CXCR4 and CXCR5 Orchestrate Dynamic Germinal Center Reactions and May Contribute to the Pathogenesis of Systemic Lupus Erythematosus

Total Page:16

File Type:pdf, Size:1020Kb

CXCR4 and CXCR5 Orchestrate Dynamic Germinal Center Reactions and May Contribute to the Pathogenesis of Systemic Lupus Erythematosus www.nature.com/cmi Cellular & Molecular Immunology CORRESPONDENCE CXCR4 and CXCR5 orchestrate dynamic germinal center reactions and may contribute to the pathogenesis of systemic lupus erythematosus Bing-xuan Wu1, Li-dan Zhao1 and Xuan Zhang 1 Cellular & Molecular Immunology (2019) 16:724–726; https://doi.org/10.1038/s41423-019-0244-y In a previous publication in Cellular and Molecular Immunology, Zhao IL-21 and/or CD40L (Fig. 1). Relying on the timely orchestration of et al.1 showed data from patients with treatment-naïve systemic relative CXCR4/CXCR5 expression, interzonal reciprocating move- lupus erythematosus (SLE), demonstrating the clinical significance ments of GC B cells are generated, which is critical for B cell affinity and possible mechanisms of the aberrant expression of the maturation and autoreactivity elimination and is thus indispensable chemokine receptor CXCR4 on lupus B cells. In this commentary, for healthy GC formation and reaction.7 The aberrant expression of we will discuss the roles of CXCL12-CXCR4 and CXCL13-CXCR5 pairs these chemokines and their corresponding receptors may lead to and related signaling pathways in guiding dynamic germinal center dislocation of GC B cells, impaired affinity maturation, ineffective (GC) reactions and B cell selection and describe how their selection, and subsequent differentiation into autoantibody- dysregulation may contribute to the pathogenesis of SLE. producing plasma cells. The unsuccessful downregulation of CXCR4 B cells play a central role in the pathogenesis of SLE as the may block the reentry of GC B cells to LZs, leading to impaired precursors of autoantibody-secreting cells, powerful antigen- selection and release of autoreactive B cells (Fig. 1). The CXCR5/ presenting cells and cytokine producers.2 Although antibody- CXCL13 axis is required for the compartmentalization of GC LZ, secreting cells (ASCs) could derive extrafollicularly, GC is believed overcoming spatial separation between GC B cells and CXCL13+ + to be the main site for generating long-lived plasma cells and FDCs or CXCR5 TFH cells to promote cell–cell interactions (Fig. 1). A memory B cells, which are overactivated in SLE and capable of previous study implicated chemokine dysregulation and the producing pathogenic autoantibodies persistently.3 In GC, B cells development of autoimmune diseases, showing that a subgroup are subdued to affinity-driven evolution and selection, followed by of CXCR4+ plasma cells coexpressing TLR4 was increased in the clonal expansion or deletion. It remains to be elucidated how peripheral blood and renal tissues of both SLE patients and lupus these autoreactive B cells could survive clonal deletion in GC and mice and was capable of producing anti-dsDNA associated with escape into peripheral circulation. Failure of appropriate B cell severe renal damage.8 In addition, Søren et al.9 showed that once receptor (BCR) repertoire trimming in GC may originate from tolerance was broken for one autoantigen, epitope spreading imbalanced programming intrinsically, impaired function of helper occurred, leading to broader targeting of B cells to self-antigens and cells extrinsically and abnormal translocation and immigration the formation of self-sustained autoreactive GCs, which is the associated with intrinsic and extrinsic signals. Numerous studies hallmark of abnormal immune response in SLE. have addressed the roles of BCRs, toll-like receptors (TLRs) and Although evidence is still far from certain, the CXCR4-CXCL12 and intracellular signaling pathways, as well as chemokines and their CXCR5-CXCL13 axis and their downstream signaling mediators are specific receptors, in regulating B cells escape from stringent GC assumed to be crucial participants in the pathogenesis of SLE, in negative