The Structure of Bovine Brain Myelin Proteolipid and Its Organization In

Total Page:16

File Type:pdf, Size:1020Kb

The Structure of Bovine Brain Myelin Proteolipid and Its Organization In Proc. Nati. Acad. Sci. USA Vol. 81, pp. 2912-2916, May 1984 Neurobiology The structure of bovine brain myelin proteolipid and its organization in myelin (myelin basic protein/membrane proteins/protein folding/amino acid sequence/secondary structure prediction) RICHARD A. LAURSEN*, MOHAMMED SAMIULLAH*, AND MARJORIE B. LEESt *Department of Chemistry, Boston University, Boston, MA 02215; and tEunice Kennedy Shriver Center, Waltham, MA 02254 Communicated by Francis 0. Schmitt, December 27, 1983 ABSTRACT A model, based on amino acid sequence data, in the proteolipid are defined in terms of polarity, proposed is proposed for the organization of the myelin proteolipid in orientation in the membrane, and sequence homology. Thus, myelin membrane. The model has three distinctive features: Ti (residues 59-90), T2 (residues 151-177) and T3 (residues three trans-membrane segments that traverse the lipid bilayer, 238-267) are hydrophobic trans-membrane segments that two cis-membrane domains that enter and exit the same side of span the bilayer; Cl (residues 1-35) and C3 (residues 206- the membrane, and a highly charged segment resembling my- 216) contain hydrophobic cis-membrane segments that enter elin basic protein on the cytoplasmic side of the membrane. It and exit the same side of the bilayer; El, E2, and E3 are is proposed that the cis-membrane domain(s) can promote the intervening extra-membrane sequences that contain nearly formation and stabilization of the multilamellar myelin struc- all of the charged amino acids (Figs. 1 and 2). The segments ture by hydrophobic interaction with the apposite bilayer C1', C2, and C3' are designated as cis-membrane segments across the extracellular space. based on homology (10) but probably are located outside of the lipid bilayer. As we have already reported (10), the pro- In the central nervous system, myelin is formed as an ex- teolipid shows a striking degree of internal sequence homol- tended, modified oligodendroglial plasma membrane that ogy, with various domains (cis, trans, or extra) mutually ho- spirals around the axon to form a multilamellar structure (1). mologous within a domain type-e.g., Ti, T2, and T3 are During maturation, the membranes become compacted with homologous. a close apposition of both the internal and external faces of Orientation of Polar Domains in the Membrane. Assuming the membrane. The relative thicknesses of the bilayer, cyto- that the proteolipid polypeptide chain is threaded through plasmic, and extracellular spaces are 47 A, 30 A, and 30 A, the membrane in a regular fashion (Fig. 1), we propose that respectively (2, 3). the basic segments, El + C2 and E3, are located on the cyto- Although the myelin sheath is characterized by a relatively plasmic face of the membrane and that the other polar seg- high proportion of lipid (70-80%), it is the myelin proteins ments, Cl', E2, and C3', are on the extracellular side. Near- that provide specificity and perform an important, albeit ill- ly all of the trans-membrane proteins studied so far have defined role in the maintenance of myelin structure. The pre- clusters of predominantly positively charged amino acids on dominant proteins are the water-soluble extrinsic myelin ba- the cytoplasmic side of the membrane (14). It has been pro- sic protein (Mr 18,000), characterized by a high proportion of posed that these charged groups interact electrostatically basic and other polar amino acids (4, 5), and the hydropho- with the negatively charged inner face of the membrane dur- bic, chloroform/methanol-soluble proteolipid (Mr 30,000) (4, ing insertion of the protein into the membrane, thereby an- 6). The basic protein is well-characterized (4, 5); however, choring the cluster and preventing it from passing through the proteolipid has resisted structure elucidation, and only (14). A second argument is that El and E3 are remarkably recently has its amino acid sequence been determined (7-9). similar, in terms of amino acid sequence (36% homology) In this article we propose a model (Fig. 1) for bovine brain and predicted secondary structure to the myelin basic pro- myelin proteolipid, based on amino sequence data and analo- tein, which appears to be located entirely on the cytoplasmic