2.5 Volume Illumination of the Flow

Total Page:16

File Type:pdf, Size:1020Kb

2.5 Volume Illumination of the Flow 46 2 Physical and Technical Background Side view Light sheet 100 mm 200 mm 60 mm Top view Thickness Fig. 2.28. Light sheet optics 100 mm 200 mm 60 mm using three cylindrical lenses. Furthermore cases c and d in figure 2.29 should be used in order to min- imize aberrations. For other situations it might be possible to tilt the lens slightly in order to avoid reflections on to other lenses or towards the laser or even into the resonator. 2.5 Volume Illumination of the Flow Whereas most conventional PIV investigations utilize light sheet illumination, they are typically not a practical source of illumination for micro-flows, due to a lack of optical access along with significant diffraction in light sheet forming optics. Consequently, the flow must be volume illuminated, leaving two choices for the visualization of the seed particles – with an optical system whose depth of field exceeds the depth of the flow being measured or with an optical system whose depth of field is small compared to that of the flow. Both of these techniques have been used in various implementations of μPIV. Cummings [281] uses a large depth of field imaging system to explore electrokinetic and pressure-driven flows. The advantage of the large depth of field optical system is that all particles in the field of view of the optical system are well-focused Not recommended Recommended a) c) d) b) Fig. 2.29. General consider- ations on the orientation of lenses inside the light sheet optics. 2.5 Volume Illumination of the Flow 47 and contribute to the correlation function comparably. The disadvantage of this scheme is that all knowledge of the depth of each particle is lost, resulting velocity fields that are completely depth-averaged. For example in a pressure- driven flow where the velocity profile is expected to be parabolic with depth, the fast moving particles near the center of the channel will be focused at the same time as the slow moving particles near the wall. The measured velocity will be a weighted-average of the velocities of all the particles imaged. Cummings [281] addresses this problem with advanced processing techniques that will not be covered here. The second choice of imaging systems is one whose depth of field is smaller than that of the flow domain, as shown in Figure 2.30. The optical system will then sharply focus those particles that are within the depth of field δ of the imaging system while the remaining particles will be unfocused – to greater or lesser degrees – and contribute to the background noise level. Since the optical system is being used to define thickness of the measurement domain, it is important to characterize exactly how thick the depth of field, or more appropriately, the depth of correlation zcorr, is. The distinction between depth of field and depth of correlation is an important although subtle one. The depth of field refers to distance a point source of light may be displaced from the focal plane and still produce an acceptably focused image whereas the depth of correlation refers to how far from the focal plane a particle will contribute significantly to the correlation function. The depth of correlation can be calculated starting from the basic principles of how small particles are imaged [300, 408]. Fig. 2.30. Schematic showing the geometry for volume illumina- tion particle image velocimetry. The par- ticles carried by the flow are illuminated by light coming out of the objective lens (i.e. upward). 48 2 Physical and Technical Background 2.6 Imaging of Small Particles 2.6.1 Diffraction Limited Imaging This section provides a description of diffraction limited imaging, which is an effect of practical significance in optical instrumentation, and of particular interest for PIV recording. In the following we will restrict our description of imaging by considering only one-dimensional functions. If plane light waves impinge on an opaque screen containing a circular aperture they generate a far-field diffraction pattern on a distant observing screen. By using a lens – for example an objective in a camera – the far field pattern can be imaged on an image sensor close to the aperture without changes. However, the image of a distant point source (e.g. a small scattering particle inside the light sheet) does not appear as a point in the image plane but forms a Fraunhofer diffraction pattern even if it is imaged by a perfectly aberration-free lens [11]. A circular pattern, which is known as the Airy disk, will be obtained for a low exposure. Surrounding Airy rings can be observed for a very high exposure. Using an approximation (the Fraunhofer approximation) for