Phase Jump Due to Partial Reflection of Irregular Water Waves at Steep Slopes
Total Page:16
File Type:pdf, Size:1020Kb
Phase Jump due to Partial Reflection of Irregular Water Waves at Steep Slopes Supplement to: „Wave Resonances Detected in a Wave Tank and in the Field“, 5th Int. Symposium WAVES 2005, Madrid, Spain, Paper 134 Prof. Dr.-Ing. Fritz Büsching Bielefeld University of Applied Sciences Fluid Dynamics Laboratory Minden, Germany urn:nbn:de:0066-201011165 http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 1/25 Scope of Presentation • Statement: The process of wavewave breakingbreaking at slopes ≤ n ≤ 2:1:13:1 is inextricably linked with the simultaneoussimultaneous formationformation of a reflectedreflected wavewave andand aa wavewave ofof transmissiontransmission. Superimposition of incident and reflected waves results in the formation of a partialpartial clapotisclapotis comprising of a phase jump. • Analogue: Fresnel´s Equations describing reflectionreflection andand transmissiontransmission of light at uniform planar interfaces. • http://www.digibib.tu-bs.de/?docid=00047044Reflection coefficientsCoastlab 2010, BarcelonaCr = f(Hr/Hi, Δφ0/IV19/08/2014)< 2/250. Partial standing waves breaking on a slope with reference to the point IP of the still water level intersecting the slope Main topic: Influence of a phase shift Δϕ on breakers interacting with sloping structures Slopes Damping ≤ n ≤ 2:1:13:1 Structure SWL IP d = 0.626m Wave Maker With and without re-Reflection 0.79m 1.79m Measurements of water level deflections quasi synchronously at 91 wave probe stations equally spaced 10 cm. http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 3/25 Tests on the stability of Hollow Cubes Δx Model scale: 1:5 Slopes: 1 : 3≤ 1n :≤ 1 : 2 Wave heights up to H = 0.35m Punging breaker on Collapsing breaker on xΔ 0≈ . 15 m quasi Smooth Slope Hollow Cubes Cr = -0.32 Cr = -0.16 http://www.digibib.tu-bs.de/?docid=00047044 abCoastl ona2010, Barcel 19/08/2014 4/25 Maximum run up Differences: Δy • extent • phase yΔ 0≈ . 40 m Run down of collapsing Run down of plunging breaker on Hollow Cubes breaker on Smooth Slope http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 5/25 Energy Density Spectra of Water Level Deflections (Composite Power Spectra) ~IA ~IA 256 Components Δf = 0.00543 Hz cut off cut off cut off cut off Permeable revetment Plane revetment (measured synchronously) http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 6/25 Energy lines resulting from 256 frequency components total frequency range 0.0326 – 1.3997 Hz IA(p x Hz) (resultant clapotis length) Emin 256 Components Δf = 0.00543 Hz Slope 1:3 http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 7/25 General properties of partial standing waves at a slope Breakers Partial Clapotis Envelopes Envelopes Partial Clapotis Energy Potential energy EE− E = maximum energy at loop i Reflection max,i min,i max,i Cr, i = where and coefficient EEmax,i + min,i Emin,i = minimum energy at node i http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 8/25 Energy lines of 12 definable partial clapotis waves frequency range 0.4015 – 0.8030 Hz (74 components) Subfrequency ranges of 0.014 ≤ n.Δf ≤ 0.085 Hz Slope 1:3 http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 9/25 12 partial standing waves at slope 1:m = 1:3 Minimum partial clapotis node distances from IP IP http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 10/25 Modified data procession and presentation for slopes 1:2 Hollow Cubes piled up to form a stepped face hollow seawall structure (2-layer-system). Slope: 1:2 Model scale: 1:10 Hollow Cubes with the stem C = +0.2 placed at one r bottom edge http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 11/25 Modified data procession and presentation for slopes 1:2 Comments: cut off noise frequencies • At steeper slope 1:2 measurements closer to IP. • Set of partial clapotis IP waves identifiable, although re-reflection effect prevented. • Energy contents of partial clapotis waves cut off noise piled up with reference frequencies to gauge station numbers Close to IP • nodes at smooth slope and IP • loops at hollow slope. http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 12/25 Monochromatic waves at smooth slopes: NODE DISTANCE FROM STRUCTURE Relative node distances a/LSMOOTH with SLOPESreference to slope angle a/L 0,25-0,3 0.25 0,2-0,25 0,15-0,2 0.20 0,1-0,15 0,05-0,1 0.15 0-0,05 0.10 -0,05-0 -0,1--0,05 0.05 a/L 0.00 IP -0.05 0,30 .450 0,25 .529 0,20 0,15 .625 FREQUENCY [Hz] 0,10 0,05 .766 ≤ ≤ 22.217.1 sT IP 0,00 .800 -0,05 -0,10 .853 90,00 84,29 63,43 