selection, subsequent differentiation into plasma cells which TFH cells are closely intertwined. Through costimulatory and their exit into the periphery.3–5 molecules, such as inducible costimulator and programmed cell GCs have exquisite zonal architecture, and the dynamic death protein-1 (PD-1), IL-21 production and the downstream translocation of GC B cells between dark zones (DZs) and light modulation of B cell lymphoma 6 (Bcl-6) and B lymphocyte-induced zones (LZs) are mediated by chemokines and their receptors. GC B maturation protein 1 (Blimp1) activation, TFH cells program B cell cells are centroblasts and centrocytes in the DZs and LZs, expansion, plasma cell differentiation, and BCR reediting. TFH cells respectively. Centroblasts expressing high levels of CXCR4 are could also act as an important resource for local B cell-activating sequestered in DZs, undergo rapid proliferation and somatic factor (BAFF) production within GCs. Excessive BAFF drives the hypermutation within the network of reticular cells expressing development of autoreactive B cells, which in turn promotes TFH cell CXCL12, whereas CXCR4loCXCR5hi centrocytes are recruited to LZs expansion, leading to spontaneous autoreactive GC formation. The by CXCL13-expressing follicular dendritic cells (FDCs) and subdued expansion and aberrant activation of TFH cells have been implicated to antigen-driven-selection through interactions with FDCs and T in the pathogenesis of SLE.10 6 11 follicular helper (TFH) cells. FDCs present native antigens to Sander et al. demonstrated that phosphoinositide 3-kinases centrocytes with newly mutated BCRs, and then TFH cells recognize (PI3K) signaling and the transcription factor forkhead box protein and sense the intensity of the processed antigens presented O1 (FOXO1) were important antagonistic regulators of GC by centrocytes and determine their fate by providing signals, such as reactions, including GC polarization and cellular selection. 1Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Medical Epigenetics Research Center, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College Hospital, 100730 Beijing, China Correspondence: Li-dan Zhao ([email protected]) or Xuan Zhang ([email protected]) Received: 5 May 2019 Accepted: 11 May 2019 Published online: 3 June 2019 © CSI and USTC 2019 CXCR4 and CXCR5 orchestrate dynamic germinal center reactions and may. B-x Wu et al. 725 Dark zone Light zone GC - Centroblasts (CXCR4hi) - Centrocytes (CXCR5hi) - Proliferation - Class switching - Somatic hypermutation - Affinity selection - FOXO1 ↑ - PI3K ↑ Reticular cells FDC MHC II CXCL12 CXCL13 Apoptosis CXCR4 BCR CXCR5 PD-1L PD-1 CXCR5 Proliferation CXCR4↓ CXCR5↑ MHC II TCR CD40 CD40L Somatic B7 CD28 hypermutation ICOSL ICOS T Long-lived plasma cells Centrocytes IL-21R FH Centroblasts IL-21 CXCR4↑ CXCR5↓ CXCR4XCCR4↓ Memory B cells 1234567890();,: Autoreactive B cells Blood vessel Fig. 1 CXCR4 and CXCR5 orchestrate dynamic GC reactions. The germinal center (GC) consists of two distinct areas known as light zones (LZs) and dark zones (DZs), which are orchestrated by chemokines and their specific receptors, especially CXCL12-CXCR4 and CXCL13-CXCR5 pairs. + + CXCL13 follicular dendritic cells (FDCs) are located in the LZs and sequester CXCR5 centrocytes and follicular helper T cells (TFH) into the LZs, while CXCL12+ reticular cells segregate CXCR4hi centroblasts in the DZs. Centroblasts (GC B cells in DZs) proliferate and undergo somatic hypermutation in DZs, followed by CXCR4 downregulation and cycling back to LZs, where centrocytes (GC B cells in LZs) undergo affinity- driven selection through interactions with FDCs and TFH cells. Failed downregulation of CXCR4 may block the reentry of B cells to LZs, leading to the impaired selection and release of autoreactive B cells. Activated PI3K signaling and the transcription factor FOXO1, as antagonistic regulators of GC reactions, are mainly restricted to DZs and LZs, respectively Accordantly, Dalla-Favera et al.12 demonstrated that FOXO1 components contributes to the disordered GC architectural expression