B-F6738AC7E57D Inventory of sponge fauna from the Singapore Strait to Taiwan Strait along the western coastline of the South China Sea Swee-Cheng Lim1*, Sumaitt Putchakarn2, Minh-Quang Thai3, Dexiang Wang4 & Yusheng M Huang5 Abstract. An inventory of the sponge fauna from the Singapore Strait to the Taiwan Strait along the western coastline of the South China Sea was compiled from published and grey literature from the following regions: Singapore, peninsular Malaysia, Thailand, Cambodia, Vietnam, southern China and Taiwan. This study provides a partial update to the “Checklist of sponges (Porifera) of the South China Sea region” published 15 years ago. A total of 388 sponge species belonging to 24 orders, 78 families and 158 genera are listed, with the following regional species diversities: Singapore (130); east coast of peninsular Malaysia (25); Gulf of Thailand (90); Vietnam (141); southern China (138); and Taiwan (64). A total of 12 new species and over 200 new records were added to the Porifera inventory of the South China Sea since 2001. Of the 388 species, only 16 species (4%) are widespread. They are: Aaptos suberitoides, Acanthella cavernosa, Biemna fortis, Cinachyrella australiensis, Clathria (Thalysias) reinwardti, Coelocarteria singaporensis, Echinodictyum asperum, Hyrtios erectus, Haliclona (Gellius) cymaeformis, Iotrochota baculifera, I. purpurea, Mycale (Zygomycale) parishii, Neopetrosia exigua, Oceanapia sagittaria, Spheciospongia vagabunda, Xestospongia testudinaria. Only X. testudinaria, M.
    [Show full text]
  • Cultivation of Marine Sponges: from Sea to Cell Phd Thesis, Wageningen University with Summary in Dutch
    Cultivation of Marine Sponges: From Sea to Cell Promotor Prof. Dr. Ir. J. Tramper Hoogleraar in de Bioprocestechnologie, Wageningen Universiteit Co-promotoren Dr. Ir. R.H. Wijffels Universitair hoofddocent sectie Proceskunde, Wageningen Universiteit Dr. R. Osinga Senior onderzoeker sectie Proceskunde, Wageningen Universiteit Samenstelling promotiecommissie Dr. M.J. Uriz Centro de Estudios Avanzados de Blanes, Spain Dr. J.A. Kaandorp Universiteit van Amsterdam Prof. Dr. Ir. H.F.J. Savelkoul Wageningen Universiteit Prof. Dr. J.A.J. Verreth Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Detmer Sipkema Cultivation of Marine Sponges: From Sea to Cell PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR OP GEZAG VAN DE RECTOR MAGNIFICUS VAN WAGENINGEN UNIVERSITEIT PROF. DR. IR. L. SPEELMAN IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 8 OKTOBER 2004 DES NAMIDDAGS TE VIER UUR IN DE AULA Cultivation of Marine Sponges: From Sea to Cell PhD thesis, Wageningen University with summary in Dutch ISBN 90-8504-074-4 Detmer Sipkema Process Engineering Group Wageningen University, The Netherlands Contents Chapter 1: Introduction and thesis outline 7 Chapter 2: Marine sponges as pharmacy 17 Chapter 3: Growth kinetics of Demosponges: the effect of size and 41 growth form Chapter 4: Primmorphs from seven marine sponges: formation and 59 structure Chapter 5: The influence of silicate on Suberites domuncula primmorphs 75 Chapter 6: Sponge-cell culture? A molecular identification method for 83 sponge cells Chapter 7: The life and death of sponge cells 93 Chapter 8: Large-scale production of pharmaceuticals by marine 109 sponges: sea, cell or synthesis? References 143 Summary 171 Samenvatting 175 Nawoord 179 Curriculum Vitae 183 1 Introduction and thesis outline The seas and oceans occupy approximately 70% of the earth surface (Brown et al., 1989).
    [Show full text]
  • Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification?
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Does the chemical diversity of the Order Haplosclerida Title (Phylum Porifera: Class Demospongia) fit with current taxonomic classification? Author(s) Tribalat, Marie-Aude; Marra, Maria V.; McCormack, Grace P.; Thomas, Olivier P. Publication Date 2016-05-02 Tribalat, Marie-Aude, Marra, Maria V., McCormack, Grace P., Publication & Thomas, Olivier P. (2016). Does the Chemical Diversity of Information the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification? Planta Med, 82(09/10), 843-856. doi: 10.1055/s-0042-105879 Publisher Georg Thieme Verlag Link to publisher's http://dx.doi.org/10.1055/s-0042-105879 version Item record http://hdl.handle.net/10379/7173 DOI http://dx.doi.org/10.1055/s-0042-105879 Downloaded 2021-09-25T14:57:39Z Some rights reserved. For more information, please see the item record link above. Reviews Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification? Authors Marie-Aude Tribalat 1, Maria V. Marra2, Grace P. McCormack 2, Olivier P. Thomas1, 3 Affiliations 1 Géoazur UMR Université Nice Sophia Antipolis-CNRS‑IRD‑OCA, Valbonne, France 2 National University of Ireland Galway, Zoology, School of Natural Sciences, University Road, Galway, Ireland 3 National University of Ireland Galway, Marine Biodiscovery, School of Chemistry, University Road, Galway, Ireland Key words Abstract help in the revision of this large group of marine l" sponges ! invertebrates. We focus only on 3-alkylpyridine l" Haplosclerida Sponges and their associated microbiota are well derivatives and polyacetylenic compounds, as l" alkaloids known to produce a large diversity of natural these two groups of natural products are charac- l" polyacetylenic products, also called specialized metabolites.