gy with other proteins, and suggest how the proteolipid may side of the membrane (5, 15, 16). Finally, there is evidence help to stabilize the myelin sheath. (see below) that Cl and the region E2 + C3 + C3' contain disulfide bonds and are therefore likely to be located in and on the outer leaflet of the cell membrane bilayer (17). RESULTS AND DISCUSSION Oxidation State of Cysteine Residues. Myelin proteolipid General Structural Features. The most notable characteris- contains 14 half-cystine residues, the oxidation states of tic of the proteolipid sequence (Fig. 2) is the clustering of which have not been completely established. Half of the cys- hydrophobic amino acids into distinct domains. A plot of teine residues are found in the polar and half in the hydro- amino acid hydropathy (11) (Fig. 3) shows four hydrophobic phobic domains: 6 in Cl, 1 in T2, 3 in El + C2, and 4 in E2 + domains of about 30 amino acids each, which alternate with C3 + C3'. We have proposed that El + C2 is located on the polar segments containing most of the charged and neutral cytoplasmic side of the membrane Cl', E2, and C3' are on hydrophilic residues. The polar domains also contain all of the exterior. Since intracellular proteins containing cysteine the predicted ,B-turns (12), suggesting that these regions are generally exist in the thiol form because of the reducing envi- extensively folded. These features suggest a model, such as ronment of the cell (17), we predict that the three cysteine has been proposed for bacteriorhodopsin (13) and other in- residues in El + C2, as well as the single cysteine in T2 trinsic membrane proteins (14), wherein the polypeptide (which presumably is isolated in the bilayer), are in the re- chain passes repeatedly through the lipid bilayer, the hydro- duced state. Conversely, the 4 cysteine residues in E2 + C3 phobic regions being embedded in the lipid and the polar do- + C3' on the external face probably exist as disulfides, in mains exposed on the external and internal faces ofthe mem- analogy with the majority of extracellular proteins (17). We brane (Fig. 1). For purposes of discussion, various domains further propose (see below) that the 6 cysteine residues in Cl occur as disulfides. Only 25-30% of the cysteine residues in even under The publication costs of this article were defrayed in part by page charge proteolipid can be carboxymethylated, forcing payment. This article must therefore be hereby marked "advertisement" conditions (18). This suggests that 4 of the 14 cysteine resi- in accordance with 18 U.S.C. §1734 solely to indicate this fact. dues are in the thiol form. The sequence studies of Jolles et 2912 Downloaded by guest on September 23, 2021 Neurobiology: Laursen et aL Proc. NatL. AcadJ Sci USA 81 (1984) 2913 MEMBRANE EXTRACELLULAR SPACE 30A 47A 30A RESIDUE NUMBER SPACE CYTOPLASMIC FIG. 3. Predicted location of hydrophobic domains and of MEMBRANE turns in myelin proteolipid. Upper curve: the hydropathic constants of Kyte and Doolittle (11) were averaged over nine amino acids; FIG. 1. Hypothetical model for myelin proteolipid in a mem- hydrophobic domains are located above the dashed line. Lower brane lipid bilayer. Ti, T2, and T3 are homologous, a-helical trans- curve: relative probability of any four adjacent residues being a turn membrane segments; Cl and C3 are homologous cis-membrane seg- is plotted on the first residue. ments; and El, E2, E3, Cl', and C3' are located outside of the bi- layer. See text and ref. 10 for further description. Charged residues and 238-267 (30 residues). They contain no charged amino are indicated by + or -, and cysteine/cystine is indicated by e. E2 acids (except possibly His-65 in T1) and only one cysteine contains a covalently linked fatty acid chain, indicated by a zigzag residue (in T2). Although secondary structure calculations line. tend to predict ,3-sheet structure, we propose that T1, T2, and T3 are a-helical segments that span the lipid bilayer, in al. (19) suggest that at least 2 of the cysteine residues (at analogy with bacteriorhodopsin (13) and other membrane positions 6 and 9) in C1 are in the oxidized form and, in our proteins (21). The failure of hydrophobic domains in mem- own sequence studies (20), we found that the NH2-terminal brane proteins to follow secondary structure preduction tryptic peptide (Gly-1 to Arg-8) could only be isolated after rules has also been noted by Argos et