Technical Data Reports Containing Habitat Maps at Local and Regional Scales TDR MI-2

Total Page:16

File Type:pdf, Size:1020Kb

Technical Data Reports Containing Habitat Maps at Local and Regional Scales TDR MI-2 APPENDIX AIR10-C Technical Data Reports Containing Habitat Maps at Local and Regional Scales TDR MI-2 - Juvenile Dungeness Crabs TDR PORT METRO VANCOUVER | Roberts Bank Terminal 2 Information Request Response This page is intentionally left blank ROBERTS BANK TERMINAL 2 TECHNICAL DATA REPORT Marine Invertebrates Juvenile Dungeness Crabs Prepared for: Port Metro Vancouver 100 The Pointe, 999 Canada Place Vancouver, BC V6C 3T4 Prepared by: Hemmera Envirochem Inc. 18th floor 4730 Kingsway Burnaby, BC V5H 0C6 File: 302-042.02 December 2014 Port Metro Vancouver Hemmera RBT2 – Juvenile Dungeness Crabs December 2014 Technical Report/Technical Data Report Disclaimer The Canadian Environmental Assessment Agency determined the scope of the proposed Roberts Bank Terminal 2 Project (RBT2 or the Project) and the scope of the assessment in the Final Environmental Impact Statement Guidelines (EISG) issued January 7, 2014. The scope of the Project includes the project components and physical activities to be considered in the environmental assessment. The scope of the assessment includes the factors to be considered and the scope of those factors. The Environmental Impact Statement (EIS) has been prepared in accordance with the scope of the Project and the scope of the assessment specified in the EISG. For each component of the natural or human environment considered in the EIS, the geographic scope of the assessment depends on the extent of potential effects. At the time supporting technical studies were initiated in 2011, with the objective of ensuring adequate information would be available to inform the environmental assessment of the Project, neither the scope of the Project nor the scope of the assessment had been determined. Therefore, the scope of supporting studies may include physical activities that are not included in the scope of the Project as determined by the Agency. Similarly, the scope of supporting studies may also include spatial areas that are not expected to be affected by the Project. This out-of-scope information is included in the Technical Report (TR)/Technical Data Report (TDR) for each study, but may not be considered in the assessment of potential effects of the Project unless relevant for understanding the context of those effects or to assessing potential cumulative effects. Port Metro Vancouver Hemmera RBT2 – Juvenile Dungeness Crabs - i - December 2014 EXECUTIVE SUMMARY Port Metro Vancouver (PMV) is assessing the potential to develop the Roberts Bank Terminal 2 Project (RBT2 or the Project), a proposed new three-berth marine terminal at Roberts Bank in Delta, B.C. The Project is part of PMV’s Container Capacity Improvement Program (CCIP), a long-term strategy to deliver projects to meet anticipated growth in demand for container capacity to 2030. This technical data report describes the results of Juvenile Dungeness Crab (Metacarcinus magister) Study. Dungeness crabs support valuable commercial, recreational, and Aboriginal (CRA) fisheries throughout B.C. waters, including Roberts Bank, and are valued by local Aboriginal groups, who harvest them for food, and social and ceremonial purposes. While the importance of estuaries as nursery habitat for juvenile Dungeness crabs has been well documented, site-specific information on juvenile habitat use at Roberts Bank was lacking. The objective of this study was to examine whether juvenile crabs exhibit preferences for certain macrophyte habitats by comparing densities of juvenile crabs across different ecotypes. This was accomplished by conducting random stratified quadrat surveys over two summers (2012 and 2013). Results demonstrate that: i) there is substantial variability in densities of settling juvenile Dungeness crabs; ii) settlement is patchy in both time and space; iii) habitat preferences change as crabs grow, with Ulva (i.e., sea lettuce) and Zostera (i.e., eelgrass) beds preferred for differing developmental stages of juvenile Dungeness crabs; and, iv) age 1+ crabs are largely absent from vegetated intertidal areas at low tide, but were frequently observed in tidal channels in the low intertidal zone. Further, total percent macrophyte cover was positively correlated with crab density and negatively correlated with crab size, suggesting that age 0+ crabs settle in higher numbers in areas that offer high vegetative relief, but require less cover as they grow. Roberts Bank is used as a settlement and rearing habitat by Dungeness crabs; and the presence of age 0+ and 1+ juveniles suggests a local residence time of at least two consecutive summers. Ontogenetic shifts (i.e., change in development of an organism from one life stage to another) in habitat use were documented, and highlight the importance of Ulva, eelgrass, and tidal channels, at varying stages of juvenile development. Port Metro Vancouver Hemmera RBT2 – Juvenile Dungeness Crabs - ii - December 2014 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................... I LIST OF ACRONYMS AND SYMBOLS ...................................................................................................... IV GLOSSARY ........................................................................................................................................... IV 1.0 INTRODUCTION .............................................................................................................................. 1 1.1 PROJECT BACKGROUND ........................................................................................................ 1 1.2 JUVENILE DUNGENESS CRAB OVERVIEW ................................................................................ 