the far field it can be shown that the intensity of the Airy pattern represents the Fourier transform of the aperture’s transmissivity distribution [10, 18]. Taking into account the scaling theorem of the Fourier transform, it becomes clear that large aperture diameters correspond to small Airy disks and small apertures to large disks as can be seen in figure 2.31. The Airy function is equivalent to the square of the first order Bessel function. Therefore, the first dark ring, which defines the extension of the Airy disk, corresponds to the first zero of the first order Bessel function shown in figure 2.32. The Airy function represents the impulse response – the so-called point spread function – of an aberration-free lens. We will now determine the diameter of the Airy disk ddiff, because it represents the smallest particle image that can be obtained for a given imaging configuration. In figure 2.32 the value of the radius of the ring and therefore of the Airy disk can be found for a given aperture diameter Da and wavelength λ: Fig. 2.31. Airy pat- terns for a small (left hand side) and a larger aperture diameter (right hand side). 2.6 Imaging of Small Particles 49 1.0 0.8 Airy function Gaussian approximation 0.6 I/ Imax 0.4 0.2 Fig. 2.32. Normalized intensity distribution 0.0 of the Airy pattern and 0.0 0.5 1.0 1.5 2.0 2.5 its approximation by a x/x0 Gaussian bell curve. I(x) d =0 ⇒ diff =1.22 Imax 2x0 with λ x0 = . Da If we consider imaging of objects in air – the same media on both sides of the imaging lens – the focus criterion is given by (see figure 2.33): 1 1 1 + = (2.6) z0 Z0 f where z0 is the distance between the image plane and lens and Z0 the distance between the lens and the object plane. Together with the definition of the magnification factor z M = 0 Z0 the following formula for the diffraction limited minimum image diameter can be obtained: ddiff =2.44 f#(M +1)λ (2.7) where f# is the f-number, defined as the ratio between the focal length f and the aperture diameter Da [10]. In PIV, this minimum image diameter ddiff will only be obtained when recording small particles – of the order of a few microns – at small magnifications. For larger particles and/or larger magnifications, the influence of geometric imaging becomes more and more dominant. The image of a finite-diameter particle is given by the convolution of the point spread function with the geometric image of the particle. If lens aberrations can be neglected and the point spread function can be approximated by the 50 2 Physical and Technical Background Y Image plane Object Z f f plane y Fig. 2.33. Geometric Z Z 0 0 image reconstruction. Airy function, the following formula can be used for an estimate of the particle image diameter [53]: 2 2 dτ = (Mdp) + ddiff . (2.8) This expression is dominated by diffraction effects and reaches a constant value of ddiff when the size of the particle’s geometric image Mdp is con- siderably smaller than ddiff. It is dominated by the geometric image size for geometric image sizes considerably larger than ddiff where dτ ≈ Mdp In practice the point spread function is often approximated by a normal- ized Gaussian curve also shown in figure 2.32 and defined by: 2 I(x) − x =exp 2 (2.9) Imax 2σ √ where the parameter σ must be set to σ = f#(1 + M)λ 2 /π,inorder to approximate diffraction limited imaging. This approximation is particu- larly useful because it allows a considerable simplification of the mathematics encountered in the derivation of modulation transfer functions, which also includes other kinds of optical aberrations of the imaging lens as will be described later. In practice there are two good reasons for optimizing the particle image diameter: First, an analysis of PIV evaluation shows that the error in velocity measure- ments strongly depends on the particle image diameter (see e.g. section 5.5.2). For most practical situations, the error is minimized by minimiz- ing both the image diameter dτ and the uncertainty in locating the image centroid or correlation peak centroid respectively. Second, sharp and small particle images are particularly essential in order to obtain a high particle image intensity Imax, since at constant light energy scattered by the tracer particle the light energy per unit area increases ∼ 2 quadratically with decreasing image areas (Imax 1/dτ ). This fact also explains why increasing the particle diameter not always compensates for insufficient laser power. 2.6 Imaging of Small Particles 51 Equation (2.8) shows that for a range of particle diameters greater than the wavelength of the scattered light (dτ λ), the diffraction limit becomes less important and the image diameter increases nearly linearly with increasing particle diameter.