al. (21). Consideration cleavage of the disulfide bonds, indicating that Cys-5 and/or of geometry also favors the helical structure. Given the stan- Cys-6 are crosslinked to other portions of the polypeptide dard a-helix parameter of 1.5 A pitch height per residue, one chain. In addition, our studies (7) showed that cysteine resi- can calculate that 31 residues would be needed to span the dues 183, 200, 219, and 227 are crosslinked within the cleav- 47-A thick myelin membrane bilayer. This is close to the seg- age fragment comprising residues 181-276, indicating that ment lengths of T1, T2, and T3. Finally, thermodynamic the cysteines in the segment E2 + C3 + C3' are not cross- considerations favor a-helical structures, wherein all poten- linked to other domains. tial hydrogen-bonding sites on the polypeptide backbone are Hydrophobic Trans-Membrane Domains T1, T2, and T3. internally bonded, in hydrophobic environments such as lip- The hydrophobic segments T1, T2, and T3 comprise, more ids (22). In a ,-sheet, most of these sites remain exposed, or less, residues 59-90 (32 residues), 151-177 (27 residues), resulting in a relatively high energy state.
Recommended publications
  • Conservation of Topology, but Not Conformation, of the Proteolipid Proteins of the Myelin Sheath
    The Journal of Neuroscience, January 1, 1997, 17(1):181–189 Conservation of Topology, But Not Conformation, of the Proteolipid Proteins of the Myelin Sheath Alexander Gow,1 Alexander Gragerov,1 Anthony Gard,2 David R. Colman,1 and Robert A. Lazzarini1 1Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, and 2Department of Structural and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama 36688 The proteolipid protein gene products DM-20 and PLP are during de novo synthesis. Surprisingly, the conformation (as adhesive intrinsic membrane proteins that make up $50% of opposed to topology) of DM-20 and PLP may differ, which has the protein in myelin and serve to stabilize compact myelin been inferred from the divergent effects that many missense sheaths at the extracellular surfaces of apposed membrane mutations have on the intracellular trafficking of these two lamellae. To identify which domains of DM-20 and PLP are isoforms. The 35 amino acid cytoplasmic peptide in PLP, which positioned topologically in the extracellular space to participate distinguishes this protein from DM-20, imparts a sensitivity to in adhesion, we engineered N-glycosylation consensus sites mutations in extracellular domains. This peptide may normally into the hydrophilic segments and determined the extent of function during myelinogenesis to detect conformational glycosylation. In addition, we assessed the presence of two changes originating across the bilayer from extracellular PLP translocation stop-transfer signals and, finally, mapped the interactions in trans and trigger intracellular events such as extracellular and cytoplasmic dispositions of four antibody membrane compaction in the cytoplasmic compartment.
    [Show full text]
  • In Silico Perspectives on the Prediction of the PLP’S Epitopes Involved in Multiple Sclerosis
    Iranian J Biotech. 2017 January;15(1):e1356 DOI: 10.15171/ijb.1356 Research Article In Silico Perspectives on the Prediction of the PLP’s Epitopes involved in Multiple Sclerosis Zahra Zamanzadeh1, Mitra Ataei1, Seyed Massood Nabavi2, Ghasem Ahangari1, Mehdi Sadeghi1, Mohammad Hosein Sanati1,* 1 Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran 2 Department of Neurology, Faculty of Public Health, Shahed University, Tehran, 18155/159, Iran *Corresponding author: Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e- Pajoohesh, 15th Km, Tehran-Karaj Highway, Tehran, 14965-161, Iran. Tel.: +98 21 44780365; Fax: +98 21 44780395; E-mail: [email protected] Received: 15 Sep. 2015 Revised: 29 May 2016 Accepted: 13 March 2017 Published online: 31 May 2017 Background: Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade. Objectives: The Purpose of this research is the prediction of the auto-antigen potency of the myelin proteolipid protein (PLP) in multiple sclerosis. Materials and Methods: As there wasn’t any tertiary structure of PLP available in the Protein Data Bank (PDB) and in order to characterize the structural properties of the protein, we modeled this protein using prediction servers. Meta prediction method, as a new perspective in silico, was performed to fi nd PLPs epitopes.
