Journal of Modern Applied Statistical Methods

Volume 18 Issue 2 Article 23

9-17-2020

Concomitant of Order from New Bivariate Gompertz Distribution

Sumit Kumar Babasaheb Bhimrao Ambedkar University, [email protected]

M. J. S. Khan Aligarh Muslim University, [email protected]

Surinder Kumar Babashaheb Bhimrao Ambedkar University, [email protected]

Follow this and additional works at: https://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons

Recommended Citation Kumar, S., Khan, M. J. S., & Kumar, S. (2019). Concomitant of order statistics from new bivariate Gompertz distribution. Journal of Modern Applied Statistical Methods, 18(2), eP2826. doi: 10.22237/jmasm/ 1604189820

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Journal of Modern Applied Statistical Methods November 2019, Vol. 18, No. 2, eP2826. Copyright © 2020 JMASM, Inc. doi: 10.22237/jmasm/1604189820 ISSN 1538 − 9472

Concomitant of Order Statistics from New Bivariate Gompertz Distribution

Sumit Kumar M. J. S. Khan Babasaheb Bhimrao Ambedkar University Aligarh Muslim University Lucknow, India Aligarh, India

Surinder Kumar Babasaheb Bhimrao Ambedkar University Lucknow, India

For the new bivariate Gompertz distribution, the expression for density function (pdf) of rth order statistics and pdf of concomitant arising from rth order statistics are derived. The properties of concomitant arising from the corresponding order statistics are used to derive these results. The exact expression for moment generating function (mgf) of concomitant of order rth statistics is derived. Also, the mean of concomitant arising from rth order statistics is computed using the mgf of concomitant of rth order statistics, and the exact expression for joint density of concomitant of two non-adjacent order statistics are derived.

Keywords: New bivariate Gompertz distribution, order statistics, concomitant of order statistics, moment generating function

Introduction

In the theory of concomitant of order statistics by David (1973), the values assumed by concomitant variable Y are corresponding to each value of variable X, arranged in some specified order, from a bivariate population (Xi, Yi); i = 1, 2,…, n. Concomitant of order statistics finds frequent application in selection problems, where decision of selection is based on the values of two random variables X and Y. For, e.g., X may be the score of students in preliminary examination and Y may be the corresponding score in final examination, X may be the height of an individual and Y may be the body weight of same individual in a certain physical examination test, etc.

doi: 10.22237/jmasm/1604189820 | Accepted: June 26, 2018; Published: September 17, 2020. Correspondence: M. J. S. Khan, [email protected]

2 KUMAR ET AL

El-Sherpieny et al. (2013) discussed a new bivariate Gompertz distribution, denoted by NBG(α1, α2, α3, λ) which has Gompertz marginals. Univariate Gompertz distribution with parameters α, λ has the probability density function (pdf) is as follows:

 −−(e1x ) f,,ee;,,0( xx) =x  (1) and the cumulative distribution function (cdf) of univariate Gompertz distribution is given by

 −−(e1x ) F,,1e( x ) =−  . (2)

Suppose Ui ~ G(αi, λ), i = 1, 2, 3, are independently distributed. If we consider the random variable X = min(U1, U2) and Y = min(U2, U3), then the random vector (X, Y) shall follow NBG(α1, α2, α3, λ), α1, α2, α3, λ > 0, with corresponding joint cdf can be written as

F,;if1 ( x 0 yyx)   F,F,;if( x yx )0= yxy 2 ( ) (3)  F,;if3 ( x 0 yyx) = where

13+ x  −−(e1) −−2 e1 y   ( ) F,1ee1 ( xy) =− 

 23+  y −−1 e1x −−(e1)  ( )  F,1ee2 ( xy) =− 

1++  2  3 x −−(e1)  F,1e3 ( xy) =−  and the corresponding joint pdf can be obtained as