Recommended publications
  • The Gauss-Airy Functions and Their Properties
    Annals of the University of Craiova, Mathematics and Computer Science Series Volume 43(2), 2016, Pages 119{127 ISSN: 1223-6934 The Gauss-Airy functions and their properties Alireza Ansari Abstract. In this paper, in connection with the generating function of three-variable Hermite polynomials, we introduce the Gauss-Airy function Z 1 3 1 −yt2 zt GAi(x; y; z) = e cos(xt + )dt; y ≥ 0; x; z 2 R: π 0 3 Some properties of this function such as behaviors of zeros, orthogonal relations, corresponding inequalities and their integral transforms are investigated. Key words and phrases. Gauss-Airy function, Airy function, Inequality, Orthogonality, Integral transforms. 1. Introduction We consider the three-variable Hermite polynomials [ n ] [ n−3j ] X3 X2 zj yk H (x; y; z) = n! xn−3j−2k; (1) 3 n j! k!(n − 2k)! j=0 k=0 2 3 as the coefficient set of the generating function ext+yt +zt 1 n 2 3 X t ext+yt +zt = H (x; y; z) : (2) 3 n n! n=0 For the first time, these polynomials [8] and their generalization [9] was introduced by Dattoli et al. and later Torre [10] used them to describe the behaviors of the Hermite- Gaussian wavefunctions in optics. These are wavefunctions appeared as Gaussian apodized Airy polynomials [3,7] in elegant and standard forms. Also, similar families to the generating function (2) have been stated in literature, see [11, 12]. Now in this paper, it is our motivation to introduce the Gauss-Airy function derived from operational relation 2 3 y d +z d n 3Hn(x; y; z) = e dx2 dx3 x : (3) For this purpose, in view of the operational calculus of the Mellin transform [4{6], we apply the following integral representation 1 2 3 Z eys +zs = esξGAi(ξ; y; z) dξ; (4) −∞ Received February 28, 2015.
    [Show full text]
  • Implementation of Airy Function Using Graphics Processing Unit (GPU)
    ITM Web of Conferences 32, 03052 (2020) https://doi.org/10.1051/itmconf/20203203052 ICACC-2020 Implementation of Airy function using Graphics Processing Unit (GPU) Yugesh C. Keluskar1, Megha M. Navada2, Chaitanya S. Jage3 and Navin G. Singhaniya4 Department of Electronics Engineering, Ramrao Adik Institute of Technology, Nerul, Navi Mumbai. Email : [email protected], [email protected], [email protected], [email protected] Abstract—Special mathematical functions are an integral part Airy function is the solution to Airy differential equa- of Fractional Calculus, one of them is the Airy function. But tion,which has the following form [22]: it’s a gruelling task for the processor as well as system that is constructed around the function when it comes to evaluating the d2y special mathematical functions on an ordinary Central Processing = xy (1) Unit (CPU). The Parallel processing capabilities of a Graphics dx2 processing Unit (GPU) hence is used. In this paper GPU is used to get a speedup in time required, with respect to CPU time for It has its applications in classical physics and mainly evaluating the Airy function on its real domain. The objective quantum physics. The Airy function also appears as the so- of this paper is to provide a platform for computing the special lution to many other differential equations related to elasticity, functions which will accelerate the time required for obtaining the heat equation, the Orr-Sommerfield equation, etc in case of result and thus comparing the performance of numerical solution classical physics. While in the case of Quantum physics,the of Airy function using CPU and GPU.
