<<

The expanding Earth: a sound idea for the new millennium Giancarlo Scalera Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata 605 00143 Roma, Italy

Abstract A short review of the more relevant modern arguments in fa- vour of the conception of the Earth in expansion is provided. The advantage of the expanding planet idea is a common explanation of several outstanding problems coming from palaeontology, palaeomagnetism, geology and climatology. All these problems should be regarded as be a sort of distortion effects, which arise if we try to reconstruct the situation of old geologic times adopting the modern Earth’s radius – the distortions become larger and larger as we came back in time. As a consequence the expanding Earth could be considered a natural generalization of the plate tec- tonic. A strong support to this generalization came from the sim- ple and united explanation that can be found in the expanding Earth of the classical geodynamic phenomena of the polar motion and the true polar wander by an inversion of the paleogeographic position of the triple points. The conviction is expressed that basic information about this old global tectonic conception should be provided in secondary school and university courses.

Introduction Only in the second half of the XIXth century and up to 1930, the planetary expansion idea found a strong supporter in the Italian Roberto Mantovani (Parma, 1854 - Paris, 1933), who expressed the first main concepts of a global Pangea break-up (Scalera, 1997, 2001b) in several papers (one of these was quoted by Wegener in its famous book), and in 1888 in a book of Yarkovski (1844-1902) with argument that linked ether physics to gravity and chemistry. Mantovani expressed clearly the concept of an Earth completely covered by a continental crust, which suffered a progressive disten- sion and fracturation in large plates by an increase of the inner volume due to thermal expansion of the material – plasma – con- tained in the Earth under the crust. The Mantovani ideas were developed successively in Germany, for nearly half a century, by Hilgenberg (1933, 1965, 1974), in Russia by Bogolepow (1922) and more episodically by some others (Scalera, 2001; Scalera and

From Scalera, G. and Jacob, K.-H. (eds.), 2003: Why expanding Earth? – A book in honour of O.C. Hilgenberg. INGV, Rome, 181-232. 181 General overview flow mustbeadmitted(Fukao into orunderthe400-700kmtransitionzone,andahorizontal prolonged towardthelowermantlebutdeflectedhorizontally velocity zonesunderthe Asiatic circum-Pacificarcsappearnot zones verydifferent fromtheexpectedones. The narrowhigh bottom ofthemantle.Moreover laboratoryscaleexperiments downgoing buoyancybeing abletodrivetheslabtowards which, whenitreachesthe depth of700km,itsownincreasing (Ranalli, 2000;Ranalli 2001). This isatvariancewithrheologicaltheoreticalsimulation of whythissystemappears sostronglyblocked(Fukao doesnotexceedathousandkilometresandthe problemarises slab’ In thisnewimaging,thetotallengthofdeformed‘subducted appearstohavean upwardtendency. edgeofthecold‘slab’ ing graphic models(Fukao expansion tectonics. able, fewhundredsofkilometressubductioncouldnotdisturb Pantalassa) ofsubductionadmittedinplatetectonicsisunaccept- many thousandsofkilometres(uptomorethanahemisphere:the process isatvariancewiththeplatetectonicconcept. While the subduction process.CertainlytheexpandingEarth difference amongthemistheacceptation ortherejectionof Subduction planet view. allow newandbettergroundedinterpretationsintheexpanding plate tectoniciststocreatenewdatabases,andgetresults, gress inexpansionismonlyifthehugeinternationalefforts of parallel tothedevelopmentofplatetectonics,beingpossiblepro- because thedevelopmentofexpandingEarththeorygoes has noacrimonytowardstheplatetectonicistsmajority, especially of aminority, sometimeconsideredhereticalminority, butwhich stant radiusglobaltectonics. of different solutionhavetobeproposedforeachofthemincon- view –canberesolvedallcontemporaneously, whileaplethora paradoxical ifanexplanationissoughtintheconstantradius especially becausemuchpalaeontologicalevidence–somewhat 1997) aretobenoted. (1998), Shields(1979,1983,1996),Kremp(1992),Davidson(1983, 1969), Owen(1981,1983ab,1992),Milanovsky(1980),Chudinov Carey (1975,1976),Creer(1965),DearnleyEgyed(1956, Braun, 2001).InthenextgenerationnamesofBlinov(1987),