3 CONCOMITANT OF ORDER STATISTICS

f,;if1 ( xyyx 0 )   f,f,;if( xyxyxy 0) = 2 ( ) (4)  f,;if3 ( xyyx 0 ) = where

13+ x  −−(e1) −−2 e1 y xy   ( ) f,e1213( x eee ya) =+( )  

 23+  y −−1 e1x −−(e1) xy  ( )  f,e2123( x eee ya) =+( )  

123++   x −−(e1) x  f,ee33( xy) =   

Therefore, the marginal pdf and marginal cdf of X can be represented, respectively, as

13+ x−1 −(e ) x  fee;0(xx) =+(13) , (5) 

13+ x −−(e1) F1e(x) =− . (6) 

Thus, the conditional pdf of Y given X is as follows:

f1 ( y | x) ; if 0  y x  f( y | x) = f2 ( y | x) ; if 0  x  y (7)  f3 ( y | x) ; if y= x 0 where

 22− e y  y f12( yx |) =  e e e

4 KUMAR ET AL

23+  y   −e 2 − 3 ex 23+  y   f|eeee21( yx) =   13+

 −−3 e1x 3  ( ) f|e3 ( yx) =  13+

Subsequently, Yang (1977) discussed the general distribution theory of the concomitants of order statistics. Bhattacharya (1984) also explained the theory and application of concomitant of order statistics in the name of induced order statistics. Balasubramanian and Beg (1996, 1997) obtained expressions of concomitant of order statistics in bivariate of Marshall and Olkin and concomitant of order statistics in Morgenstern type bivariate exponential distribution. Balasubramanian and Beg (1998) studied the concomitant of order statistics arising from Gumbel’s bivariate exponential distribution. Further, Begum and Khan (2000) and Begum (2003) obtained expressions of concomitant of order statistics from Marshall and Olkin's bivariate and bivariate Pareto II distribution. In the same sequence of advancements to the theory of concomitant of order statistics, Thomas and Veena (2011) defined the application of concomitant of order statistics in characterizing a family of bivariate distributions. Chacko and Thomas (2011) and Philip and Thomas (2015) extended the application of concomitant of order statistics in the estimation of parameters of Morgenstern type bivariate exponential distribution and extended Farlie-Gumbel- Morgenstern bivariate , respectively. In this study, the th properties of concomitant of r order statistics, i.e. Y[r:n], are studied if the random variables (Xi, Yi), i = 1, 2,…, n, are iid and follows NBG(α1, α2, α3, λ).

Distribution of Order Statistics

Let X1, X2,…, Xn be the n iid random variables from the population having pdf f(x) th and cdf F(x). Then the pdf of r order statistics Xr:n is given by (David, 1981):

r−−1 n r fr:: n(x) = C r n  F( x)   1 − F( x)  f( x) ; −   x  , where Cr:n = n! / (r – 1)!(n – r)!. th Therefore, the pdf of r order statistics Xr:n, when X1, X2,…, Xn are iid random variables having pdf and cdf given in (5) and (6), respectively, is given by

5 CONCOMITANT OF ORDER STATISTICS

1313++x  −−(n +− rn1e1 +) r ( ) feeexC=+ x  r::13 nr( n ) ( )  r−1 (8) 1313++x   e −1ee;0  x  

Putting r = 1 in (8), we get the pdf of the first order statistics X1:n as

1++  3 x   1  3  −nn e   x     f1:n (x) = n( 1 + 3 ) e e e ; 0  x   . (9)

Let Xr:n and Xs:n be the two order statistics (1 ≤ r < s ≤ n); then the joint pdf of two order statistics is given by (David, 1981):

r−11 s − r − n − s fr,:12,: s n(x , x) = C r s n  1 − F( x 1)   F( x 1) − F( x 2)   F( x 2)  f( x 12) f ( x ) ,