    [Show full text]
  • Simple and Robust Method for Determination of Laser Fluence
    Open Research Europe Open Research Europe 2021, 1:7 Last updated: 30 JUN 2021 METHOD ARTICLE Simple and robust method for determination of laser fluence thresholds for material modifications: an extension of Liu’s approach to imperfect beams [version 1; peer review: 1 approved, 2 approved with reservations] Mario Garcia-Lechuga 1,2, David Grojo 1 1Aix Marseille Université, CNRS, LP3, UMR7341, Marseille, 13288, France 2Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, 28049, Spain v1 First published: 24 Mar 2021, 1:7 Open Peer Review https://doi.org/10.12688/openreseurope.13073.1 Latest published: 25 Jun 2021, 1:7 https://doi.org/10.12688/openreseurope.13073.2 Reviewer Status Invited Reviewers Abstract The so-called D-squared or Liu’s method is an extensively applied 1 2 3 approach to determine the irradiation fluence thresholds for laser- induced damage or modification of materials. However, one of the version 2 assumptions behind the method is the use of an ideal Gaussian profile (revision) report that can lead in practice to significant errors depending on beam 25 Jun 2021 imperfections. In this work, we rigorously calculate the bias corrections required when applying the same method to Airy-disk like version 1 profiles. Those profiles are readily produced from any beam by 24 Mar 2021 report report report insertion of an aperture in the optical path. Thus, the correction method gives a robust solution for exact threshold determination without any added technical complications as for instance advanced 1. Laurent Lamaignere , CEA-CESTA, Le control or metrology of the beam. Illustrated by two case-studies, the Barp, France approach holds potential to solve the strong discrepancies existing between the laser-induced damage thresholds reported in the 2.
    [Show full text]
  • On Airy Solutions of the Second Painlevé Equation
    On Airy Solutions of the Second Painleve´ Equation Peter A. Clarkson School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK [email protected] October 18, 2018 Abstract In this paper we discuss Airy solutions of the second Painleve´ equation (PII) and two related equations, the Painleve´ XXXIV equation (P34) and the Jimbo-Miwa-Okamoto σ form of PII (SII), are discussed. It is shown that solutions which depend only on the Airy function Ai(z) have a completely difference structure to those which involve a linear combination of the Airy functions Ai(z) and Bi(z). For all three equations, the special solutions which depend only on Ai(t) are tronquee´ solutions, i.e. they have no poles in a sector of the complex plane. Further for both P34 and SII, it is shown that amongst these tronquee´ solutions there is a family of solutions which have no poles on the real axis. Dedicated to Mark Ablowitz on his 70th birthday 1 Introduction The six Painleve´ equations (PI–PVI) were first discovered by Painleve,´ Gambier and their colleagues in an investigation of which second order ordinary differential equations of the form d2q dq = F ; q; z ; (1.1) dz2 dz where F is rational in dq=dz and q and analytic in z, have the property that their solutions have no movable branch points. They showed that there were fifty canonical equations of the form (1.1) with this property, now known as the Painleve´ property. Further Painleve,´ Gambier and their colleagues showed that of these fifty equations, forty-four can be reduced to linear equations, solved in terms of elliptic functions, or are reducible to one of six new nonlinear ordinary differential equations that define new transcendental functions, see Ince [1].