182 But themorerecenthigh-resolutionglobalmantle tomo- Many versionsoftheexpansionEarthexistandmain The reasonforthispaperismainlytoexplainthepointofview This lineofresearchhasappearedincreasinglyimportant et al. et al. , 2000)ofasubducingoceanic slab 2001) provideimagesofsubduction et al. 2001). Insomecasesthelead- et al. istence ofanyremainsPre- oceanfloorthatshouldbe the improbableexistenceof asolarge Pantalassaistheinex- T which hastohavebeencompletely consumedduringthePost- greater orequalto Triassic, ahugeamountofoceaniclithosphere alleged existenceofamore-than-hemispheric Pantalassa,age Another expressionofthedistortionshastobeconsidered: the gical andgeophysicalproblemposedtothescientificcommunity. one becauseoftheproportionallylarge geological,palaeontolo- ecc.. artifactual inletslikethe Tethys Sea, Arctic Sinus, Austral Sinus, able inthePangeareconstructionthatappearscrossed byhuge modern larger sizeoftheglobe.Indeed,large tearsareobserv- surface ofanancientsmallerglobecannotadaptitself tothe geological pastbecausethesialiccrust,oncecovering whole Likewise wecanobservetypicaldistortionsgoingin the deep velocities, andadoptthemoregeneralrelativisticmechanics. Newtonian mechanics,continuingtouseitwithinthelimitoflow able tothevelocityoflight space-time aswepassfromslowvelocitytovelocitiescompar- tonics the futureincreasinglydifferent fromtheconstantradiustec- Distortions arc zones. nov, 1998;Scalera,1994,1998)indescribingthe trench-arc-back- tions. Possiblenon-subductivemodelscanbeproposed(Chudi- transformed inamoregeneralviewonotherphilosophicalfounda- and probablyalltheplatetectonicsparadigmshouldbedeeply heavily revisedorreplacedwithanewconceptclosertoreality, bases, inmoreradicalviews,thesubductionprocessshouldbe any) hascoveredfrom Triassic tothepresenttime.Onthese (if a thousandkilometresisthemaximumlength‘subduction’ these newresultsintheexpandingEarththeorycouldbesimpler: that shouldimposeaconvectivecirculation. The interpretationof ly inthemantle,withoutstrongdeviationfromvertical the plumescanbefolloweduptoatleast800kmnearlyvertical- under themajorhotspots(RhodesandDavies,2001)showsthat actual Earthcannoteasilyfulfil. delicate equilibriumamongrheologicalparameterswhichthe All thingsthatsuggestalimitedextentofsubduction,andtoo of theback-arcbasinsproportionaltobackingtrenches. grade subduction,withretrogradetrenchmigrationsandanopening with theBenioff zonegeometry. Weak slabstendtoinitiateretro- that stiff slabstendtocurllikewoodshavingsnotinagreement (Faccenna, 2000)withdifferent kindofslabs(stiff orweak)show isi ie rcs o ifcl oiaie symptomof riassic times–aprocesstoo difficult toimagine. A

183 Global expansiontectonicshasprojectionstothepastand Concomitant highresolutionimagingofthemantleplumes The largest oftheinlets, Tethys, isthemost problematic projections. The situationisanalogous tothedistortionof c . As aconsequencewemustdrop Gerasimenko results. sion rateofonlyafewmillimetres peryear, inagreementwiththe rate (McElhinnyandMcFadden, 2000)couldsupportanexpan- of theEarthtodayinaminimum ofitssea-floorhalfspreading annual radiusincreaseisof nearly1.5cm/y, the newawareness the basisofmypalaeogeographical reconstructionsthemean 4mm/. While on has obtainedanannualradiusincreaseof≈ genetic locations,and–leavingtheradiusasafreeparameter – GPS and VLBI geodeticstations,discardingthestationsonoro- distance. Gerasimenko(1993)hasaccuratelyselectedthe sitesof two stations,anderroneouslyinterpretedasacontraction oftheir equivalent toadecreasingofthegeocentricanglebetween the increase, ifnotinsertedintothecomputation,isunderhandly explained byanincreaseoftheradiusbecausesuch aradius