OECD Environmental Indicators OECD TOWARDS SUSTAINABLE DEVELOPMENT

Total Page:16

File Type:pdf, Size:1020Kb

OECD Environmental Indicators OECD TOWARDS SUSTAINABLE DEVELOPMENT ENVIRONMENT « 2001 OECD Environmental Indicators OECD TOWARDS SUSTAINABLE DEVELOPMENT Interest in sustainable development and awareness of the international dimension of Environmental environmental problems, have stimulated governments to track and chart environmental progress and its links with economic conditions and trends. Indicators This publication includes key environmental indicators endorsed by OECD Environment Ministers and the broader OECD Core Set of environmental indicators. It contributes to TOWARDS SUSTAINABLE measuring environmental performance and progress towards sustainable development. DEVELOPMENT OECD Environmental Indicators OECD Environmental Organised by issues such as climate change, air pollution, biodiversity, waste or water resources, this book provides essential information for all those interested in the environment and in the sustainable development. ENVIRONMENT TOWARDS SUSTAINABLE DEVELOPMENT SUSTAINABLE TOWARDS All OECD books and periodicals are now available on line www.SourceOECD.org www.oecd.org ISBN 92-64-18718-9 97 2001 09 1 P 2001 -:HSTCQE=V]\V]Y: 2001 OECD Environmental Indicators 2001 TOWARDS SUSTAINABLE DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: – to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; – to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and – to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996), Korea (12th December 1996) and the Slovak Republic (14th December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention). Publié en français sous le titre : INDICATEURS D’ENVIRONNEMENT DE L’OCDE 2001 Vers un développement durable © OECD 2001 Permission to reproduce a portion of this work for non-commercial purposes or classroom use should be obtained through the Centre français d’exploitation du droit de copie (CFC), 20, rue des Grands-Augustins, 75006 Paris, France, tel. (33-1) 44 07 47 70, fax (33-1) 46 34 67 19, for every country except the United States. In the United States permission should be obtained through the Copyright Clearance Center, Customer Service, (508)750-8400, 222 Rosewood Drive, Danvers, MA 01923 USA, or CCC Online: www.copyright.com. All other applications for permission to reproduce or translate all or part of this book should be made to OECD Publications, 2, rue André-Pascal, 75775 Paris Cedex 16, France. )25(:25' Concerns about whether development is sustainable from an economic, environmental and social point of view have prompted a number of countries to further move towards policies focusing on pollution prevention, integration of environmental concerns in economic and sectoral decisions, and international co-operation. There is also increasing interest in evaluating how well governments are implementing their policies and how well they are satisfying their domestic objectives and international commitments. These demands have led to the development of environmental indicators as a tool for decision making and for assessing countries’ environmental performance. As part of their commitment to transparency and accountability, and to better information of the public, OECD Member countries have recently also expressed increasing interest in a reduced number of environmental indicators selected from existing larger sets to draw public attention to key environmental issues of concern and to inform about progress made. The OECD work programme on environmental indicators has led to several sets of indicators each responding to a specific purpose: an OECD Core Set of environmental indicators to measure environmental progress, and various sets of indicators to integrate environmental concerns in sectoral policies (e.g. energy, transport, agriculture). Indicators are also derived from natural resource and environmental expenditure accounts. The present report is one of the products of this OECD work programme on environmental indicators. It is updated at regular intervals and includes environmental indicators from the OECD Core Set, as well as selected socio-economic and sectoral indicators having an environmental significance. It further includes a selection of key environmental indicators, endorsed by OECD Environment Ministers at their meeting in May 2001. The report highlights the linkages between environmental indicators, environmental performance and sustainable development, and thus provides a building block for the environmental component of sustainable development indicators. This report was prepared by the OECD Secretariat, but its successful completion depended on personal or official contributions by many individuals in Member countries, and on the work and support of the OECD Working Group on Environmental Information and Outlooks. This report is published on the responsibility of the Secretary General of the OECD. Joke Waller-Hunter Director, OECD Environment Directorate - 3 - Data in this report largely come from "OECD Environmental Data - Compendium 1999". These data are harmonised through the work of the OECD Working Group on Environmental Information and Outlooks (WGEIO). Some were updated or revised on the basis of comments from national Delegates on “Key environmental indicators”, as received by 30 March 2001. In many countries, systematic collection of environmental data has a short history; sources are typically spread across a range of agencies and levels of government, and information is often collected for other purposes. When reading this report, one should therefore keep in mind that definitions and measurement methods vary among countries and that intercountry comparisons require great caution. One should also note that indicators presented in this report refer to the national level and may conceal major subnational differences. - 4 - 7$%/( 2) &217(176 I. INTRODUCTION.................................................................................................................................... 