45,00 26,56 18,43 Joint trends: o SLOPE ANGLE [ ] Nodes closer to IP with tanα = 1:m 1:0.1 1:0.5 1:1 1:2 1:3 • slope angle decreasing • frequency increasing http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 13/25 Two kinds of standing transversal waves (without transmission) Free end reflection without phase jump (shift) (wave crest reflectet by wave crest) Known examples: • Rope waves • Electromagnetic waves • Water waves (Clapotis) Fixed end reflection with phase jump Δϕ = 180o (wave crest reflectet by wave trough & vice versa) Known examples: • Rope waves • Electromagnetic waves • Water waves (at a slope?) incident wave: red reflected wave: blue resultant wave: black Click on the figure to start animation Animations after Walter Fendt (2003) http://www.walter-fendt.de/ph14d/stwellerefl.htm http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 14/25 Wave breaking combined with partial reflection and transmission (wave moving to the left) Partial Clapotis Runup Node Loop Node 1 4 2 3 6 Runup = transmitted IP 5 wave pulse (phase 4) Breaking wave • The existence of a node close to the slope provides evidence of partial reflection with a phase jump . • Note opposite transmitted and reflected deflections around IP. • Conservation of momentum: Smaller & slower transmitted wave pulse ct < ci combined with negative reflection (wave crest reflected by wave trough & vv) http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 15/25 Wave breaking combined with partial reflection and transmission (wave moving to the left) Runup = transmitted wave pulse (phase 4) Breaking wave Click on the figure to start animation • The existence of a node close to the slope provides evidence of partial reflection with a phase jump . • Note opposite transmitted and reflected deflections around IP. • Conservation of momentum: Smaller & slower transmitted wave pulse ct < ci combined with negative reflection (wave crest reflectet by wave trough & vv) http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 16/25 AnalogueAnalogue fromfrom ropelight waves: waves: Fresnel´s Equations describing reflection and transmission of light at uniform planar interfaces Interface of two refractive index media Partial reflection and lower higher transmission of a pulse travelling to the right from low to high refractive index medium. Superimposition of positive incident and negative reflected pulses not shown ! Animation after Oleg Alexandrow (2007) ci cr ct < ci http://de.wikipedia.org/wiki/Datei/:Partial_transmittance.gif breaking Click on the figure to start animation wave Incident and transmitted Analogue behaviour of water reflected pulse pulse = runup waves breaking on a slope respectively (except rundown). negative partial reflection http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 17/25 Analogue from rope waves: Partial reflection and transmission of a puls travelling to the right from thinner to thicker rope diameter. Boundary of two ropes thinner thicker incident pulse: white reflected pulse: red transmitted pulse: blue Superimposition of positive incident and negative reflected pulse not shown ! Animations after B. Surendranath Reddy (2004) http://www.surendranath.org/Apps.html cr = ci ct < ci Click on the figure to start animation breaking incident and wave transmitted Analogue behaviour of water reflected pulse pulse = runup waves breaking on a slope respectively (except rundown). negative partial reflection http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 18/25 Further considerations on the positioning of partial standing waves with reference to a sloping structure http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 19/25 Consequences of phase shifts on reflection coefficients Wave height ratio: Hr / Hi = 1.0 < 4.00 > 0 http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 20/25 Consequences of phase shifts on reflection coefficients Wave height ratio: Hr / Hi = 0.7 < 3.4 > 0.6 http://www.digibib.tu-bs.de/?docid=00047044 Coastlab 2010, Barcelona 19/08/2014 21/25 Consequences of a phase shift on reflection coefficients Partial Clapotis Envelopes Loop Loop Node Node Node envelopeWave crest Wave trough envelope Hmin L/4 L/4 Hmax ? L (by HReflection Coefficient ealy, 1953): H r HHmax − min Wave C = = whereHHHmax = i+ r andHHHmin = i− r r ratioheight H i HHmax + min Phase shift ⎛ H π ⎞ HH− 3 . 14− 1 . 42 C=f ⎜ r =0 . 7 Δϕ , =⎟ = max min = 0= . 377 considered r ⎜ ⎟ ⎝ H i 4 ⎠ HHmax + 3min . 14+ 1 . 42 http://www.digibib.tu-bs.de/?docid=00047044 abCoastl ona2010, Barcel 19/08/2014 22/25 rof parametersin the ange coefficients Reflection 0 .