–∞ < x1 < x2 < ∞, where

n! Cr,: s n = (rsrns−−+−1) !1!!( ) ( ) and F̅ (x) = [1 – F(x)]. Therefore, if X1, X2,…, Xn are n iid random variables having pdf and cdf given in (5) and (6), respectively, then the joint pdf of Xr:n and Xs:n is given by

f,r, s : n (xx 1 2 ) =

r−11 s − r − 2 lk+ r−11  s − r −  xx12 Cr, s : n ( 1+− 3 ) e e( 1)    (10) lk==00 lk   (+ ) −13(l +−− s r k)exx12 +−++( n s k 1) e −+−+( l n r 1) e  

Distribution of Concomitant of Order Statistics

The pdf of concomitant of first order statistics Y[1:n] is given by (Begum & Khan, 2000)

6 KUMAR ET AL

 y gf|ff|ff|f( yyxxdxyxxdxyxx) =++ ( ) ( ) ( ) ( ) ( ) ( ) . 1:n y 11:21:31: nnn 0

Consider (7) and (9); the pdf of concomitant of first order statistics Y[1:n] is given by

nn(++)  ( ) 221313 −−eeyx geeeeeeyndx=+  yx 1:n ( ) 213( )  y (+++)  nyn( )  ( ) −−231313 eeeyxx 2 3 ++ndx eeeeeeeyx 123( )  0 nn(++)  ( ) 1313 −−−3 e1eyy  ( )  y + n3eeee

After some algebraic simplification, we get

n ++   ( 1 3) 2  y (+ ) (1e− ) n + 231e−  y yy 123( )  ( ) ge1:n ee( y) =+ e 2 n(133+−) (11) nn(1+  3) −+  21 +  3yy  3 ( )  (1−− e1) e ( ) n123( + ) yy  −+e ee e n3 n(133+−)

The relation between the pdf of concomitant of first order statistics and concomitant of rth order statistics is given by (Balasubramanian & Beg, 1998)

n i− n + r −1 in−1   gr: n ( yy) =− ( 1)    g 1: i ( ) . i= n − r +1 n− r  i 

Therefore, the pdf of concomitant of rth order statistics is given, for 0 < y < ∞, by

7 CONCOMITANT OF ORDER STATISTICS

i(++) n  132 1e−  y i− n + r −1 in−1 ( )   y  g1eern: ( y) =−( )  2    nri−  i= n − r +1   (+ ) i( + ) 23(1e−  y ) + 123 ee y  (12) i (133+−)

ii(132133+−++) yy( )  1−− e1 e  i( + ) ( ) ( ) −+123 eeeeyy i  i (+−) 3  133 

Moment Generating Function of Concomitant of Order Statistics

The moment generating function of concomitant of first order statistics Y[1:n] is defined as

 ty MegY (tydy) = ( ) . 1:n 0 1:n

Thus, in view of (11), we have:

nn(1+  3) ++  21 +  3  2 ( )  y   − e  (ty+) MeeY (tdy) = e 2 1:n  0 + + ( 23)  − 23e y n( +  ) ty+  + 1 2 3 ee e ( )  dy n(1+−  3)  3 0 (13) nn(1+  3) −+  21 −  3  2 ( )  y   − e n( +  ) ty+ − 1 2 3 ee e  ( ) dy n(1+−  3)  3 0

n(1++  3)  2  n(1+−  3)  3  y   − e + n e   ee(ty+)  dy 3  0

Consider the integral

n(1++  3)  2  y  −e I= ee(ty+)  dy 1  0

8 KUMAR ET AL

and

n(132++) 1 = ;  after simplification, we get

1 tt I =+−+ Γ1γ1,  , 11t  +1    1 where Γ(.) is the gamma function and γ(., .) is the lower incomplete gamma function defined as

x γ,e(axudu) =  au−−1 . 0

Thus, using the relationship between lower incomplete gamma function and Kummer’s confluent hypergeometric function, 1F1(1, s + 1, z), which is given by –1 s –z γ(s, z) = s z e 1F1(1, s + 1, z), (see Abramowitz and Stegun, 1972, p. 262),

−1 t +1 ttt  −1 γ1,1eF+=++ 1,2,111 11 . 