7 II. ENVIRONMENTAL INDICATORS .......................................................................................................11 ♦ CLIMATE CHANGE .................................................................................................................................. 13 1. CO2 emission intensities 15 2. greenhouse gas concentrations 18 ♦ OZONE LAYER DEPLETION ................................................................................................................... 19 3. ozone depleting substances 21 4. stratospheric ozone 23 ♦ AIR QUALITY............................................................................................................................................ 25 5. air emission intensities 27 6. urban air quality 32 ♦ WASTE...................................................................................................................................................... 35 7. waste generation 37 8. waste recycling 40 ♦ WATER QUALITY..................................................................................................................................... 41 9. river quality 43 10. waste water treatment 45 ♦ WATER RESOURCES ............................................................................................................................. 47 11. intensity of use of water resources 49 12. public water supply and price 51 ♦ FOREST RESOURCES............................................................................................................................ 53 13. intensity of use of forest resources 55 14. forest and wooded land 56 ♦ FISH RESOURCES .................................................................................................................................. 57 15. fish catches and consumption: national 59 16. fish catches and consumption: global and regional 60 ♦ BIODIVERSITY ......................................................................................................................................... 63 17. threatened species 65 18. protected areas 66 III. SOCIO-ECONOMIC INDICATORS.....................................................................................................69 ♦ GDP AND POPULATION.......................................................................................................................... 71 19. gross domestic product 73 20. population growth and
Recommended publications
  • Appendix I Glossary
    Appendix I Glossary Editor: A.P.M. Baede A → indicates that the following term is also contained in this Glossary. Adjustment time centrimetric precision. Altimetry has the advantage of being a See: →Lifetime; see also: →Response time. measurement relative to a geocentric reference frame, rather than relative to land level as for a →tide gauge, and of affording quasi- Aerosols global coverage. A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 µm and residing in the atmosphere for Anthropogenic at least several hours. Aerosols may be of either natural or Resulting from or produced by human beings. anthropogenic origin. Aerosols may influence climate in two ways: directly through scattering and absorbing radiation, and Atmosphere indirectly through acting as condensation nuclei for cloud The gaseous envelope surrounding the Earth. The dry formation or modifying the optical properties and lifetime of atmosphere consists almost entirely of nitrogen (78.1% volume clouds. See: →Indirect aerosol effect. mixing ratio) and oxygen (20.9% volume mixing ratio), The term has also come to be associated, erroneously, with together with a number of trace gases, such as argon (0.93% the propellant used in “aerosol sprays”. volume mixing ratio), helium, and radiatively active →greenhouse gases such as →carbon dioxide (0.035% volume Afforestation mixing ratio), and ozone. In addition the atmosphere contains Planting of new forests on lands that historically have not water vapour, whose amount is highly variable but typically 1% contained forests. For a discussion of the term →forest and volume mixing ratio. The atmosphere also contains clouds and related terms such as afforestation, →reforestation, and →aerosols.
    [Show full text]
  • A Minimum Set of Environmental Indicators for Improving Rural Statistics
    A Minimum Set of Environmental Indicators for Improving Rural Statistics Publication prepared in the framework of the Global Strategy to improve Agricultural and Rural Statistics November 2016 A Minimum Set of Environmental Indicators for Improving Rural Statistics Table of Contents Acknowledgements.................................................................................................... 4 Acronyms and Abbreviations..................................................................................... 5 Executive Summary.................................................................................................... 6 1. Introduction............................................................................................................ 8 2. Current global efforts in collecting environmental indicators.............................. 11 2.1 The United Nations’ Sustainable Development Goals....................................... 12 2.2 Framework for the Development of Environment Statistics (FDES) 2013......... 13 2.3 The System of Environmental-Economic Accounting (SEEA)............................. 16 2.4 Indicator approaches established in UN conventions....................................... 17 2.5 New developments in collecting environmental indicators having rural livelihood as a key entry point.......................................................................... 20 3. The minimum environmental indicator set........................................................... 24 3.1 Type of data.....................................................................................................