1 2.0 REVIEW OF AVAILABLE LITERATURE AND DATA ................................................................... 3 2.1 LIFE HISTORY & BEHAVIOUR .................................................................................................. 3 2.2 ECOLOGICAL ROLE ................................................................................................................ 4 2.3 HABITAT REQUIREMENTS AND LIMITING FACTORS ................................................................... 5 2.4 CONSERVATION STATUS AND MANAGEMENT ........................................................................... 6 2.5 SUMMARY OF PREVIOUS STUDIES AT ROBERTS BANK ............................................................. 7 3.0 METHODS ....................................................................................................................................... 8 3.1 STUDY AREA ......................................................................................................................... 8 3.2 TEMPORAL SCOPE................................................................................................................. 8 3.3 STUDY METHODS .................................................................................................................. 8 3.4 DATA ANALYSIS ................................................................................................................... 12 4.0 RESULTS ...................................................................................................................................... 13 4.1 STUDY RESULTS ................................................................................................................. 13 4.2 INCIDENTAL OBSERVATIONS ................................................................................................. 22 5.0 DISCUSSION ................................................................................................................................. 23 5.1 DISCUSSION OF KEY FINDINGS ............................................................................................. 23 5.2 DATA GAPS AND LIMITATIONS .............................................................................................. 25 6.0 CLOSURE ...................................................................................................................................... 26 7.0 REFERENCES ............................................................................................................................... 27 8.0 STATEMENT OF LIMITATIONS ................................................................................................... 33 List of Tables Table 1-1 Juvenile Dungeness Crabs Study Components and Major Objectives .............................. 1 Table 4-1 Summary of Mean Percent Vegetative Cover, and Juvenile Crab Density and Carapace Width, over 2012 and 2013 Sampling Periods ................................................................. 14 Port Metro Vancouver Hemmera RBT2 – Juvenile Dungeness Crabs - iii - December 2014 List of Figures Figure 3-1 Juvenile Dungeness Crabs Study Area, Dominant Habitat Types and Proposed RBT2 Footprint at Roberts Bank ................................................................................................. 10 Figure 3-2 Sampling Locations for Juvenile Dungeness Crabs at Roberts Bank in 2012 (blue) and 2013 (green) ...................................................................................................................... 11 Figure 4-1 Presence/Absence of Juvenile Dungeness Crabs at Sampling Locations across Roberts Bank (2012) ....................................................................................................................... 15 Figure 4-2 Presence/Absence of Juvenile Dungeness Crabs at Sampling Locations
Recommended publications
  • Abstracts of Technical Papers, Presented at the 104Th Annual Meeting, National Shellfisheries Association, Seattle, Ashingtw On, March 24–29, 2012
    W&M ScholarWorks VIMS Articles 4-2012 Abstracts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012 National Shellfisheries Association Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation National Shellfisheries Association, Abstr" acts of Technical Papers, Presented at the 104th Annual Meeting, National Shellfisheries Association, Seattle, ashingtW on, March 24–29, 2012" (2012). VIMS Articles. 524. https://scholarworks.wm.edu/vimsarticles/524 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 31, No. 1, 231, 2012. ABSTRACTS OF TECHNICAL PAPERS Presented at the 104th Annual Meeting NATIONAL SHELLFISHERIES ASSOCIATION Seattle, Washington March 24–29, 2012 231 National Shellfisheries Association, Seattle, Washington Abstracts 104th Annual Meeting, March 24–29, 2012 233 CONTENTS Alisha Aagesen, Chris Langdon, Claudia Hase AN ANALYSIS OF TYPE IV PILI IN VIBRIO PARAHAEMOLYTICUS AND THEIR INVOLVEMENT IN PACIFICOYSTERCOLONIZATION........................................................... 257 Cathryn L. Abbott, Nicolas Corradi, Gary Meyer, Fabien Burki, Stewart C. Johnson, Patrick Keeling MULTIPLE GENE SEGMENTS ISOLATED BY NEXT-GENERATION SEQUENCING
    [Show full text]
  • Biodiversity Risk and Benefit Assessment for Pacific Oyster (Crassostrea Gigas) in South Africa