    [Show full text]
  • FUNCTIONAL ROLES for POST-TRANSLATIONAL MODIFICATIONS of T-SNARES in PLATELETS
    University of Kentucky UKnowledge Theses and Dissertations--Molecular and Cellular Biochemistry Molecular and Cellular Biochemistry 2016 FUNCTIONAL ROLES FOR POST-TRANSLATIONAL MODIFICATIONS OF t-SNARES IN PLATELETS Jinchao Zhang University of Kentucky, [email protected] Digital Object Identifier: http://dx.doi.org/10.13023/ETD.2016.044 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Zhang, Jinchao, "FUNCTIONAL ROLES FOR POST-TRANSLATIONAL MODIFICATIONS OF t-SNARES IN PLATELETS" (2016). Theses and Dissertations--Molecular and Cellular Biochemistry. 26. https://uknowledge.uky.edu/biochem_etds/26 This Doctoral Dissertation is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Molecular and Cellular Biochemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • In Silico Perspectives on the Prediction of the PLP's
    Iranian J Biotech. 2017 January;15(1):e1356 DOI: 10.15171/ijb.1356 Research Article In Silico Perspectives on the Prediction of the PLP’s Epitopes involved in Multiple Sclerosis Zahra Zamanzadeh1, Mitra Ataei1, Seyed Massood Nabavi2, Ghasem Ahangari1, Mehdi Sadeghi1, Mohammad Hosein Sanati1,* 1 Department of medical biotechnology. Institute of Medical Genetic, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, 14965/161 Iran 2 Department of Neurology, Faculty of Public Health, Shahed University, Tehran, 18155/159, Iran *Corresponding author: Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e- Pajoohesh, 15th Km, Tehran-Karaj Highway, Tehran, 14965-161, Iran. Tel.: +98 21 44780365; Fax: +98 21 44780395; E-mail: [email protected] Received: 15 Sep. 2015 Revised: 29 May 2016 Accepted: 13 March 2017 Published online: 31 May 2017 Background: Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade. Objectives: The Purpose of this research is the prediction of the auto-antigen potency of the myelin proteolipid protein (PLP) in multiple sclerosis. Materials and Methods: As there wasn’t any tertiary structure of PLP available in the Protein Data Bank (PDB) and in order to characterize the structural properties of the protein, we modeled this protein using prediction servers. Meta prediction method, as a new perspective in silico, was performed to fi nd PLPs epitopes.
    [Show full text]
  • A Myelin Proteolipid Protein-Lacz Fusion Protein Is Developmentally Regulated and Targeted to the Myelin Membrane in Transgel C Mice Patricia A
    A Myelin Proteolipid Protein-LacZ Fusion Protein Is Developmentally Regulated and Targeted to the Myelin Membrane in Transgel c Mice Patricia A. Wight, Cynthia S. Duchala, Carol Readhead,* and Wendy B. Macklin Mental Retardation Research Center, UCLA Medial Center, Los Angeles, California 90024; and * Department of Biology, California Institute of Technology, Pasadena, California 91125 Abstract. Transgenic mice were generated with a fu- expression occurred in embryos, presumably in pre- or sion gene carrying a portion of the murine myelin pro- noumyelinating cells, rather extensively throughout the teolipid protein (PLP) gene, including the first intron, peripheral nervous system and within very discrete fused to the E. coli LacZ gene. Three transgenic lines regions of the central nervous system. Surprisingly, were derived and all lines expressed the transgene in /~-galactosidase activity was localized predominantly in central nervous system white matter as measured by a the myelin in these transgenic animals, suggesting that histochemical assay for the detection of/~-galactosi- the NH2-terminal 13 amino acids of PLP, which were Downloaded from dase activity. PLP-LacZ transgene expression was present in the PLP-LacZ gene product, were sufficient regulated in both a spatial and temporal manner, con- to target the protein to the myelin membrane. Thus, sistent with endogenous PLP expression. Moreover, the first half of the PLP gene contains sequences suf- the transgene was expressed specifically in oligoden- ficient to direct both spatial and temporal gene regula- drocytes from primary mixed glial cultures prepared tion and to encode amino acids important in targeting www.jcb.org from transgenic mouse brains and appeared to be de- the protein to the myelin membrane.