baselines, proportionaltothebaselinelength. This canbeeasily given asaresultgeneralizedannualcontractionofthe VLBI ais globalanalysisperformedbyHeki radius. A lysed withouttakingintoaccountapossibleincreaseoftheEarth’s (Very LongBaselineInterpherometry)dataaregenerallyana- Hemisphere. The GPS(GlobalPositioningSystem)and VLBI more conspicuousdifferences ariseintheanalysisofPacific coincident fortheRecentsituationandplatekinematics– Differences intheRecent roughly atthesametime. tears disappearandalltheoceanshavestartedtheirspreading huge Pantalassalostanyreasontobehypothesized,thePangea’s sea-floor. Onthecontrary, adoptinganexpandingEarthviewthe rate onlyalittlegreatershouldhaveerasedtheJurassicPacific sufficient toexposethe Trias Pacificsea-floor, whileaspreading spreading rateonlyalittlelessthantheactualshouldhavebeen Pacific spreadingrateisuptofivetimesthe Atlantic one)aPacific pendence ofthespreadingratesdifferent oceans( included. The maximumageisthe Jurassicandbecausetheinde- imum ageofthesea-floorinalloceans,MediterraneanSea Coincidence ofmaximumoceanfloorages very smallandnarrowindeed. amount ofmarineinlets,becausetheseareasdidnotexistorwere there isnoneedtoexplaindisappearanceofsuchhighareal Arctic Sinus, Austral Sinus, appears veryhardtotryexplainthedisappearanceof Tethys, encountered bythesubductionconcepts(Fukao floor crustinallthesegulfs.Inviewoftheincreasingdifficulty complicate modelsthatareproposedtoeliminatetheancientsea orsinus,ofthePangea,and present ineachofthemany‘tears,’ The twoconceptions,constantandvariableradius,arenearly 184 A related complementaryargument istheequalityofmax- ecc. In theexpandingEarthframework et al. et al. (1989) has 2001), it e.g. the site Bhasthesameanglewith oriented inthesamedirection three antennashavethesame claiming thatbecauseincthe increase froma(R=6371km) frame. Albeitthechordsfrom In thisfigurealltheparabolic respect tothelocalreference the increaseinradius,hecan the siteAfromBiszero. to c(R= site AtoBalsoincrease of thechordshidesreal angle inthelocalreference passing fromatoc,seethe frame, thenthedistanceof comparison, iftheobserver does nottakeintoaccount antennas ina,bandcare reach awrongconclusion in thecelestialreference The radiusoftheEarth A spuriouscontraction ∞ ). Eachantennain Earth’s expansion. Problematic VLBI computations. frame. F ig.1 found. present, andthatanewcomputation methodologyshouldbe expansion. Itisevidentthat aviciouscircle,difficult toavoid,is contraction ofthechords is overimposedontherealEarth’s formed withouttakingintoaccount theradiusgradient,aspurious ver computations,basedon theangular VLBI rawdata,areper- in Nasa’s chordsthemselves. As explainedinFig.1,iftheobser- expansion fromtheNasachordscancomeabasic problem zero. Inmyopiniontheimpossibilityofdetecting Earth’s these rulesthedetectedpossibleexpansionisreduced to nearly the VLBI stationsgreaterthan4mm(inabsolutevalue). With geological considerationsbutdiscardingverticaldisplacements of as they are Gerasimenko (thisbook,pag.972-424)usingonlytheNasa chords site A b a c

185 A new analysisofNasadatahasbeenperformednow by and adoptingacoolcriterionofselectionnotbasedon site A chord AB site A site B chord AB inc chord AB inb chord AB ina comparison ofthechords chord AB

'chord' AB site B site B Initial confusing interpretations and principia direction ( to assertthatthesamefracturezones But Morgan inthequotationreportedbeforeseemstobewilling that, southofJuandeFuca,continueuptothe American coasts. figure inMorgan 1968)alsoonthesegmentoffracturezone appears highlyuntenable. As matteroffactseismicityexists(see sea-floor ageof180Ma,andthenthisMorgan interpretation ago,practicallytoday, withrespecttoaPacificmaximum floor motion. This changeshould have happenedonlyfewmillion hypothesizing aradicalchangeinthedirectionofPacific and thentheywerecompelledtoretreatonthetransformfaults, the fracturezonesastheycouldhavedonein Atlantic case, and hissuccessorsmustnothaveusedwithcompletegenerality sea trenchnorthofNewGuinea.ItiseasytorealizethatMorgan nect