and PI3K activity in GC B cells were virtually exclusive polarity and autoreactive GC formation. Signaling molecules, such and restricted to DZs and LZs, respectively (Fig. 1), and that FOXO1 as CD40L and IL21, downstream pathways, including PI3K-AKT and was required for GC DZ programming, B cell affinity maturation JAK-STAT, as well as transcriptional factors, such as BCL6, Blimp1, and class switch recombination. These authors also suggested and FOXO1, are proposed to be involved in skewing GC dynamics that FOXO1 may contribute to CXCR4 transcriptional activation. and B cell selection, and these molecules altogether fuel the Interestingly, Zhao et al.1 showed that the dysregulation of progression of autoimmune diseases, such as SLE. However, much the PI3K/AKT and Janus kinases/signal transducer and activator of the underlying mechanism remains unknown, and further of transcription (JAK/STAT) pathways was also important in research is warranted. SLE CXCR4 dysregulation, which may add a piece to the puzzle. However, available evidence does not reveal the complicated underlying regulatory network, and more profound ACKNOWLEDGEMENTS in-depth studies are needed to better understand the initial self- This study was supported by grants from the National Natural Science Foundation of tolerance breakdown in GC and spontaneous autoreactive GC China (81788101, 81630044, 81601432, 81771763, 91542000), the Chinese Academy development. of Medical Science Innovation Fund for Medical Sciences (CIFMS2016-I2M-1-003, In conclusion, by locating the GC B cells correctly and 2017-I2M-1-008, 2017-I2M-3-011, 2016-I2M-1-008), and the
Recommended publications
  • Molecular Signatures of G-Protein-Coupled Receptors A
    REVIEW doi:10.1038/nature11896 Molecular signatures of G-protein-coupled receptors A. J. Venkatakrishnan1, Xavier Deupi2, Guillaume Lebon1,3,4,5, Christopher G. Tate1, Gebhard F. Schertler2,6 & M. Madan Babu1 G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine. ignal transduction is a fundamental biological process that is comprehensively, and in the process expand the current frontiers of required to maintain cellular homeostasis and to ensure coordi- GPCR biology. S nated cellular activity in all organisms. Membrane proteins at the In this analysis, we objectively compare known structures and reveal cell surface serve as the communication interface between the cell’s key similarities and differences among diverse GPCRs. We identify a external and internal environments. One of the largest and most diverse consensus structural scaffold of GPCRs that is constituted by a network membrane protein families is the GPCRs, which are encoded by more of non-covalent contacts between residues on the transmembrane (TM) than 800 genes in the human genome1. GPCRs function by detecting a helices.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma
    International Journal of Molecular Sciences Article CXCL13/CXCR5 Interaction Facilitates VCAM-1-Dependent Migration in Human Osteosarcoma 1, 2,3,4, 5 6 7 Ju-Fang Liu y, Chiang-Wen Lee y, Chih-Yang Lin , Chia-Chia Chao , Tsung-Ming Chang , Chien-Kuo Han 8, Yuan-Li Huang 8, Yi-Chin Fong 9,10,* and Chih-Hsin Tang 8,11,12,* 1 School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City 11031, Taiwan; [email protected] 2 Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan; [email protected] 3 Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan 4 Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Guishan Dist., Taoyuan City 33303, Taiwan 5 School of Medicine, China Medical University, Taichung 40402, Taiwan; [email protected] 6 Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan; [email protected] 7 School of Medicine, Institute of Physiology, National Yang-Ming University, Taipei City 11221, Taiwan; [email protected] 8 Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan; [email protected] (C.-K.H.); [email protected] (Y.-L.H.) 9 Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan 10 Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan 11 Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan 12 Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan * Correspondence: [email protected] (Y.-C.F.); [email protected] (C.-H.T.); Tel.: +886-4-2205-2121-7726 (C.-H.T.); Fax: +886-4-2233-3641 (C.-H.T.) These authors contributed equally to this work.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • Original Article Expression of Chemokine Receptor CXCR5 in Gastric Cancer and Its Clinical Significance