This implies

−1

ttt  −1 Γ11+++  e F 1,2, 1 11   I =−  . 1 t +1   1

Similarly, denoting

+ nn(+ ) −+  +   ( ) ===23,, and 1 321 33 , 234 

9 CONCOMITANT OF ORDER STATISTICS

respectively, and solving the rest of the integrals of (13), we get the mgf of concomitant of first order statistics given as

−1 ttt  −1 Γ11eF+++  1,2, 1 11     Me(t) =− 1  Y1:n 2 t +1   1  −1 ttt  − Γ11eF+++ 1,2, 2  2   1 12 n( + )e  +−123   t n +−+1  ( 133 )  2  −1 ttt  − Γ11eF+++ 1,2, 3  3   1 13 n( + )e  − 123  − t n +− +1  ( 13) 3  3  −1 ttt  −4 Γ11eF+++  1,2, 1 14     +−n e 4  3 t +1   4 (14) 

th Now, mgf of concomitant of r order statistics Y[r:n] can be obtained by utilizing the relation by Balasubramanian and Beg (1998):

n i− n + r −1 in−1 M1M tt=− . YYr:1: ni ( )  ( )    ( ) i= n − r +1 nri−

In view of (14), the mgf of concomitant of rth order statistics is given as

10 KUMAR ET AL

M t = Yrn:  ( )  −1 ttt −1 n  Γ11eF1,2,+++ 1 11  i− n + r −1 in−1   −−1e 1  ( )  2 t nri−  +1  i= n − r +1    1   −1 tt− t Γ11eF1++2 ,2, +  2  112 i( + )e   +−123   t i +− +1  ( 133 )  2  −1 ttt − Γ11eF1,2,+++ 3  3  1 13 i( + )e  −−123  t i +− +1  ( 133 )  3   ttt −1   −4 Γ11eF1,2,+++ 1 14       +−i e 4  3  t  +1    4   

Mean of Concomitant of Order Statistics

th The p moment about origin of concomitant of first order statistics Y[1:n] can be obtained as

p p d YY= M (t) . 1:1:nn p     dt t=0

Therefore, the first moment about origin i.e. mean for concomitant of first order statistics can be calculated as

d YY= M (t) . 1:nn   1:   dt t=0

Using (14), we have

11 CONCOMITANT OF ORDER STATISTICS

  −1 t   t −1  t    Γ+ 1   + 1  e1 F 1  1, + 2, 1  d           =− e 1  Y1:n  2 t dt +1       1    −1 t   t −  t  Γ+ 1 + 1 e2 F 1, + 2, 2    1 1  2  n( +  )e    +−1 2 3       t n +−   +1  ( 1 3) 3  2  −1 t   t −  t  Γ+ 1 + 1 e3 F 1, + 2, 3    1 1  3  n (+ )e    − 1 2 3  −     t n +−   +1  ( 1 3) 3  3  −1  t   t −4  t  Γ+ 1   + 1  e1 F 1  1, + 2, 4             +−n e 4  3 t  +1      (15) 4  t=0

Differentiating (15) with respect to t and using the relationships given below:

dxΓ ΓψΓxxx ==( ) , dx where ψ(x) is the digamma function (Prudnikov et al., 1990, p. 442), we have

dz− e−z 1F 12( 1;;F,;1,1; 2 +=+ zz)  +   + 2 + ( +  +  − ) , d (+ ) and setting t = 0,

12 KUMAR ET AL

e1 ψ( 1log) −  e−1  =+−+−211 F( 2,2;3,3;F 1;2;) ( ) Y1:n 2 211 11 1 4

2 n1232( +−)e ψ( 1log) 2 ++−  2F 22( 2,2;3,3;  ) n( 133+−)  2 4 e−2  +−1F 12( 1;2;  )   (16) 3 n1233( +−)e ψ( 1log) 3 −+−  2F 23( 2,2;3,3;  ) n( 133+−)  3 4 e−3  +−1F 13( 1;2;  )  