    [Show full text]
  • 11743.Full.Pdf
    The Journal of Neuroscience, November 8, 2006 • 26(45):11743–11752 • 11743 Cellular/Molecular Perturbed Interactions of Mutant Proteolipid Protein/DM20 with Cholesterol and Lipid Rafts in Oligodendroglia: Implications for Dysmyelination in Spastic Paraplegia Eva-Maria Kra¨mer-Albers,1,3 Katja Gehrig-Burger,2 Christoph Thiele,4 Jacqueline Trotter,1 and Klaus-Armin Nave3,5 1Department of Biology, Unit of Molecular Cell Biology, and 2Institute of Biochemistry, University of Mainz, 55099 Mainz, Germany, 3Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Go¨ttingen, Germany, 4Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany, and 5Hertie Institute of Multiple Sclerosis Research, 37075 Go¨ttingen, Germany Missense mutations in the human PLP1 gene lead to dysmyelinating diseases with a broad range of clinical severity, ranging from severe Pelizaeus–Merzbacher disease (PMD) to milder spastic paraplegia type 2 (SPG-2). The molecular pathology has been generally attributed to endoplasmic reticulum (ER) retention of misfolded proteolipid protein (PLP) (and its splice isoform DM20) and induction of the unfolded protein response. As opposed to previous studies of heterologous expression systems, we have analyzed PLP/DM20 trafficking in oligodendroglial cells, thereby revealing differences between PMD and SPG-2-associated PLP/DM20 isoforms. PLP A242V and DM20 A242V ( jimpy-msd in mice), associated with severe PMD-like phenotype in vivo, were not only retained in the ER but also interfered witholigodendroglialprocessformation.Incontrast,glialcellsexpressingSPG-2-associatedPLP I186T orDM20 I186T (rumpshakerinmice) developed processes, and mutant PLP/DM20 reached a late endosomal/lysosomal compartment. Unexpectedly, PLP/DM20 with either substitution exhibited impaired cholesterol binding, and the association with lipid raft microdomains was strongly reduced.
    [Show full text]
  • R-Ras Gtpases Signaling Role in Myelin Neurodegenerative Diseases
    International Journal of Molecular Sciences Review R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases Berta Alcover-Sanchez , Gonzalo Garcia-Martin , Francisco Wandosell and Beatriz Cubelos * Departamento de Biología Molecular and Centro Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, 28049 Madrid, Spain; [email protected] (B.A.-S.); [email protected] (G.G.-M.); [email protected] (F.W.) * Correspondence: [email protected]; Tel.: +34-91-1964561 Received: 23 July 2020; Accepted: 14 August 2020; Published: 17 August 2020 Abstract: Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration. Keywords: myelin; oligodendrocyte; neurodegeneration; PI3K/Akt/mTOR; ERK1/2-MAPK; Wnt/β-catenin; R-Ras 1.