    [Show full text]
  • Part III - Microscopy
    Part III - Microscopy Chapter 6: Fundamentals Resolution Limits, Modulation Transfer Function, Lens Aberrations, Comparison Optical and Electron Microscopy, 3D Imaging Chapter 7: X-Ray and Electron Microscopy Chapter 8: Contrast and Modulation Transfer Function Chapter 9: Advanced Techniques Confocal Scanning Microscopy, 3D Optical Imaging, Super-resolution using PALM, STORM, STED, NSOM Chapter VI: Fundamentals of Optical Microscopy G. Springholz - Nanocharacterization I VI / 1 Chapter VI: Fundamentals of Optical Microscopy G. Springholz - Nanocharacterization I VI / 2 Chapter 6 Fundamentals of Optical Microscopy Instrumentation, Resolution Limits, Aberrations, Practical Resolution: Optical Microscopy versus TEM Chapter VI: Fundamentals of Optical Microscopy G. Springholz - Nanocharacterization I VI / 3 Contents - Chapter 6: Fundamentals of Optical Microscopy 6.1 Introduction ......................................................................................................................... 1 6.2 How to Perform Spatial Imaging with High Resolution ? ................................................. 3 6.3 Scanning Microscopy ......................................................................................................... 5 6.4 Imaging Microscopy ............................................................................................................ 7 6.5 Resolution Limits of Imaging Microscopy ....................................................................... 11 6.6 Resolution Limit due to Diffraction (see, e.g.,
    [Show full text]
  • Part I Geometrical Optics Part II Diffraction Optics Aperture and Field Stops
    Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 6th Lecture: 8 October 2012 1. Geometrical Optics Definitions Aberrations 2. Diffraction Optics Fraunhofer Diff. PSF, MTF SR & EE high contrast im. Based on “Astronomical Optics” by Daniel J. Schroeder, “Principles of 2SWLFVµE\0D[%RUQ (PLO:ROIWKH´2SWLFDO(QJLQHHU·V'HVN Reference” by William L. Wolfe, Lena book, and Wikipedia Part I Geometrical Optics Part II Diffraction Optics Aperture and Field Stops telescope camera Aperture stop: determines the diameter of the light cone from an axial point on the object. Field stop: determines the field of view of the system. Entrance pupil: image of the aperture stop in the object space Exit pupil: image of the aperture stop in the image space Marginal ray: ray from an object point on the optical axis that passes at the edge of the entrance pupil Chief ray: ray from an object point at the edge of the field, passing through the center of the aperture stop. The Speed of the System f IJ D The speed of an optical system is described by the numerical aperture NA and the F number, where: f 1 NA nsinT and F { D 2(NA) Generally, fast optics (large NA) has a high light power, is compact, but has tight tolerances and is difficult to manufacture. Slow optics (small NA) is just the opposite. Étendue and Ax The geometrical étendue (frz. `extent· is the product of area A of the source times the solid angle (of the system's entrance pupil as seen from the source). The étendue is the maximum beam size the instrument can accept.
    [Show full text]
  • Advanced Microscopy Lecture 3 Physical Optics Of
    Microscopy Lecture 3: Physical optics of widefield microscopes 2012-10-29 Herbert Gross Winter term 2012 www.iap.uni-jena.de 3 Physical optics of widefield microscopes 2 Preliminary time schedule No Date Main subject Detailed topics Lecturer overview, general setup, binoculars, objective lenses, performance and types of lenses, 1 15.10. Optical system of a microscope I tube optics Gross Etendue, pupil, telecentricity, confocal systems, illumination setups, Köhler principle, 2 22.10. Optical system of a microscope II fluorescence systems and TIRF, adjustment of objective lenses Gross Physical optics of widefield Point spread function, high-NA-effects, apodization, defocussing, index mismatch, 3 29.10. Gross microscopes coherence, partial coherent imaging Wave aberrations and Zernikes, Strehl ratio, point resolution, sine condition, optical 4 05.11. Performance assessment transfer function, conoscopic observation, isoplantism, straylight and ghost images, Gross thermal degradation, measuring of system quality basic concepts, 2-point-resolution (Rayleigh, Sparrow), Frequency-based resolution (Abbe), 5 12.11. Fourier optical description CTF and Born Approximation Heintzmann 6 19.11. Methods, DIC Rytov approximation, a comment on holography, Ptychography, DIC Heintzmann Multibeam illumination, Cofocal coherent, Incoherent processes (Fluorescence, Raman), 7 26.11. Imaging of scatter OTF for incoherent light, Missing cone problem, imaging of a fluorescent plane, incoherent Heintzmann confocal OTF/PSF Fluorescence, Structured illumination, Image based identification of experimental 8 03.12. Incoherent emission to improve resolution parameters, image reconstruction Heintzmann 9 10.12. The quantum world in microscopy Photons, Poisson distribution, squeezed light, antibunching, Ghost imaging Wicker 10 17.12. Deconvolution Building a forward model and inverting it based on statistics Wicker 11 07.01.