the American coastfromCanadatoCaliforniathedeep- shape, ofthelongvolcanic chainEmperor-Hawaii andofits Noteworthy istheattempt to interpretthetrend,inageand crust, anditsvolcanicranges, inacoherentkinematicalpattern. was followedbyotherdifferent attemptstoframethePacific convenient onenotinconflict withaconstantEarth’s radius– that Laurentiahasmovedawayfromthetrenchesoff NewGuinea. Morgan interpretationandassuminganincreasingEarth’s radius, nearly 180MaawayfromNorth America means,intheold tonics wereformulated.InanycaseaPacificplatemoving for and tormentedtheyearswereinwhichprincipiaof plate tec- Change ofperspective view toward theJapanand Aleutian trenches.’ Philippines. About 10m.y. agothispatternchanged,andthePacificnowmoves moved awayfromNorth America towardtrenchesoff NewGuineaand F the westernNorth American coasts,writes: motion. Morgan, inthediscussion oftheoceanbottomzoneoff embarrassing ifappliedtotheinterpretationofPacificplate by hiscolleagues,butthatthiseventualitywasfeltasstrongly transform faultwasinitiallyconsideredvalidbytheauthorand that thepossibilityofadoptingfracturezonesinplace between thelinesofworkitisfinallypossibletounderstand as directionindicatorsoftheplatemotion.Fromreading were preferredtothelongerandbetterdelineatedfracturezones do notimmediatelyunderstandwhytheshortertransform-faults the senseofmotionplates. The readersofMorgan’s paper fault becomescentraltothedeductionofrotationpolesand sphere oftheplatetectonicsprincipia. The conceptoftransform- of GeophysicalResearch aults, andCrustalBlocks Indeed, theverylongfracturezonesofNorthPacificcon- ‘This oldfracturezones[Mendocino,Pioneer]indicatethatthePacificonce This changeofperspective –withtheassumptionofamore 186 The classicpaperofJasonMorgan indicate that ). All ofthismakescleartoushow uneven , wasthefirstattemptofsynthesison which appearedin1968the are indicators ofmovement Rises, Trenches,Great J ournal movement. Why theirextensions,the fracturezones,arenotused transform faultsaroleofdirectional traceofthemutualplate pole, becauseonlyinthismanner isitpossibletoassignthe is governedbytherotation aroundthecommonpole,aEuler’s one orbothofthembecome necessary. index turnouttobemutuallyinconflict,andtheelimination of of commonrotationpointandtransformfaultaskinematical ble fromtheruleswithoutparadoxes.Inparticular concepts that thetriplepointsshouldnonexistbecausetheyarenot deduci- strict applicationofthegeometricrulesplatetectonics implies weak, althoughitisclaimedtobededucedfromobservations. A and thenthatthisfundamentalassumptionofplatetectonics is pairs, rotation polecannotgenerallybeappliedtoallthreeplates’ point. Itispossibletoprovethatsuchprincipleofthe common together –aspetalsofacloverinanonlypointcalled triple But greatproblemsariseinthezoneswherethreeplatesborders imaginary Eulerianpivot,calledthecommonsinglerotationpole. diverging twobyrotatingin oppositedirectionsaroundan The triplepointparadox presence ofthesocalledtriplepoints. ent, oftheclassicprincipiaplatetectonicswithrespectto new assumptions,alsocomesfromtheinadequacy, banallyevid- favour thefracturezonedirectionasakinematicaltrace. explanation, whichshouldshowusthereasonwhyitisbetterto tonics wasbased,shouldcomeaboutnaturallybasedonanew fracture zones,onwhichthechoiceoforiginatorsplatetec- fault. The disagreementinthedirections ofthetransformand came inexistence,withagrowingedgeconnectedtotransform a morerealisticaccountofthewayprogressivelyfracturezone became anelementforconsiderationofthepossibilitytoprovide transform zonesasindicatorsoftheplatekinematicsshould to indicateadifferent trend.Moreover, thissoclearfallacyofthe North EastPacific,wheretheJuandeFucatransformfaultsseem traces oftheplatemotion,andthisshouldbevalidalsoin The greatfracturezonesshouldberegardedasthemaindirection rejected bythepioneersofplatetectonicsshouldbeassumed. the displacementofoceanicplate. fracture zoneswhichshouldhaveindicated,atleastinthepast, plume, butboththedirectionsdonotagreewithtrendof ocean-floor, 180-60Maand60-0Ma,onafixedsublithospheric two different subsequentdirectionsofmotionthePacific and theirtwodifferent directionsareinterpretedastheresult of elbow westoftheHessPlateau. The twobranchesofthechain