4 −4 n3e ψ( 1log) − 4 4 e ++−+− 2F 241( 2,2;3,3;F 14  1;2;) ( ) 4 4

Now, the expression for pth moment about origin of concomitant of rth order statistics Y[r:n] can easily be obtained by using the relation (Siddiqui et al., 2011)

n i− n + r −1 in−1 pp=−1 . YYr:1: ni  ( )    i= n − r +1 nri−

th In view of (16), the mean for concomitant of r order statistics Y[r:n] can be obtained as

13 CONCOMITANT OF ORDER STATISTICS

n 1 i− n + r −1 in−1  e ψ( 1log) −   =−( 1) 2 1 Yrn:      i= n − r +1 nri−   1

−1 1 e  +−+−2F2,2;3,3;F1;2; 211( 11 ) ( ) 4

2 −2 i1232( +−)e ψ( 1log) 2e ++−  2F2,2;3,3; 22(  ) i( 133+−)  2 4 e−2  +−1F1;2; 12(  )  

3 i123( + )e ψ( 1log) − 3 3 −  +−2F2,2;3,3; 23(  ) i( 133+−)  3 4 e−3  +−1F1;2; 13(  )  

4 −4  i3e ψ( 1log) − 4 4 e ++−+− 2F2,2;3,3;F1;2; 241( 14 ) ( )  4 4 

Similarly, differentiating mgf recursively with respect to t, the higher order moments may be obtained.

Joint Density of Concomitants of Two Order Statistics

th th If Y[r:n] and Y[s:n] are the concomitant of r and s order statistics, respectively, then the joint pdf of Y[r:n] and Y[s:n] is given by

 x2 g,f|f|f, y yyxyxx= xdx dx , r,: s n ( 121122,) :1212 ( ) ( ) r s n ( ) − − where fr,s:n(x1, x2) is the joint pdf of two order statistics Xr:n and Xs:n and f(y1 | x1), f(y2 | x2) are the conditional pdf defined in (7). If the bivariate random variables (X, Y) follow NBG(α1, α2, α3, λ), then the joint density of concomitants of two order statistics Y[r:n] and Y[s:n] can be obtained by adding all joint densities existing at various mutually exclusive conditions, i.e.,

14 KUMAR ET AL

g,,,,,r,: s n ( yyIyyIyyIyyIyy12112212312412) =+++( ) ( ) ( ) ( ) (17) +++IyyIyyIyy512612712( ,,, ) ( ) ( ) where I1(y1, y2),…, I7(y1, y2) are the joint densities under different mutually- exclusive conditions are and defined below.

Case I: when Y < X In this case, there are the following three sub-cases:

Sub-Case 1: If 0 ≤ y1 < x1 < y2 < x2 ≤ ∞.

 y2 Iyxyxxxdx= f|f|f, dx . 1111222, :1212( ) ( ) r s n ( ) yy21

After some algebraic simplification, and in view of (7) and (10), we have

222yy r−11 s − r − −+ee12 2 lk+ rs−−11 r − 2 ( yy12+ ) ( ) IC1213,=+− : e ee1 ( ) r s n ( )  lk==00 lk

(++ ) −(l +++ n rl −11 s) −+− ry kn + + s k ( )( ) ( )( ) 1 31 31 3 2 −−eexx12 ee ee e xx12dx dx  12 yy21

Solving the above equation,

222yy r−11 s − r − −+ee12 lk+ r−11  s − r − 42 ( yy12+ ) ( ) IC12,=− : e e e1 r s n ( )   lk==00 lk  +n − s + k +1 ( 13)( ) x1 (+ )(lnrlsrklsrk +−++ 1) − +−−+ +−−e ( )( ) ( )( ) 1 31 31 3 e  eexx12− −eee   (l+−− s r k ) 

Sub-Case 2: If 0 ≤ y1 < y2 < x1 < x2 ≤ ∞.