    [Show full text]
  • Environmental Indicators
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Alfsen, Knut H.; Brekke, Kjell Arne; Brunvoll, Frode; Lurås, Hilde; Nyborg, Karine Working Paper — Digitized Version Environmental Indicators Discussion Papers, No. 71 Provided in Cooperation with: Research Department, Statistics Norway, Oslo Suggested Citation: Alfsen, Knut H.; Brekke, Kjell Arne; Brunvoll, Frode; Lurås, Hilde; Nyborg, Karine (1992) : Environmental Indicators, Discussion Papers, No. 71, Statistics Norway, Research Department, Oslo This Version is available at: http://hdl.handle.net/10419/192055 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Discussion Paper Cea ueau o Saisics, .. 8 e, 00 Oso , oway No. 71 April, 1992 Environmental Indicators KNUT H. ALFSEN, KJELL ARNE BREKKE, FRODE BRUNVOLL, HILDE UAS, KARINE NYBORG AND HANS VIGGO SEBØ.
    [Show full text]
  • Lecture 35. Stratospheric Ozone Chemistry. 1. the Formation of Ozone
    Lecture 35. Stratospheric ozone chemistry. Part 1. Formation and destruction of stratospheric ozone. Objectives: 1. The formation of ozone: Chapman mechanism. 2. Catalytic ozone destruction. 3. Ozone and UV radiation. Readings: Turco: p. 407-414; Brimblecombe: 190-194. 1. The formation of ozone: Chapman mechanism. “Bad ozone”: in photochemical smog -> health threat in the troposphere -> contributes to global warming “Good ozone”: in the stratosphere -> absorbs biologically harmful UV radiation emitted by sun. Most of the Earth’s atmosphere ozone (about 90%) is found in the stratosphere. Typical ozone concentrations: in very clean troposphere: 10 – 40 ppb; in ozone layer at 25-30 km: about 10 ppm; • The ozone column abundance is typically specified in Dobson units. One Dobson unit, DU, is the thickness that the ozone column would occupy at standard temperature and pressure (T =273.2 K, P = 1 atm): 1 DU = 10-3 atm cm =2.69x1016 molecules cm-2 Total column ozone values range from about 290 to 310 DU over the globe. 1 In 1930 S.Chapman, a British scientist, proposed a theory of the formation of ozone in the stratosphere (known as Chapman mechanism): Major steps of Chapman mechanism: 1) Above about 30 km altitude, molecular oxygen absorbs solar radiation (wavelength < 242 nm) and photodissociates: O2 + hν -> O + O 2) The oxygen atom, O, reacts rapidly with O2 in the presence of a third body, denoted M (M is usually another O2 or N2), to form ozone: O2 + O + M -> O3 + M NOTE: above reaction is the only reaction that produces ozone in the atmosphere!!! 3) Ozone absorbs solar radiation (in the wavelength range of 240 to 320 nm) and decomposes back to O2 and O: O3 + hν -> O2 + O 4) Additionally, ozone can react with atomic oxygen to regenerate two molecules of O2: O3 + O -> O2 + O2 2 Let’s consider the dynamic behavior of reactions (1) –(4).
    [Show full text]
  • The Distribution of Ozone and Ozone-Depleting Substances in the Atmosphere and Observed Changes
    THE DISTRIBUTION OF OZONE AND OZONE-DEPLETING SUBSTANCES IN THE ATMOSPHERE AND OBSERVED CHANGES 1.1 GLOBAL OZONE MEASUREMENT (see Chapter 3). Intrusions of stratospheric air are also a signif- AND MONITORING icant source of ozone in the troposphere (see Chapter 2). Globally, the distribution and climatology of tropospheric Ozone (O3), an allotrope of ordinary oxygen (O2), is the most important trace constituent in the stratosphere. Although it is ozone appear to be highly variable and have not yet been present in relative concentrations of no more than a few parts well established by comprehensive measurements. Although per million, it is such an efficient absorber of ultraviolet radia- this is a very important area of current research, this docu- tion that it is the largest source of heat in the atmosphere at ment will deal primarily with the state of current knowledge altitudes between about 10 and 50 km. UV absorption by of ozone in the stratosphere. ozone causes the temperature inversion that is responsible for Regular measurments of the ozone content of the atmos- the existence of the stratosphere. Ozone is also an important phere were initiated in the early 1920s by G.M.B. Dobson radiator, with strong emission bands in the 9.6 mm infrared using spectrographic instruments. He built his first version of region. In the UV-B region (290–315 nm) it absorbs with an what is now known as the Dobson ozone spectrophotometer efficiency that increases exponentially with decreasing wave- in 1927. It makes precise measurements of the relative intensi- length, and so strongly that at 290 nm the radiation at the ties of sunlight at pairs of wavelengths in the UV spectrum; 1 ground is reduced by more than a factor of 104 from that the total ozone column is deduced from these measurements above the ozone layer (see Chapter 4).