187 Plate tectonicsprescribesthat themotionbetweentwoplates On thespherelithosphericplatesarehypothesizedtomove This needtorevisetheoldkinematicalconceptsandmade In theexpandingEarthtectonics,however, justtheprinciple Shape conformities and asecondcommonwithC. assign, say, totheplateAtwo ab pole, thefirstcommonwithB Pole tectonics rules,inthegeneral AC If wehavetoapplytheplate different commonrotation triple pointcase,wemust Pole BC The triplepointparadox. Plate A lt PlateC Plate C in thePacific This isimpossible. oeA PoleABC Pole AB F ig.2 Plate B lished inhismoregrounded bookofgeologicalandgeophysical map wasdrawnby Wegener, onlyfifty years later, andwaspub- nent anditssubsequentdispersal. The nextpalaeogeographical twomapswhichillustratethereconstruction ofasuperconti- ing 1858, abookby Antonio SniderPellegriniwaspublishedcontain- tact between Africa andSouth America (Scalera2001),and,in many peopletoexpressdefiniteideasconcerninganancient con- journeysallowed starting fromafewdecadesafterColumbus’ in globalgeotectonicsareveryold. The cartographydeveloped plate tectonics. (Scalera, 1993),whichareunexplained(butalsonotadmitted) by is theexistenceofshapeconformitiesinPacifichemisphere and similar. of thereliabilityplatemotionmodelslikeNOUVEL points, alongallthemid-oceanicridges,posesseriousproblem then evidentnon-applicabilityofplatetectonicstothetriple andCplates. The more respect toatleastoneoftheothertwo A with aplate,theBinstateoftranscurrentmotion three commonrotationpointscoincidentatthesamepoint,and plate tectonicsisrepresented,itabanalsolutionwithallthe doxical thing(Cronin,1992).InFig.2batriplepointallowedby different commonrotationpointstoeachplate,aclearlypara- represented inFig.2a,wemustassigncontemporaneouslytwo can besensedbyfromhistoricalconsiderations. in thesamesense,isnotexplicittheory, evenifsomeclues

188 Discussions aboutthesignificanceofmatchingsimilarities An argument linkedtotheprecedingoneaboutfracturezones If theprescriptionisstrictlyappliedtoatriplepointzone,as Plate A Plate B Earth, thedisplacementsof fromPangea(which smaller thanthemodernEarth, among continentsandbasins, covers alltheplanet)towards trenches andEmperorHawaii similarities ofshapeobserved the continentshavefollowed before thePangeabreak-up, and betweenSouthAmerica of thecontinentsareon north ofNewGuinea,Asian conformities areobservable e.g. betweenLaurentiaand It istrulyimpossibleforthis continents andtheirRecent starting positionswhichare the Pangeapositionsof the arrowsconnectinginb) ai ( basin In c)itiseasytoappreciate been createdifthepathof pairs ofsimilaritiestohave that iftheEarthwasonce, andNazcabasins and theCoral-Tasman Sea. mere overimpositionsand Shape conformitiesinthe approximately halfradius the North-Western Pacific a) Theclassicalreference between oppositecoasts volcanic chain),between destination hemisphere! in thePacificperiregion rotations), comingfrom juxtapositions ofallthe The basinconformities the modernpositions bounded bytrenches in theAtlantic,some is mostlyradial(with b) Besidestheclassic opposite sideofthe Pacific Hemisphere. conformities. positions. Pangea. F ig.3 hemisphere anditisparticularly relevant(Fig.3).Chile’s con- as ithasbeeninthe Atlantic. tures inthePacific,expecting thatitwaspossibletodetectthem expansionist researchproblem tosearchfortracesofthesefrac- pletely coveredasmaller-radius globe.Itisthereforeavalid a continuoussialiccrust(initiallywithoutoceans)which com- Pacific basinshouldhavecomefromfracturesandspreading of mobilistic tectonictheories. is thereforetheoriginofconjectures,whichledto modern correlations. The existenceofsimilaritiesamongcoastalprofiles c b a