    Int J Clin Exp Pathol 2016;9(7):7202-7208 www.ijcep.com /ISSN:1936-2625/IJCEP0023559 Original Article Expression of chemokine receptor CXCR5 in gastric cancer and its clinical significance Qing Sun*, Lujun Chen*, Bin Xu, Qi Wang, Xiao Zheng, Peng Du, Dachuan Zhang, Changping Wu, Jingting Jiang Department of Tumor Biological Treatment, The Third Affiliated Hospital, Soochow University, Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, Jiangsu, China. *Equal contributors. Received January 8, 2016; Accepted March 22, 2016; Epub July 1, 2016; Published July 15, 2016 Abstract: The increased expression of chemokine receptor CXCR5 in cancers has been demonstrated. In order to characterize the expression pattern of CXCR5 in cell lines and tissues of gastric cancer and to assess clinical implications, the expression of CXCR5 mRNA in gastric cancer tissues and adjacent tissues was evaluated by real- time RT-PCR. Meanwhile, the expression of CXCR5 in cell lines of human gastric cancer was also analyzed by flow cytometry. Tissue microarray and immunohistochemistry were used to detect the protein expression of CXCR5 in human gastric cancer tissues and adjacent normal tissues. Flow cytometry results revealed the positive expression of CXCR5 in human gastric cancer cell lines such as BGC-823, SGC-7901 and HGC-27 cells. The immunohistochem- istry results showed higher expression of CXCR5 in 52.87% of gastric cancer tissues. The expression of CXCR5 in patients with tumor size less than 2.8 cm subgroup was significantly lower than that in patients with tumor size larger than 2.8 cm subgroup (P = 0.0456). There was no significant correlation between the expression of CXCR5 and other clinical parameters in gastric cancer.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • The Impact of the Prostaglandin D2 Receptor 2 and Its Downstream Effects on the Pathophysiology of Asthma
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography Received: 1 March 2019 | Revised: 24 June 2019 | Accepted: 17 July 2019 DOI: 10.1111/all.14001 REVIEW ARTICLE The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma Christopher E. Brightling1 | Guy Brusselle2 | Pablo Altman3 1Department of Respiratory Sciences, Institute for Lung Health, University of Abstract Leicester, Leicester, UK Current research suggests that the prostaglandin D2 (PGD2) receptor 2 (DP2) is a 2 Department of Respiratory Diseases, Ghent principal regulator in the pathophysiology of asthma, because it stimulates and ampli‐ University Hospital, Ghent, Belgium 3Novartis Pharmaceuticals Corporation, East fies the inflammatory response in this condition. The DP2 receptor can be activated Hanover, NJ, USA by both allergic and nonallergic stimuli, leading to several pro‐inflammatory events, Correspondence including eosinophil activation and migration, release of the type 2 cytokines inter‐ Pablo Altman, Novartis Pharmaceuticals leukin (IL)‐4, IL‐5 and IL‐13 from T helper 2 (Th2) cells and innate lymphoid cells type Corporation, One Health Plaza East Hanover, East Hanover, NJ 07936‐1080, 2 (ILCs), and increased airway smooth muscle mass via recruitment of mesenchy‐ USA. mal progenitors to the airway smooth muscle bundle. Activation of the DP2 recep‐ Email: [email protected] tor pathway has potential downstream effects on asthma pathophysiology, including Funding information on airway epithelial cells, mucus hypersecretion, and airway remodelling, and con‐ Novartis sequently might impact asthma symptoms and exacerbations. Given the broad dis‐ tribution of DP2 receptors on immune and structural cells involved in asthma, this receptor is being explored as a novel therapeutic target.