    Biodiversity Risk and Benefit Assessment for Pacific oyster (Crassostrea gigas) in South Africa Prepared in Accordance with Section 14 of the Alien and Invasive Species Regulations, 2014 (Government Notice R 598 of 01 August 2014), promulgated in terms of the National Environmental Management: Biodiversity Act (Act No. 10 of 2004). September 2019 Biodiversity Risk and Benefit Assessment for Pacific oyster (Crassostrea gigas) in South Africa Document Title Biodiversity Risk and Benefit Assessment for Pacific oyster (Crassostrea gigas) in South Africa. Edition Date September 2019 Prepared For Directorate: Sustainable Aquaculture Management Department of Environment, Forestry and Fisheries Private Bag X2 Roggebaai, 8001 www.daff.gov.za/daffweb3/Branches/Fisheries- Management/Aquaculture-and-Economic- Development Originally Prepared By Dr B. Clark (2012) Anchor Environmental Consultants Reviewed, Updated and Mr. E. Hinrichsen Recompiled By AquaEco as commisioned by Enterprises at (2019) University of Pretoria 1 | P a g e Biodiversity Risk and Benefit Assessment for Pacific oyster (Crassostrea gigas) in South Africa CONTENT 1. INTRODUCTION .............................................................................................................................. 9 2. PURPOSE OF THIS RISK ASSESSMENT ..................................................................................... 9 3. THE RISK ASSESSMENT PRACTITIONER ................................................................................. 10 4. NATURE OF THE USE OF PACIFIC OYSTER
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • Native Decapoda
    NATIVE DECAPODA Dungeness crab - Metacarcinus magister DESCRIPTION This crab has white-tipped pinchers on the claws, and the top edges and upper pincers are sawtoothed with dozens of teeth along each edge. The last three joints of the last pair of walking legs have a comb-like fringe of hair on the lower edge. Also the tip of the last segment of the tail flap is rounded as compared to the pointed last segment of many other crabs. RANGE Alaska's Aleutian Islands south to Pt Conception in California SIZE Carapace width to 25 cm (9 inches), but typically less than 20 cm STATUS Native; see the full record at http://www.dfg.ca.gov/marine/dungeness_crab.asp COLOR Light reddish brown on the back, with a purplish wash anteriorly in some specimens. Underside whitish to light orange. HABITAT Rock, sand and eelgrass TIDAL HEIGHT Subtidal to offshore SALINITY Normal range 10–32ppt; 15ppt optimum for hatching TEMPERATURE Normally found from 3–19°C SIMILAR SPECIES Unlike the green crab, it has 10 spines on either side of the eye sockets and grows much larger. It can be distinguished from Metacarcinus gracilis which also has white claws, by the carapace being widest at the 10th tooth vs the 9th in M. gracilis . Unlike the red rock crab it has a tooth on the dorsal margin of its white tipped claw (this and other similar Cancer crabs have black tipped claws). ©Aaron Baldwin © bioweb.uwlax.edu red rock crab - note black tipped claws Plate Watch Monitoring Program .
    [Show full text]
  • Open Ocean Intake Effects Study
    City of Santa Cruz Water Department & Soquel Creek Water District scwd2 Desalination Program Open Ocean Intake Effects Study December 2010 Submitted to: Ms. Heidi Luckenbach City of Santa Cruz 212 Locust Street Santa Cruz, CA 95060 Prepared by: Environmental ESLO2010-017.1 [Blank Page] ACKNOWLEDGEMENTS Tenera Environmental wishes to acknowledge the valuable contributions of the Santa Cruz Water Department, Soquel Creek Water District, and scwd² Task Force in conducting the Open Ocean Intake Effects Study. Specifically, Tenera would like to acknowledge the efforts of: City of Santa Cruz Water Department Soquel Creek Water District Bill Kocher, Director Laura Brown, General Manager Linette Almond, Engineering Manager Melanie Mow Schumacher, Public Information Heidi R. Luckenbach, Program Coordinator Coordinator Leah Van Der Maaten, Associate Engineer Catherine Borrowman, Professional and Technical scwd² Task Force Assistant Ryan Coonerty Todd Reynolds, Kennedy/Jenks and scwd² Bruce Daniels Technical Advisor Bruce Jaffe Dan Kriege Thomas LaHue Don Lane Cynthia Mathews Mike Rotkin Ed Porter Tenera’s project team included the following members: David L. Mayer, Ph.D., Tenera Environmental President and Principal Scientist John Steinbeck, Tenera Environmental Vice President and Principal Scientist Carol Raifsnider, Tenera Environmental Director of Operations and Principal Scientist Technical review and advice was provided by: Pete Raimondi, Ph.D., UCSC, Professor of Ecology and Evolutionary Biology in the Earth and Marine Sciences Dept. Gregor
    [Show full text]
  • Harbor Seal Species Profile Encyclopedia of Puget Sound June 9, 2014
    (Photograph by G. E. Davis) Harbor seal species profile Encyclopedia of Puget Sound June 9, 2014 Jacqlynn C. Zier and Joseph K. Gaydos* SeaDoc Society / UC Davis’ Karen C. Drayer Wildlife Health Center Orcas Island Office 942 Deer Harbor Road, Eastsound, WA 98245 *Corresponding author [email protected] Table of Contents Introduction ............................................................................................................. 3 Distribution .............................................................................................................. 3 Global .............................................................................................................................................................................. 3 Local ................................................................................................................................................................................ 3 1 Populations .............................................................................................................. 4 Genetic diversity ........................................................................................................................................................ 4 Population size ........................................................................................................................................................... 5 Longevity and survival ..........................................................................................................................................