189 Indeed, aclassofsimilarity actuallydoesexistinthePacific From thepointofviewexpandingEarththeoryalso the by moderntomography(Fukao ity withonlyafewhundred kilometresofsubduction,indicated sand ofkilometresocean floor, remainingonlyacompatibil- their totalincompatibilitywithalarge scalesubductionof thou- furthermeaningoftheconformitiesis all theconformities. A tion whichisfrommereoverimpositionsandjuxtapositions of modern positionsismostlyradial,comingfromastarting posi- from thePangea(whichcoveredallplanet)towards the paths ofthecontinents. The displacementsofthecontinents given tothelongocean-floorfracturezonesasindicators ofthe half oftheRecentone(Fig.3c)–andtonewimportance tobe overimposition andjuxtapositiononaPaleozoicEarth ofradius the expandingEarthview–inwhichallconformities cameto at astageofthecyclelikepresentintermediateone. the NorthPacificsea-flooragepattern,shouldbecompletelyerased revertsitsmotion,andtheconformity, considering should undergo thesubductionprocessassooncycleof Pacific.Inthiscasetheconformalbasin like theonesinNW eradication fromadeeperlayer, placednearaseriesoftrenches the traceofapreviouspositionblock,oritsslow ishypothesized,withaconformityconsideredas supercontinent’ very farbasins. ofsurfaces today placednearconformal‘imprintedimages’ moving awayfromthecentreofancientsupercontinent,be that thecircumpacificcontinents,whichareprogressively Pangea reconstructions(Fig.3ab)–itseemspracticallyimpossible about 200Maago–accordingtooneofthepossibleclassical the continentsaroundPacificbasinandpositiontheyhad intrinsic mutualconsistence.Comparingthemodernpositionof proof oftheirnon-fortuitousness,andalsoasomesort New Britainplateone(Scalera,1988,1993). over –theovoidalplateofJuandeFucaandGordafitting trenches northwardandeastwardofNewGuinea,with–more- where theNorth American Cordilleramatchestheequatorial Guinea, Asian trenchesandEmperorHawaiivolcanicchain), North-Western Pacificbasin(boundedbytrenchesnorthofNew in thenorthernpartofPacific,betweenLaurentiaand canbefound arities sametypeofsimil- This isan‘entiresurfaceshapesimilarity.’The in correspondencetothe Tonga KermadecMaquarielineament. Australian cordillera,whiletheeastSouth American outlinegoes ti discontinuity. motion ofthePacificplate on amantleplume,butastectonic Hawaii longvolcanicchain appearsnownotasthetraceof nental scarpcanbematchedtowardswest,totheeastern

190 The presenceofshapeconformitiesisthenbothasupportto The presenceofconformitiesisimpossiblealsoifa‘cyclethe The detectedhighnumberofcontinent-basinconformitiesisa between the Australia andNazcabasins, et al. 2001). The Emperor 2001). The P alaeontologic paradoxes To which arepresentifaclassicPangeareconstructionisadopted. immediate disappearanceofmanypalaeontologicparadoxes, in theplatetectonicsframework: Earth ofconstantradius. results ofpalaeogeographic reconstructionsperformedonan the large extensionofthe Tethys Seawhich botharetheincorrect India beforeitshypothesized collisionwithLaurasia,and papers areinconflictbothwiththelongandisolatedjourney of Pakistan regiononthebasisofgeologicalevidence. All thequoted 1989) reachesthesameconclusionfor Afghanistan-Pamir- oning usingthedistributionsofbrachiopods,andStöcklin (1984, al. very narrow Tethys sea(Buffetaut, 1989a, 1989b;Buffetaut European species–suggestinganactiveinterchanging acrossa Mesozoic age–whicharelinkedtocentralandnorthern or Indochina or, moregenerally, ofnorthGondwanathe India. Analogous linksaretypical forseveraldifferent saurusof (1991), alsoconcerningthenorthernandwesternboundaryof T Chatterjee andHutton(1986),Sahni(1984), basis, isreachedby Ahmad (1983),Chatterjee(1984, 1987) of theinterposedwide Tethys. The sameconclusion,onanother ned ifEurasiansiteswereneartheGondwanasites,withclosure distribution oftheLystrosaurus sitescouldbemoreeasilyexplai- Gondwana inthe Triassic. FollowingColbert(1991),theglobal which shouldhavebeenseparatedbythewide Tethys Seafrom found inGondwana,India,butalsomanyplacesofEurasia, and itcouldbeexpectedtonearerinthePalaeozoic. is veryneartotheCordilleranzoneofLaurentia(Scalera,1990), T between thetwozones,andareinperfectagreementwithmy 1984). These factstestifytoanextremely