    [Show full text]
  • Compendium of Marine Species from New Caledonia
    fnstitut de recherche pour le developpement CENTRE DE NOUMEA DOCUMENTS SCIENTIFIQUES et TECHNIQUES Publication editee par: Centre IRD de Noumea Instltut de recherche BP A5, 98848 Noumea CEDEX pour le d'veloppement Nouvelle-Caledonie Telephone: (687) 26 10 00 Fax: (687) 26 43 26 L'IRD propose des programmes regroupes en 5 departements pluridisciplinaires: I DME Departement milieux et environnement 11 DRV Departement ressources vivantes III DSS Departement societes et sante IV DEV Departement expertise et valorisation V DSF Departement du soutien et de la formation des communautes scientifiques du Sud Modele de reference bibliographique it cette revue: Adjeroud M. et al., 2000. Premiers resultats concernant le benthos et les poissons au cours des missions TYPATOLL. Doe. Sei. Teeh.1I 3,125 p. ISSN 1297-9635 Numero 117 - Octobre 2006 ©IRD2006 Distribue pour le Pacifique par le Centre de Noumea. Premiere de couverture : Recifcorallien (Cote Quest, NC) © IRD/C.Oeoffray Vignettes: voir les planches photographiques Quatrieme de couverture . Platygyra sinensis © IRD/C GeoITray Matt~riel de plongee L'Aldric, moyen sous-marine naviguant de I'IRD © IRD/C.Geoffray © IRD/l.-M. Bore Recoltes et photographies Trailement des reeoHes sous-marines en en laboratoire seaphandre autonome © IRD/l.-L. Menou © IRDIL. Mallio CONCEPTIONIMAQUETIElMISE EN PAGE JEAN PIERRE MERMOUD MAQUETIE DE COUVERTURE CATHY GEOFFRAY/ MINA VILAYLECK I'LANCHES PHOTOGRAPHIQUES CATHY GEOFFRAY/JEAN-LoUIS MENOU/GEORGES BARGIBANT TRAlTEMENT DES PHOTOGRAPHIES NOEL GALAUD La traduction en anglais des textes d'introduction, des Ascidies et des Echinoderrnes a ete assuree par EMMA ROCHELLE-NEwALL, la preface par MINA VILAYLECK. Ce document a ete produit par le Service ISC, imprime par le Service de Reprographie du Centre IRD de Noumea et relie avec l'aimable autorisation de la CPS, finance par le Ministere de la Recherche et de la Technologie.
    [Show full text]
  • Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification?
    Reviews 843 Does the Chemical Diversity of the Order Haplosclerida (Phylum Porifera: Class Demospongia) Fit with Current Taxonomic Classification? Authors Marie-Aude Tribalat 1, Maria V. Marra2, Grace P. McCormack 2, Olivier P. Thomas1, 3 Affiliations 1 Géoazur UMR Université Nice Sophia Antipolis-CNRS‑IRD‑OCA, Valbonne, France 2 National University of Ireland Galway, Zoology, School of Natural Sciences, University Road, Galway, Ireland 3 National University of Ireland Galway, Marine Biodiscovery, School of Chemistry, University Road, Galway, Ireland Key words Abstract help in the revision of this large group of marine l" sponges ! invertebrates. We focus only on 3-alkylpyridine l" Haplosclerida Sponges and their associated microbiota are well derivatives and polyacetylenic compounds, as l" alkaloids known to produce a large diversity of natural these two groups of natural products are charac- l" polyacetylenic products, also called specialized metabolites. In teristic of haplosclerid species and are highly di- l" chemotaxonomy addition to their potential use in the pharmaceu- verse. A close collaboration between chemists tical industry, these rather species-specific com- and biologists is required in order to fully apply pounds may help in the classification of some par- chemotaxonomical approaches, and whenever ticular sponge groups. We review herein com- possible biological data should include morpho- pounds isolated from haplosclerid sponges (Class logical and molecular data and some insight into Demospongia, Order Haplosclerida) in order to their microbial abundance. Introduction marine natural products, including alkaloids, ! polyacetylenes, or terpene derivatives. This group Sponges (Phylum Porifera) are sessile inverte- is also one of the most diverse of the sponge received Nov. 29, 2015 brates distributed in most aquatic ecosystems.
    [Show full text]