    [Show full text]
  • 1 Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince
    Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. April 13, 2020 ABSTRACT This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska, taken in May of 2018 and 2019. The study was done to identify zooplankton, in particular the larvae of benthic non-indigenous species (NIS). Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in Port Valdez and nearby in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene (the most commonly used DNA barcode for animals) was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. In 2018, 257 operational taxonomic units (OTU; an approximation of biological species) were found and 60 were identified to species. In 2019, 523 OTU were found and 126 were identified to species. Most OTU had no reference sequence and therefore could not be identified. Most identified species were crustaceans and mollusks, and none were non-native. Certain species typical of fouling communities, such as Porifera (sponges) and Bryozoa (moss animals) were scarce. Larvae of many species in these phyla are poorly dispersing, such that they will be found in abundance only in close proximity to adult populations.
    [Show full text]
  • Methodology of the Pacific Marine Ecological Classification System and Its Application to the Northern and Southern Shelf Bioregions
    Canadian Science Advisory Secretariat (CSAS) Research Document 2016/035 Pacific Region Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions Emily Rubidge1, Katie S. P. Gale1, Janelle M. R. Curtis2, Erin McClelland3, Laura Feyrer4, Karin Bodtker5, Carrie Robb5 1Institute of Ocean Sciences Fisheries & Oceans Canada P.O. Box 6000 Sidney, BC V8L 4B2 2Pacific Biological Station Fisheries & Oceans Canada 3190 Hammond Bay Rd Nanaimo, BC V9T 1K6 3EKM Scientific Consulting 4BC Ministry of Environment P.O. Box 9335 STN PROV GOVT Victoria, BC V8W 9M1 5Living Oceans Society 204-343 Railway St. Vancouver, BC V6A 1A4 May 2016 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research documents are produced in the official language in which they are provided to the Secretariat. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044 Correct citation for this publication: Rubidge, E., Gale, K.S.P., Curtis, J.M.R., McClelland, E., Feyrer, L., Bodtker, K., and Robb, C. 2016. Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions.
    [Show full text]
  • Redirect Notice
    UC San Diego Research Theses and Dissertations Title The population dynamics of mitten crab larvae in the San Francisco Bay Permalink https://escholarship.org/uc/item/01g8c0ck Author Gonzales, Vanessa Alexandra Publication Date 2010-10-01 eScholarship.org Powered by the California Digital Library University of California ABSTRACT THE POPULATION DYNAMICS OF MITTEN CRAB LARVAE IN THE SAN FRANCISCO BAY The Chinese mitten crab, Eriocheir sinensis, has a history of invasions in numerous countries. In 1992, the Chinese mitten crab was introduced to the San Francisco Bay/Delta system. Since its invasion in the San Francisco Bay, it has become an aquatic nuisance species. Little is known about the population dynamics of the megalopa stage of the Chinese mitten crab in the San Francisco Bay estuary, particularly the megalopa stage. Light traps are often used to sample marine larvae and can provide measures for relative abundance of larvae between sampling locations. As part of an ongoing study to monitor mitten crab larvae in the San Francisco Bay, light trap and plankton tow samples were analyzed for mitten crab megalopae and zoeae. In order to implement low cost sampling devices for mitten crab megalopae such as light traps, it is necessary to be able to identify their larvae in collected samples. Thus, the main objective of this work was to develop a means to distinguish mitten crab megalopae from other native and invasive brachyuran megalopae inhabiting the San Francisco Bay Estuary. The minimal amount of mitten crab megalopae found in light trap samples may be linked to the recent decline of mitten crab zoeae in San Pablo Bay.