narrowmarinebarrier Antarctica, Australia andSouthChina(GoujetJanvier, displaying closesimilaritieswithcorrespondentfaunasof vertebratefossilsofSouth America havebeenfound (Colbath,1990). tonic floras(41species)of Yowa, USA species) oftheCanningBasinin Western Australia andtheplanc- gnized inthestrongsimilaritybetweenplanctonicfloras(74 ones. IntheSilurian,ananomalouscorrespondencecanbereco- nautiloidsof Tasmania with Asiatic andLaurentian tively exist.StaitandBurrett(1987)reportastrongsimilarityof selected choiceofafewcasesamongthenumerouswhicheffec- with respecttotheotheroceanicbasins.Icanherequoteonlya clues, whichsuggestananalogousbehaviourofthePacificbasin ripathi andSingh(1987),Smith(1988)PattersonOwen riassic palaeogeographicreconstruction,where West Australia , 1989; Astibia

The mainadvantageoftheglobalexpansionhypothesisis 191 I listbelowsomemainpalaeontologic problemsthathavearisen bonesofthe Triassic reptileLystrosaurus havebeen provide astartingexample,palaeontologyprovidessome et al. , 1990). Ager (1986)developssimilar reas- et al. (1987), et A hemisphere) thefaunafrom East Asia tothe Western Americas. several micro-plateswhich carried(travelingthroughanentire explains theanomalyappealing totheeastwarddisplacementof gins ofNorthandSouth America (Newton,1988).Platetectonics which aretypicalof Tethys seaonrocksoftheCordilleranmar- Mesozoic Tethyan faunasconsistsinthe presenceoffaunas The Tethyan faunasonCordilleranmargins in theexpandingEarthpalaeogeography. logic timewhenonlyaverynarrowandshallowPacificis depicted and theparadoxiscompletelyovercomein Triassic –ageo- Laurentia and Asia increasesgoing backthroughgeologictime North America. W 1997). They becomethenamosaic oflittlefrag Pantalassa (Ben-Avraham the greatcircledistanceacrossmore-then-hemispheric with avelocityunusuallyhighconsideringthegreaterlengthof (the FarallonandKula)reachingthenthe West Laurentiancoasts with thehypothesizedpredecessorofCocosandNazcaplates a tripfromEast Asia, neartheequator, movingnorth-eastward pothesise anumberofsmallcontinentalfragments,whichstarted 1988; AA.VV.,1988). andflorabetweentheoppositePacificcoasts(Newton, sion inthe Triassic andshouldhavepreventedanymixingof Rise totheLaurentiawesternmargin, wasatitsmaximumexten- Basin, fromHawaiiandmoreequatorialseamountDarwin and Hey, 1992).Intheconstantradiusview, theEastPacific 1994), whiletheEastPacificBarrierwasatitsmaximum(Grigg the Pacific(LaGreca,1989;Sluys,1994;Briggs,1996;Hallam, cies typicalofEast Asia havebeenfoundontheoppositesideof early inthehistoryofmodernpalaeontology. Manyfloristicspe- Cataysian flora )Thepalaeoclimaticdistortions:warmandequableclimatein 7) ThelongandisolatedtripofIndia 6) TheCimmerianterrainsnorthernmigrationandtheEurasian 5) TheCretaceousPacificBarrier 4) flora TheAntarctic 3) Tethyan onCordilleranmargins 2) TheCataysianflora 1) rangellia terrane,locatedtodayintheNorth-westernmargin of different andmoreattenuatedversionofthissolutionappeals 192 The biogeographicanomalyofthePaleozoicand Early In theexpandingEarthframework,proximitybetween The solutionoftheparadoxinplatetectonicshasbeentohy- The problemoftheso-calledCataysianflorawasrecognized Mesozoic flora inNorthGondwana. et al. , 1981;ZonenshainandKuzmin, ments, called many others)aretiedtogether, showingastrongcontinuitythrough withtheseconditions. The aboveexamples(and and finallyto American shoresshouldhavebeeneasierin the in thegeologicalpast. The faunaldiffusion fromislandto seamounts andislands,which suggestasimilartopographyeven Cretaceous areatodayhasa veryuneventopography, numerous the Cenozoicareaoccupiedbybarrier. The remaining Cretaceous Pacifichasareducedextentwiththeexclusion ofjust better explainedinanexpandingEarthframeworkwhich the Cretaceous (GriggandHey, 1992). This factualrealitycould be less effective inlimitingthefaunaldispersalduring has beentruethroughoutalltheCenozoic,butthatbarrier was of themodernshallowwaterfauna.Fossilrecordstestify thatthis shore ofthe Americas. Itisthemosteffective