    [Show full text]
  • CXCR6 Within T-Helper (Th) and T-Cytotoxic
    European Journal of Endocrinology (2005) 152 635–643 ISSN 0804-4643 EXPERIMENTAL STUDY CXCR6 within T-helper (Th) and T-cytotoxic (Tc) type 1 lymphocytes in Graves’ disease (GD) G Aust, M Kamprad1, P Lamesch2 and E Schmu¨cking Institute of Anatomy, 1Department of Clinical Immunology and Transfusion Medicine and 2Department of Surgery, University of Leipzig, Phillipp-Rosenthal-Str. 55, Leipzig, 04103, Germany (Correspondence should be addressed to G Aust; Email: [email protected]) Abstract Objective: In Graves’ disease (GD), stimulating anti-TSH receptor antibodies are responsible for hyperthyroidism. T-helper 2 (Th2) cells were expected to be involved in the underlying immune mech- anism, although this is still controversial. The aim of this study was to examine the expression of CXCR6, a chemokine receptor that marks functionally specialized T-cells within the Th1 and T-cyto- toxic 1 (Tc1) cell pool, to gain new insights into the running immune processes. Methods: CXCR6 expression was examined on peripheral blood lymphocytes (PBLs) and thyroid- derived lymphocytes (TLs) of GD patients in flow cytometry. CXCR6 cDNA was quantified in thyroid tissues affected by GD (n ¼ 16), Hashimoto’s thyroiditis (HT; n ¼ 2) and thyroid autonomy (TA; n ¼ 11) using real-time reverse transcriptase PCR. Results: The percentages of peripheral CXCR6þ PBLs did not differ between GD and normal subjects. CXCR6 was expressed by small subsets of circulating T-cells and natural killer (NK) cells. CXCR6þ cells were enriched in thyroid-derived T-cells compared with peripheral CD4þ and CD8þ T-cells in GD. The increase was evident within the Th1 (CD4þ interferon-gþ (IFN-gþ)) and Tc1 (CD8þIFN- gþ) subpopulation and CD8þ granzyme Aþ T-cells (cytotoxic effector type).
    [Show full text]
  • Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells
    Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3+ Regulatory T Cells This information is current as Hyung W. Lim, Jeeho Lee, Peter Hillsamer and Chang H. of September 28, 2021. Kim J Immunol 2008; 180:122-129; ; doi: 10.4049/jimmunol.180.1.122 http://www.jimmunol.org/content/180/1/122 Downloaded from References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/1/122.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human Th17 Cells Share Major Trafficking Receptors with Both Polarized Effector T Cells and FOXP3؉ Regulatory T Cells1 Hyung W. Lim,* Jeeho Lee,* Peter Hillsamer,† and Chang H. Kim2* It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • The Role of CXCR5 and Its Ligand CXCL13 in The
    European Journal of Endocrinology (2004) 150 225–234 ISSN 0804-4643 EXPERIMENTAL STUDY The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases G Aust, D Sittig, L Becherer1, U Anderegg2, A Schu¨tz3, P Lamesch1 and E Schmu¨cking Institute of Anatomy, 1Department of Surgery, 2Department of Dermatology and 3 Institute of Pathology, University of Leipzig, Leipzig, Germany (Correspondence should be addressed to G Aust, University of Leipzig, Institute of Anatomy, Ph-Rosenthal-Strasse 55, Leipzig, 04103, Germany; Email: [email protected]) Abstract Objective: Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) are characterized by lymphocytic infiltrates partly resembling secondary lymphoid follicles in the thyroid. CXCR5 and its ligand CXCL13 regulate compartmentalization of B- and T-cells in secondary lymphoid organs. The aim of the study was to elucidate the role of this chemokine receptor–ligand pair in thyroid autoimmunity. Methods: Peripheral blood and thyroid-derived lymphocyte subpopulations were examined by flow cyto- metry for CXCR5. CXCR5 and CXCL13 cDNA were quantified in thyroid tissues by real-time RT-PCR. Results: We found no differences between the percentages of peripheral blood CXCR5þ T- and B-cells in GD patients (n ¼ 10) and healthy controls (n ¼ 10). In GD patients, the number of memory CD4þ cells expressing CXCR5 which are functionally characterized as follicular B helper T-cells is higher in thyroid- derived (18^3%) compared with peripheral blood T-lymphocytes (8^2%). The highest CXCL13 mRNA levels were found in HT (n ¼ 2, 86.1^1.2 zmol (10221 mol) cDNA/PCR) followed by GD tissues (n ¼ 16, 9.6^3.5).
    [Show full text]