    [Show full text]
  • Chapter on Diffraction
    Chapter 3 Diffraction While the particle description of Chapter 1 works amazingly well to understand how ra- diation is generated and transported in (and out of) astrophysical objects, it falls short when we investigate how we detect this radiation with our telescopes. In particular the diffraction limit of a telescope is the limit in spatial resolution a telescope of a given size can achieve because of the wave nature of light. Diffraction gives rise to a “Point Spread Function”, meaning that a point source on the sky will appear as a blob of a certain size on your image plane. The size of this blob limits your spatial resolution. The only way to improve this is to go to a larger telescope. Since the theory of diffraction is such a fundamental part of the theory of telescopes, and since it gives a good demonstration of the wave-like nature of light, this chapter is devoted to a relatively detailed ab-initio study of diffraction and the derivation of the point spread function. Literature: Born & Wolf, “Principles of Optics”, 1959, 2002, Press Syndicate of the Univeristy of Cambridge, ISBN 0521642221. A classic. Steward, “Fourier Optics: An Introduction”, 2nd Edition, 2004, Dover Publications, ISBN 0486435040 Goodman, “Introduction to Fourier Optics”, 3rd Edition, 2005, Roberts & Company Publishers, ISBN 0974707724 3.1 Fresnel diffraction Let us construct a simple “Camera Obscura” type of telescope, as shown in Fig. 3.1. We have a point-source at location “a”, and we point our telescope exactly at that source. Our telescope consists simply of a screen with a circular hole called the aperture or alternatively the pupil.
    [Show full text]
  • Preview of “Olympus Microscopy Resou... in Confocal Microscopy”
    12/17/12 Olympus Microscopy Resource Center | Confocal Microscopy - Resolution and Contrast in Confocal … Olympus America | Research | Imaging Software | Confocal | Clinical | FAQ’s Resolution and Contrast in Confocal Microscopy Home Page Interactive Tutorials All optical microscopes, including conventional widefield, confocal, and two-photon instruments are limited in the resolution that they can achieve by a series of fundamental physical factors. In a perfect optical Microscopy Primer system, resolution is restricted by the numerical aperture of optical components and by the wavelength of light, both incident (excitation) and detected (emission). The concept of resolution is inseparable from Physics of Light & Color contrast, and is defined as the minimum separation between two points that results in a certain level of contrast between them. In a typical fluorescence microscope, contrast is determined by the number of Microscopy Basic Concepts photons collected from the specimen, the dynamic range of the signal, optical aberrations of the imaging system, and the number of picture elements (pixels) per unit area in the final image. Special Techniques Fluorescence Microscopy Confocal Microscopy Confocal Applications Digital Imaging Digital Image Galleries Digital Video Galleries Virtual Microscopy The influence of noise on the image of two closely spaced small objects is further interconnected with the related factors mentioned above, and can readily affect the quality of resulting images. While the effects of many instrumental and experimental variables on image contrast, and consequently on resolution, are familiar and rather obvious, the limitation on effective resolution resulting from the division of the image into a finite number of picture elements (pixels) may be unfamiliar to those new to digital microscopy.