    [Show full text]
  • Isolation of a Chloroplast N,N'-Dicyclohexylcarbodiimide
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 6, pp. 2375-2378, June 1977 Biochemistry Isolation of a chloroplast N,N'-dicyclohexylcarbodiimide-binding proteolipid, active in proton translocation (1-butanol extraction/reconstitution of liposomes/dicyclohexylcarbodiimide-sensitive proton channel) NATHAN NELSON*, ESTHER EYTAN*, BAT-EL NOTSANI*, HANS SIGRISTt, KRISTINE SIGRIST-NELSONt, AND CARLOS GITLERt * Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; and tDepartment of Membrane Research, The Weizmann Institute of Science, Rehovot, Israel Communicated by Michael Sela, April 4, 1977 ABSTRACT The NN'-dicyclohexylcarbodiimide-binding MATERIALS AND METHODS proteolipid from lettuce chloroplast membranes has been pu- rified by a novel, rapid technique involving 1-butanol extraction Chloroplasts from lettuce were prepared as previously described and ether precipitation. Reconstitution of this proteolipid into (13) with the following exceptions: bovine serum albumin was liposomes composed of chloroplast lipids and subsequent in- omitted; an extra wash with 0.15 M NaCI was introduced; and corporation of bacteriorhodopsin resulted in the formation of chloroplasts were suspended in 0.01 M N-[tris(hydroxy- liposomes exhibiting a light-dependent accumulation of protons. This accumulation was significantly enhanced upon addition methyl)mnethyl]glycine (Tricine) (pH 8) at a chlorophyll con- of NN'-dicyclohexylcarbodiimide at concentrations similar to centration of 3-4 mg/mi. those that inhibit chloroplast adenosinetriphosphatase
    [Show full text]
  • Aspects of Subunit Interactions in the Chloroplast ATP Synthase'
    Plant Physiol. (1993) 102: 241-249 Aspects of Subunit Interactions in the Chloroplast ATP Synthase’ 1. lsolation of a Chloroplast Coupling Factor 1-Subunit 111 Complex from Spinach Thylakoids Downloaded from https://academic.oup.com/plphys/article/102/1/241/6066835 by guest on 23 September 2021 Carolyn M. Wetzel’ and Richard E. McCarty* Field of Botany, Cornell University, Ithaca, New York 14853 (C.M.W.); and Department of Biology, The Johns Hopkins University, Baltimore, Maryland 2121 8 (R.E.M.) decreasing molecular mass. CFl has a molecular mas of A chloroplast ATP synthase complex (CFl [chloroplast-coupling 400,000 D (Moroney et al., 1983) and a subunit stoichiometry factor l]-CFo[membrane-spanning portion of chloroplast ATP syn- of a3P3yk(Süss and Schmidt, 1982; McCarty and Moroney, thase]) depleted of all CF, subunits except subunit 111 (also known 1985). CFo contains four different subunits, with a probable as the proteolipid subunit) was purified to study the interaction stoichiometry of 111121116-121VIand molecular mass (for 11112) between CFl and subunit 111. Subunit 111 has a putative role in of 171,000 D (Süss and Schmidt, 1982; Fromme et al., 1987a, proton translocation across the thylakoid membrane during pho- 1987b; Grotjohann and Graber, 1990). Based on hydropathy tophosphorylation; therefore, an accurate model of subunit inter- actions involving subunit 111 will be valuable for elucidating the plot analysis of the amino acid sequences of CFo subunits I, mechanism and regulation of energy coupling. Purification of the 111, and IV, each appears to contain at least one membrane- complex from a crude CFl-CFo preparation from spinach (Spinacia spanning region in addition to hydrophilic regions (Hudson oleracea) thylakoids was accomplished by detergent treatment et al., 1987).
    [Show full text]
  • Hifa Regulates Developmental Myelination Independent of Autocrine Wnt Signaling
    The Journal of Neuroscience, January 13, 2021 • 41(2):251–268 • 251 Development/Plasticity/Repair HIFa Regulates Developmental Myelination Independent of Autocrine Wnt Signaling Sheng Zhang,1,3 Yan Wang,1,3 Jie Xu,3 Bokyung Kim,1 Wenbin Deng,2,3 and Fuzheng Guo1,3 1Department of Neurology, School of Medicine, University of California, Davis, California 95616, 2Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616, and 3Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children—Northern California, Sacramento, California 95817 The developing CNS is exposed to physiological hypoxia, under which hypoxia-inducible factor a (HIFa) is stabilized and plays a crucial role in regulating neural development. The cellular and molecular mechanisms of HIFa in developmental mye- lination remain incompletely understood. A previous concept proposes that HIFa regulates CNS developmental myelination by activating the autocrine Wnt/b-catenin signaling in oligodendrocyte progenitor cells (OPCs). Here, by analyzing a battery of genetic mice of both sexes, we presented in vivo evidence supporting an alternative understanding of oligodendroglial HIFa-regulated developmental myelination. At the cellular level, we found that HIFa was required for developmental myeli- nation by transiently controlling upstream OPC differentiation but not downstream oligodendrocyte maturation and that HIFa dysregulation in OPCs but not oligodendrocytes disturbed normal developmental myelination. We demonstrated that HIFa played a minor, if any, role in regulating canonical Wnt signaling in the oligodendroglial lineage or in the CNS. At the molecular level, blocking autocrine Wnt signaling did not affect HIFa-regulated OPC differentiation and myelination. We fur- ther identified HIFa–Sox9 regulatory axis as an underlying molecular mechanism in HIFa-regulated OPC differentiation.