    [Show full text]
  • Chapter 10 Chapter 10 – Ozone Holes
    Environmental Transport and Fate Chapter 10 – Ozone Holes Benoit Cushman-Roisin Thayer School of Engineering Dartmouth College Recall the vertical structure of the atmosphere We are now concerned about this lithlayer in the middle of the stratosphere 1 Temperature increases in this layer of the atmosphere because of absorption of solar radiation by oxygen and ozone. Photochemical reactions are: O2 + (UV radiation < 242 nm) → O● + O● O● + O2 + M → O3 + M● (M stands for any molecule nearby) O3 + (UV-C or UV-B radiation) → O2 + O● O2 absorption < 242 nm O3 absorption 200 nm < < 320 nm 2 Cartoon from Cartoon US EPA 3 Example of what is happening on the seasonal scale of ozone Where was the stratospheric ozone by the end of the winter? And, it did get worse for a number of years… 1 DU = 1 Dobson Unit = thickness of O3 brought to 1 atm @ 0oC (in meters) x 105 Historical springtime vertically integrated ozone over Halley Bay, Antarctica (76oS) (Source: UNEP, 1994) 4 Historical data showing no minimum in spring sphere/winter_bulletins/sh_07/ o Pronounced minimum in springs from mid- 1980s to present. www.cpc.noaa.gov/products/strat / http:/ Hole still occurring in 2010 and 2011 The Antarctic Ozone Hole The Antarctic Ozone Hole was discovered by the British Antarctic Survey from data obtained with a ground-based instrument at a measuring station located in Halley Bay, Antarctica, in the 1981-1983 period. A first report of October ozone loss was issued in 1985. Satellite measurements then confirmed edtattesp that the springt gteooeossasacotime ozone loss was a contin etent-wide featu r e.
    [Show full text]
  • Environmental Indicators
    Discussion Paper Cea ueau o Saisics, .. 8 e, 00 Oso , oway No. 71 April, 1992 Environmental Indicators KNUT H. ALFSEN, KJELL ARNE BREKKE, FRODE BRUNVOLL, HILDE UAS, KARINE NYBORG AND HANS VIGGO SEBØ. 1 Abstract The report discusses possible logical structures and content of a set of environmental indicators for Norway. The emphasis is on structure; proposals for specific indicators and data presented are of a more preliminary nature. 'Thanks to Asbjont Aaheim of the Central Bureau of Statistics (CBS) who has participated on most of the works sessions where the ideas, presented in this report, were developed. Also thanks to Marit Kromberg from the Norwegian Directorate of Health, Bjarne Sivertsen, Knut GrOnskei and Leif Otto Hagen of the Norwegian Institute for Air Research (NILU), and Gabriel Kielland of the State Pollution Control Authority (svo for helpful discussions on the health related indicator. Signe Nybo of the Directorate for Nature Management (DN) participated in the discussions on biodiversity, while Jan Fuglestvedt (CBS) has had a decisive influence on the discussions of the ozone indicator and the indicator of climatic change. Content 1 Background and introduction . • • • • • • • • • . • • • • • • • • • • • • • • •.. • • • 3 1.1 The research program Economy and Ecology and methodological issues . 3 1.2 What is an envir onmental indicator? . ••• . .... • • 3 1.3 On sustainability . ......... ... • • 4 1.4 Users of environmental indicators . • . ......... ..... 4 1.5 Publication policy . ........ ... 4 1.6 Requirements of the indicators . .......... ...... • . • . • 5 2 The importance of a good environment . • • • • • • • • • • • • • • ..... • • • • • • • 7 2.1 Health . ..... • • • • • • • . • • ..... • • • • • • • • • ........ • • • • • 7 2.2 Economic damage . • • ........ • • • • ..... • • • • • • • • 7 2.3 Recreation, aesthetics and cult= 7 2.4 Increased knowledge and awareness .