 x2 I= f yx | f yx | f xxdxdx , . 2 111222,:12( ) ( ) r s n ( ) 12 yy22

15 CONCOMITANT OF ORDER STATISTICS

Again, after some algebraic simplification and in view of (7) and (10),

2 22−+eeyy12 32 ( yy12+ ) ( ) IC22,= :  eee r s n (++) −(l + n r 1) 13 1e−  y2 rs−−11 r −  ( ) lk+ rsr−−−11e −( 1)  lk==00 lk(lnrnsk+−+−++11)( )

Sub-Case 3: If 0 ≤ y2 < y1 < x1 < x2 ≤ ∞.

 x2 Iyxyxxxdx= f|f|f, dx . 3111222, :1212( ) ( ) r s n ( ) yy11

Again, on using (7) and (10) and solving,

2 22−+eeyy12 42 ( yy12+ ) ( ) IC32,= : eee r s n (++) −(l + n r 1) 13 1e−  y1 r−11 s − r −  ( ) lk+ rs−−11 r − e −( 1)  lk==00 lk(l+ n − rn +−11) s( + k + )

Case II: when X < Y Again, the three sub-cases are given as

Sub-Case 1: If 0 ≤ x1 < y1 < x2 < y2 ≤ ∞.

yy21 Iy= xyf|f|f, xx x dx dx . 41 112( 2) 2( ,:) 1212r s n ( ) y1 0

Using (7) and (10) and solving,

16 KUMAR ET AL

++eeyy12 ( 23)( ) rs−−11 r − 2 − lk+ rsr−−−11 42 2 ( yy12+ )  I4123=+− ( ) eee1 ( )  lk==00 lk

(13++) −(l + n r 1) e1  (lsrknsk +−−+−−+++−)() ( 1)( )   133133 (l+ s − r −+−+ kl)( s133133 − r −+− k)  ( )( )  −−ex1 −ee 

(n− s + k +1)(1 +−−33133) + ++− (n s k 1)( )  − eexx12−  e − e 

Sub-Case 2: If 0 ≤ x1 < x2 < y1 < y2 ≤ ∞.

yx12 Iyxyxx= f|f|f, xdx dx . 5111222, :1212( ) ( ) r s n ( ) 00

Again, on using (7) and (10) and solving,

yy12 (23++)(ee) 2 − 32 2 ( yy12+ )  I5=+  1(  2  3 ) e e e

(13+)(l + n − r +1) r−11 s − r −  lk+ r−11  s − r −  e −( 1)    lk==00 lk   (l+ s − r − k )(1 +  3) −  3

(l+ s − r − k )(1 +  3) −  3  − (n− s + k +11)(1 +  3) −  3 ( n − s + k +)(  1 +  3) −  3  e   −−e y1  −ee  n− s + k +1  +  −  ( )( 1 3) 3    (n+ l − r +1)( + ) − 2 ( n + l − r + 1)(  + ) − 2   1 3 3  1 3 3  y1  1 −−e −−ee n+ l − r +12 +  −  ( )( 1 3) 3 

17 CONCOMITANT OF ORDER STATISTICS

Sub-Case 3: If 0 ≤ x1 < x2 < y2 < y1 ≤ ∞.

yx22 Iyxyxxxdx= f|f|f, dx . 6111222, :1212( ) ( ) r s n ( ) yy11

Again, using (7) and (10) and solving,

yy12 (23++)(ee) 2 − 32 2 ( yy12+ )  I6123=+ (  ) e ee

(13++) −(l + n r 1) r−11 s − r −  lk+ rs−−11 r − e −( 1)  lk==00 lk(l+ s − r −+− k )(133 )

(l+ s − r −+ k )(1 −  3)  3  − (n− s + kn ++11) s( k1 −−  3 +) ++ 31  3−  3( )( )   e   −−e y2  −ee  n− s + k ++−1   ( )( 133 )     (n+ l − rn ++1212) l( r −+  −) ++  −  ( )( )  1 331 33    y2  1 −−e −−ee n+ l − r ++−12  ( )( 133 )  

Case III: When X = Y

Iyxyxxx7311322,= f|f|f,( :12 ) ( ) r s n ( ).