    [Show full text]
  • Analysis of Gene Expression in the Normal and Malignant Cerebellum
    Analysis of Gene Expression in the Normal and Malignant Cerebellum ROBERT J. WECHSLER-REYA Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710 ABSTRACT The developing nervous system consists of a small number of multipotent precursors that undergo extensive proliferation to generate the neurons and glia that make up the adult brain. Elucidating the mechanisms that control the growth and differentiation of these cells is important not only for understanding normal neural development but also for understanding the etiology of central nervous system tumors. A particularly striking example of this is in the cerebellum. Recent studies have suggested that the Sonic hedgehog-Patched signaling pathway plays a critical role in regulating the proliferation of cerebellar granule cell precursors and is also a major target of mutation in the cerebellar tumor medulloblastoma. In light of these observations, identification of additional genes that control cerebellar growth and differentiation is likely to provide important insight into the basis of cerebellar tumors. Similarly, analysis of gene expression in medulloblastoma will no doubt shed light on previously unknown signaling pathways that regulate normal cerebellar development. The advent of high-throughput gene expression analysis techniques — such as adapter-tagged competitive polymerase chain reaction (ATAC-PCR), serial analysis of gene expression (SAGE), and DNA microarrays — makes identification of such genes faster and easier than ever before. This review summarizes recent studies of gene expression in the cerebellum and discusses the value of such approaches for understanding development and tumorigenesis in this tissue. I. Development of Cerebellar Granule Cells The cerebellum is required for motor coordination and has been implicated in a variety of cognitive and affective functions as well (Leiner et al., 1993; Altman and Bayer, 1997).
    [Show full text]
  • The Myelin Proteolipid Plasmolipin Forms Oligomers and Induces Liquid
    © 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 2293-2302 doi:10.1242/jcs.166249 RESEARCH ARTICLE The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex Yakey Yaffe1, Ilan Hugger1, Inbar Nevo Yassaf1, Jeanne Shepshelovitch1, Ella H. Sklan2, Yechiel Elkabetz3, Adva Yeheskel4, Metsada Pasmanik-Chor4, Carola Benzing5, Alexander Macmillan6, Katharina Gaus5, Yael Eshed-Eisenbach7, Elior Peles7 and Koret Hirschberg1,* ABSTRACT a compact and dense environment. The fundamental importance of Myelin comprises a compactly stacked massive surface area of myelin is emphasized by the severe consequences of various protein-poor thick membrane that insulates axons to allow fast signal demyelinating diseases, such as multiple sclerosis and other propagation. Increasing levels of the myelin protein plasmolipin (PLLP) neuropathies (Simons et al., 2002). The lipid and protein were correlated with post-natal myelination; however, its function is composition of the myelin membrane is unique, although it has unknown. Here, the intracellular localization and dynamics of PLLP some similarities with epithelial apical membranes (Frank et al., were characterized in primary glial and cultured cells using 1998). Unlike most biological membranes, myelin is relatively fluorescently labeled PLLP and antibodies against PLLP. PLLP protein poor (Aggarwal et al., 2011b). Myelin is highly enriched in localized to and recycled between the plasma membrane and the sphingolipids and glycosphingolipids of the galactosylceramides and Golgi complex. In the Golgi complex, PLLP forms oligomers based on sulfatides species (Aggarwal et al., 2011a). Another key feature of myelin lipids is that the N-linked fatty acyl moieties are usually fully fluorescence resonance energy transfer (FRET) analyses.
    [Show full text]