    [Show full text]
  • Global Change and Sustainability
    FOLE_C18FF.QXD 9/10/08 6:39 PM Page 268 EXERCISE 18 Global Change and Sustainability INTRODUCTION doubters are funded by special interest groups and fossil fuel coalitions that do not want research on, or “The public in the industrialized nations, particularly in evidence of, global change that could impact their the United States, must be made more aware of the economic condition (Gelbspan, 1997). Island nations, pervasive trends in environmental degradation and environmentalists, active geoscientists, environmen- resource depletion, and of the need to modify pat- tal economists, and insurance organizations were terns of life to cope with these trends.” among the first to recognize that global change is —KAULA AND ANDERSON, PLANET EARTH COMMITTEE, occurring. Now many groups are working on adapta- AMERICAN GEOPHYSICAL UNION, 1991 tions to change and on ways to reduce human “The time to consider the policy dimensions of cli- impact globally. mate change is not when the link between green- We should be able to adapt to the limits of our house gases and climate change is conclusively habitat on Earth without overshooting them. Many proven Á but when the possibility cannot be dis- organisms undergo increases and collapses in their counted and is taken seriously by the society of populations but they do not have our technology, which we are part. We in BP have reached that information, and understanding. We have models, point.” examples, and explanations of why societies collapse (Diamond, 2005). We probably will never understand —JOHN BROWNE, GROUP CHIEF EXECUTIVE, how the total Earth system works; however, we need BP AMERICA, 1997 to write the “Operating Manual for Spaceship Earth.” The quotations above capture the concern of many The final activity in this exercise is constructing a geologists who understand Earth history and scenario—your description of the future viewed from change in the Earth system.
    [Show full text]
  • (AECC-2) in Environmental Studies Semester-2
    Ability Enhancement Compulsory Course-2 (AECC-2) in Environmental Studies Semester-2 Total Marks - 100 (Credit -2) (50 Theory-MCQ type + 30 Project + 10 Internal Assessment + 10 Attendance ) Unit 6: Environmental Policies & Practices Unit 6: Environmental Policies & Practices • Climate Change : We know that the Climate is average of weather over time across large regions. On the other hand the Weather is what is happening in one small region at one time. The global climate always changes, and there are many reasons for that, such as the interactions between components in the climate system like oceans, atmosphere, etc. The cyclone Aila was actually a climatic phenomenon, where the change in surface temperature over the Indian ocean formed the tropical cyclone Aila over the Bay of Bengal on May 23, 2009, causing extensive damage in India and Bangladesh. The climate change occurs because when the amount of energy in the entire climate system is changed it affects each and every component in the system. We the humans are also responsible for the climate change. Human activities like the burning of fossil fuel increases the amount of carbon dioxide (CO 2) and other greenhouse gases in the atmosphere, enhancing the natural greenhouse effect. Increasing CO 2 causes the planet to heat up. The concentration of atmospheric CO 2 has increased by at least 40% in the last 200 years. The last time CO 2 increased this much was over a period of 6000 years, when the earth came out of an ice age, and the average surface temperature rose by 5 oC. Burning fossil fuels, changes in land use (such as deforestation), small particles like smoke and dust in the atmosphere (aerosols) have altered the amount of sunlight that can reflected back into space.