    [Show full text]
  • South Bay Ocean Outfall Annual Receiving Waters Monitoring & Assessment Report
    South Bay Ocean Outfall Annual Receiving Waters Monitoring & Assessment Report 2015 City of San Diego Ocean Monitoring Program Environmental Monitoring & Technical Services Division South Bay Ocean Outfall Annual Receiving Waters Monitoring & Assessment Report, 2015 (Order No. R9-2013-0006; NPDES No. CA0109045) Prepared by: City of San Diego Ocean Monitoring Program Environmental Monitoring & Technical Services Division, Public Utilities Department Timothy D. Stebbins, Editor Ami K. Latker, Managing Editor June 2016 Table of Contents Production Credits and Acknowledgements ..........................................................................iii Table and Figure Listing ..........................................................................................................iv Acronyms and Abbreviations ...................................................................................................x Executive Summary ...................................................................................................................1 T. Stebbins, A. Latker Chapter 1. General Introduction ............................................................................................7 T. Stebbins, A. Latker Background .............................................................................................................................7 Receiving Waters Monitoring .................................................................................................7 Literature Cited .......................................................................................................................9
    [Show full text]
  • Scavenging Crustacean Fauna in the Chilean Patagonian Sea Guillermo Figueroa-Muñoz1,2, Marco Retamal3, Patricio R
    www.nature.com/scientificreports OPEN Scavenging crustacean fauna in the Chilean Patagonian Sea Guillermo Figueroa-Muñoz1,2, Marco Retamal3, Patricio R. De Los Ríos 4,5*, Carlos Esse6, Jorge Pérez-Schultheiss7, Rolando Vega-Aguayo1,8, Luz Boyero 9,10 & Francisco Correa-Araneda6 The marine ecosystem of the Chilean Patagonia is considered structurally and functionally unique, because it is the transition area between the Antarctic climate and the more temperate Pacifc region. However, due to its remoteness, there is little information about Patagonian marine biodiversity, which is a problem in the face of the increasing anthropogenic activity in the area. The aim of this study was to analyze community patterns and environmental characteristics of scavenging crustaceans in the Chilean Patagonian Sea, as a basis for comparison with future situations where these organisms may be afected by anthropogenic activities. These organisms play a key ecological role in marine ecosystems and constitute a main food for fsh and dolphins, which are recognized as one of the main tourist attractions in the study area. We sampled two sites (Puerto Cisnes bay and Magdalena sound) at four diferent bathymetric strata, recording a total of 14 taxa that included 7 Decapoda, 5 Amphipoda, 1 Isopoda and 1 Leptostraca. Taxon richness was low, compared to other areas, but similar to other records in the Patagonian region. The crustacean community presented an evident diferentiation between the frst stratum (0–50 m) and the deepest area in Magdalena sound, mostly infuenced by Pseudorchomene sp. and a marked environmental stratifcation. This species and Isaeopsis sp. are two new records for science.
    [Show full text]
  • King County Zooplankton Monitoring Annual Report 2017
    King County Zooplankton Monitoring Annual Report 2017 31 August 2018 Dr. Julie E. Keister Box 357940 Seattle, WA 98195 (206) 543-7620 [email protected] Prepared by: Dr. Julie E. Keister, Amanda Winans, and BethElLee Herrmann King County Zooplankton Monitoring Annual Report 2017 Project Oversight and Report Preparation The zooplankton analyses reported herein were conducted in Dr. Julie E. Keister’s laboratory at the University of Washington, School of Oceanography. Dr. Keister designed the protocols for the field zooplankton sampling and laboratory analysis. Field sampling was conducted by the King County Department of Natural Resources and Parks, Water and Land Resources Division. Taxonomic analysis was conducted by Amanda Winans, BethElLee Herrmann, and Michelle McCartha at the University of Washington. This report was prepared by Winans and Herrmann, with oversight by Dr. Keister. Acknowledgments We would like to acknowledge the following individuals and organizations for their contributions to the successful 2017 sampling and analysis of the King County zooplankton monitoring in the Puget Sound: From King County, we thank Kimberle Stark, Wendy Eash-Loucks, the King County Environmental Laboratory field scientists, and the captain and crew of the R/V SoundGuardian. We would also like to thank our collaborators Moira Galbraith and Kelly Young from Fisheries and Oceans Canada Institute of Ocean Sciences for their expert guidance in species identification and Cheryl Morgan from Oregon State University for assistance in designing sampling and analysis protocols. King County Water and Land Resources Division provided funding for these analyses, with supplemental funding provided by Long Live the Kings for analysis of oblique tow (bongo net) samples as part of the Salish Sea Marine Survival Project.
    [Show full text]