On using (7) and (10),

2 33−+eeyy12 2 ( yy12+ ) ( ) IC7=  3e e e r , s : n

r−11 s − r − (1+  3)(l +−+ n r11) (  1 +  3)( l +−− s r k) yy(  1 +  3 )( n −++ s k ) . lk+ r−11  s − r −  −−ee12 −( 1)    e e  e  lk==00 lk  

Putting the values of I1,…, I7 in (17), obtain the required joint density of two concomitant of order statistics.

18 KUMAR ET AL

References

Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions (9th edition). New York: Dover Publications, Inc. Balasubramanian, K., & Beg, M. I. (1996). Concomitant of order statistics in bivariate exponential distribution of Marshall and Olkin. Calcutta Statistical Association Bulletin, 46(1-2),109-115. doi: 10.1177/0008068319960109 Balasubramanian, K., & Beg, M. I. (1997). Concomitant of order statistics in Morgenstern type bivariate exponential distribution. Journal of Applied Statistical Science, 54(4), 233-245. Balasubramanian, K. & Beg, M. I. (1998). Concomitant of order statistics in Gumbel's bivariate exponential distribution. Sankhyā: The Indian Journal of Statistics, Series B, 60(3), 399-406. Begum, A. A. (2003). Concomitant of order statistics from bivariate Pareto II distribution. International Journal of Statistical Sciences, 2, 27-35. Begum, A. A., & Khan, A. H. (2000). Concomitant of order statistics from Marshall and Olkin's bivariate Weibull distribution. Calcutta Statistical Association Bulletin, 50(1-2), 65-70. doi: 10.1177/0008068320000106 Bhattacharya, P. K. (1984). Induced order statistics: Theory and applications. In P. R. Krishnaiah & P. K. Sen (Eds.), Handbook of statistics 4: Nonparametric Methods (pp. 383-403). New York: Elsevier. doi: 10.1016/S0169- 7161(84)04020-7 Chacko, M., & Thomas, P. Y. (2011). Estimation of parameter of Morgenstern type bivariate exponential distribution using concomitant of order statistics. Statistical Methodology, 8(4), 363-376. doi: 10.1016/j.stamet.2011.02.004 David, H. A. (1973). Concomitant of order statistics. Bulletin of the International Statistical Institute, 45, 295-300. David, H. A. (1981). Order statistics (2nd edition). New York: John Wiley. El-Sherpieny, E. A., Ibrahim, S. A., & Bedar, R. E. (2013). A new bivariate distribution with Gompertz marginal. International Journal of Basic and Applied Sciences, 2(4), 348-355. Philip, A., & Thomas, P. Y. (2015). On concomitants of order statistics arising from the extended Farlie-Gumble-Morgenstern bivariate logistic distribution and its application in estimation. Statistical Methodology, 25, 59-73. doi: 10.1016/j.stamet.2015.02.002

19 CONCOMITANT OF ORDER STATISTICS

Prudnikov, A. P., Brychkov, I︠ U︡ . A., Marichev, O. I., & Gould, G. G. (1990). Integrals and series: More special functions (Vol. 3). New York: Gordon and Breach Science Publishers. Siddiqui, S. A., Jain, S., Siddiqui, I., Alam, M., & Chalkoo, P. A. (2011). Moments and joint distribution of concomitant of order statistics. Journal of Reliability and Statistical Studies, 4(2), 25-32. Retrieved from http://jrss.in.net/assets/4102.pdf Thomas, P. Y., & Veena, T. G. (2011). On an application of concomitants of order statistics in characterizing a family of bivariate distributions. Communications in Statistics – Theory and Methods, 40(8), 1445-1452. doi: 10.1080/03610921003606319 Yang, S. S. (1977). General distribution theory of the concomitants of order statistics. Annals of Statistics, 5(5), 996-1002. doi: 10.1214/aos/1176343954

20