    [Show full text]
  • Climate Change and Atmospheric Chemistry: How Will the Stratospheric Ozone Layer Develop? Martin Dameris*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Reviews M. Dameris DOI: 10.1002/anie.201001643 The Ozone Layer Climate Change and Atmospheric Chemistry: How Will the Stratospheric Ozone Layer Develop? Martin Dameris* Keywords: atmospheric chemistry · climate change · environmental chemistry · greenhouse gases · ozone hole Angewandte Chemie &&&& 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2010, 49,2–13 Ü Ü These are not the final page numbers! Angewandte The Ozone Layer Chemie The discovery of the ozone hole over Antarctica in 1985 was a surprise From the Contents for science. For a few years the reasons of the ozone hole was specu- lated about. Soon it was obvious that predominant meteorological 1. Introduction 3 conditions led to a specific situation developing in this part of the 2. The Chemistry of Stratospheric atmosphere: Very low temperatures initiate chemical processes that at Ozone 6 the end cause extreme ozone depletion at altitudes of between about 15 and 30 km. So-called polar stratospheric clouds play a key role. Such 3. The Dynamics of the Stratosphere clouds develop at temperatures below about 195 K. Heterogeneous and Ozone Transport 8 chemical reactions on cloud particles initiate the destruction of ozone 4. Future Developments and molecules. The future evolution of the ozone layer will not only Consequences of depend on the further development of concentrations of ozone- International Agreements on depleting substances, but also significantly on climate change. the Protection of the Atmosphere 9 5. Summary 11 1.
    [Show full text]
  • Q11: How Severe Is the Depletion of the Antarctic Ozone Layer? Antarctic
    TWENTY QUESTIONS: 2006 UPDATE III. STRATOSPHERIC OZONE DEPLETION Q11: How severe is the depletion of the Antarctic ozone layer? Severe depletion of the Antarctic ozone layer was first observed in the early 1980s. Antarctic ozone depletion is seasonal, occurring primarily in late winter and early spring (August-November). Peak depletion occurs in early October when ozone is often completely destroyed over a range of altitudes, reducing overhead total ozone by as much as two-thirds at some locations. This severe depletion creates the “ozone hole” in images of Antarctic total ozone made from space. In most years the maximum area of the ozone hole far exceeds the size of the Antarctic continent. The severe depletion of Antarctic ozone, known as values occur in ozone hole images, balloon measurements the “ozone hole,” was first observed in the early 1980s. show that the chemical destruction of ozone is complete The depletion is attributable to chemical destruction by over a vertical region of several kilometers. Balloon reactive halogen gases, which increased in the strato- sphere in the latter half of the 20th century (see Q16). Conditions in the Antarctic winter stratosphere are highly AAntarcticntarctic Ozone HoleHole suitable for ozone depletion because of (1) the long periods of extremely low temperatures, which promote polar stratospheric cloud (PSC) formation; (2) the abun- dance of reactive halogen gases, which chemically destroy ozone; and (3) the isolation of stratospheric air during the winter, which allows time for chemical destruction to occur (see Q10). The severity of Antarctic ozone deple- tion can be seen using satellite observations of total ozone, ozone altitude profiles, and long-term average values of polar total ozone.
    [Show full text]
  • Q11 How Severe Is the Depletion of the Antarctic Ozone Layer? Severe Depletion of the Antarctic Ozone Layer Was First Reported in the Mid-1980S
    Section III: STRATOSPHERIC OZONE DEPLETION Q11 How severe is the depletion of the Antarctic ozone layer? Severe depletion of the Antarctic ozone layer was first reported in the mid-1980s. Antarctic ozone depletion is seasonal, occurring primarily in late winter and early spring (August–November). Peak depletion occurs in early October when ozone is often completely destroyed over a range of altitudes, thereby reducing total ozone by as much as two-thirds at some locations. This severe depletion creates the “ozone hole” apparent in images of Antarctic total ozone made using satellite observations. In most years the maximum area of the ozone hole far exceeds the size of the Antarctic continent. he severe depletion of Antarctic ozone, known as the can be seen using satellite observations of total ozone, ozone T“ozone hole,” was first reported in the mid-1980s. The altitude profiles, and long-term changes in total ozone. depletion is attributable to chemical destruction by reactive Antarctic ozone hole. The most widely used images of halogen gases that increased in the stratosphere in the latter Antarctic ozone depletion are derived from measurements of half of the 20th century (see Q16). Conditions in the Antarctic total ozone made with satellite instruments. A map of Ant- winter and early spring stratosphere are highly suitable for arctic early spring measurements shows a large region centered ozone depletion because of (1) the long periods of extremely near the South Pole in which total ozone is highly depleted (see low temperatures, which cause polar stratospheric clouds Figure Q11-1). This region has come to be called the “ozone (PSCs) to form; (2) the large abundance of reactive halogen hole” because of the near-circular contours of low ozone values gases produced in reactions on PSCs; and (3) the isolation of in the maps.
    [Show full text]