    [Show full text]
  • Abramowitz Function Computed by Clenshaw's Method, 74 Absolute
    Copyright ©2007 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. Index Abramowitz function for parabolic cylinder functions, computed by Clenshaw’s method, 378 74 for prolate spheroidal harmonics, absolute error, 356 364 Airy function for Scorer functions, 361 contour integral for, 166 for toroidal harmonics, 366 Airy functions of Remes, 290 algorithm, 359 analytic continuation of generalized asymptotic estimate of, 18 hypergeometric function, 27 asymptotic expansions, 81, 360 anomalous behavior of recursions, 118 Chebyshev expansions, 80, 85 a warning, 122 computing confluent hypergeometric complex arguments, 359 functions, 120 Gauss quadrature, 145 exponential integrals, 121 scaled functions, 359 first order inhomogeneous zeros, 224 equation, 121 connection formulas, 360, 361 modified Bessel functions, 118 contour integral for, 264 anti-Miller algorithm, 110, 112 differential equation, 249, 359 associated Legendre functions relation with hypergeometric computation for z>0, 363 function, 28 asymptotic expansion used in uniform asymptotic uniform, 237 expansion, 250 asymptotic expansions Airy-type asymptotic expansion alternative asymptotic for modified Bessel functions of representation for (z),49 purely imaginary order, 375 alternative expansion for parabolic cylinder functions, for (z),49 383 for (a, z),47 obtained from integrals, 249, 264 convergent asymptotic algorithm representation, 46 for Airy functions, 359 converging factor, 40 for computing zeros of Bessel exponentially improved, 39 functions, 385 for (a, z),39 for modified Bessel functions, 370 exponentially small remainders, 38 for oblate spheroidal harmonics, hyperasymptotics, 40 365 of exponential integral, 37, 38 405 From "Numerical Methods for Special Functions" by Amparo Gil, Javier Segura, and Nico Temme Copyright ©2007 by the Society for Industrial and Applied Mathematics.
    [Show full text]
  • Modified Airy Function and WKB Solutions to the Wave Equation
    NAT L INST. OF STAND & TECH R.I.C. NIST REFERENCE PUBLICATIONS A11103 VlOVDl NIST Monograph 176 Modified Airy Function and WKB Solutions to the Wave Equation I A. K. Ghataky R. L. GallawUy and 1. C. Goyal - QC- 100 U556 M United States Department of Commerce #176 National Institute of standards and Technology 1991 NIST Monograph 176 QClO mi Modified Airy Function and WKB Solutions to the Wave Equation A. K. Ghatak R. L. Gallawa I. C. Goyal Electromagnetic Technology Division Electronics and Electrical Engineering Laboratory National Institute of Standards and Technology Boulder, CO 80303 This monograph was prepared, in part, under the auspices of the Indo-US Collaborative Program in Materials Sciences. Permanent Affiliation of Professors Ghatak and Goyal is Physics Department, Indian Institute of Technology New Delhi, India. November 1991 U.S. Department of Commerce Robert A. Mosbacher, Secretary National Institute of Standards and Technology John W. Lyons, Director National Institute of Standards and Technology Monograph 176 Natl. Inst. Stand. Technol. Mono. 176, 172 pages (Nov. 1991) CODEN: NIMOEZ U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1991 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402-9325 TABLE OF CONTENTS PREFACE vii 1. INTRODUCTION 1 2. WKB SOLUTIONS TO INITIAL VALUE PROBLEMS 6 2.1 Introduction 6 2.2 The WKB Solutions 6 2.3 An Alternative Derivation 11 2.4 The General WKB Solution 14 Case I: Barrier to the Right 15 Case II: Barrier to the Left 19 2.5 Examples 21 Example 2.1 21 Example 2.2 27 3.
    [Show full text]
  • Second Order Linear Equations and the Airy Functions:
    Table of Contents Second Order Linear Equations and the Airy Functions: ............................................................ 1 Airy's Equation .................................................................................................................. 2 Graphing Airy functions ...................................................................................................... 3 Some Qualitative Analysis ................................................................................................... 7 Numerical solutions to yield a graphical presentation ................................................................ 7 Stability ............................................................................................................................ 8 The Nature of Special Functions ......................................................................................... 10 Second Order Linear Equations and the Airy Functions: Why Special Functions are Really No More Complicated than Most Elementary Functions % We shall consider here the most important second order % ordinary differential equations, namely linear equations. % The standard format for such an equation is % y''(t) + p(t) y'(t) + q(t) y(t) = g(t), % where y(t) is the unknown function satisfying the % equation and p, q and g are given functions, all % continuous on some specified interval. We say that the % equation is homogeneous if g = 0. Thus: % y''(t) + p(t) y'(t) + q(t) y(t) = 0. % We have studied methods for solving an inhomogeneous % equation for
    [Show full text]