barriertodispersal Hawaii, theLineislands,Marquesasislandsto western The Pacific Barrier Antarctica locatedonintermediatelatitudes. graphy basedonexpandingEarththeparadoxdisappears,with reconstruction andwiththepaleomagneticdata.Inapaleogeo- (Truswell, 1991),afactincompatiblewiththeclassic Pangea and frost-freeconditions,typicaloftemperateorlowlatitudes indisputable signsoflonggrowingseasons,equabilitylight is theparadoxofCretaceousflora,fossilforestswhichshow exists intheJurassicflorawithIndiaandEurope. Very important some EuropeanandNorth American ones,andstrongaffinity particular numerous Antarctic pollensandflorasaresimilarto Hemisphere fromPaleozoictoMesozoic(Truswell, 1991).In of theexplorationthiscontinent,withfloraNorthern Antartic floras in theexpandingEarththeory. the PaleozoicandEarlyMesozoicisobviousalternativevalid Pacificofareducedextensionin (AA.VV. vs.Newton,1988). A discussed byNewton(1988)andinadebatewithseveralauthors posal. All theproblemsinherenttothesesolutionsareextensively size oftheancientPacificisastronglimitationforthislastpro- along islandchains,andoflarvaebymarinestreams. The greater Newton (1988)isthepossible West-East diffusion bothofbiotas thirdsolution,adoptedby where theyhavebeenproposed. A which haveneverbeenfound.Onlyterrigenoussedimentsexist T solution proposestheexistenceofmarinecorridorsbetween second colonization, startedajourneytowardstheCordilleras. A which,onlyaftertheir interposed islandsas‘stepping-stones’ to micro-platesinthemiddleofPacific,colonizedusing ethys andthePacific,fromIberiathroughtwo Americas,

193 The EastPacificBarrierisamarinebarrierextending from Many linksofthe Antartic florahavebeenfound,inthecourse opposite Pacificcoast(Shields,1979,1983). between EurasiaandGondwana,atgloballevel the factual inreconstructionswhichmodernradiusis adopted) Scotese, 1990)whichclaimlandconnection(impossible orarti- results (seeanumberofpapersinthebookbyMcKerrow and general problemoftheinconsistencypalaeontologic India inthePangea solution tothisparadoxicalpaleogeography. oceans liketheRedSea–aglobeofradius3300kmisanevident ring nearlycompletely–exceptionmadeforshallowandnarrow ting northacrossthewide Tethys Sea. which isverydifficult toadmitif amid-oceanicridgeismigra- connecting Australia toEast Asia, constitutingjustaland-bridge, number ofEast Asiatic fragmentstoformagarlandofterrains tion recentlyadoptedbysomebiogeographersistodisposea fragments andoftherelatedsea-floorexpandingridge. The solu- are atvariancewiththedrifttowardnorthofCimmerian It isevidentthatthesetypicallynorthernfossilsfoundinGondwana Ziegler (1990)says: But inapaperonLatePalaeozoic,NieShangyou,Rowleyand southern margins (Meetcalfe,1993; Briggs,1996; Yang, 1998). mid-oceanic ridge–transportednorthtoacollisionwithEurasian Gondwana, andthen–afterpaleoriftevolvedinanexpanding ated andnarrowfragmentswhichapaleoriftdetachedfromNorth by assumingarapid(ingeologictimesense)migrationofelong- solutionhasbeenfound South Eurasiainpre-Mesozoictime. A geographical communicationfromNorthGondwanatoward Cimmeria northern migrationincompatibility ing ofthePacificBasinstartingfromaverynarrowsize. geological time,andthewholeofitsuggestsaprogressiveopen- tions.’ remain asamajorchallengetothePalaeozoicpalaeogeographicreconstruc- arenotnowunderstoodand The natureandlocationofthese‘land-bridges’ Gondwana, whilemanyofthemappeartohavehadseparatetectonichistories. tions wererequired[...... ]betweentheCathaysianmicrocontinentsandthoseof parts ofGondwana,animportantfactnotoftenrecognized.[...... ]Landconnec- rent platetectonicmodelsfortheMiddle-East.’ and consumptionofgiganticvolumes ofoceaniccrustasassumedinmostcur- ofIran–rather thanlong-distancecontinentalmigrationwithsubduction tion tinental blocksmayhavebeenthe fundamental mechanisminthetectonicevolu- opening andclosingofnarrow, RedSeatypeoceanictroughsbetweenrigidcon- ‘ ‘[...... ]repeatedriftingandcompression alongoldlineaments,withrepeated 194 Geological constrainsleadStöcklin(1981)toclaim: The problemofthepaleopositionIndiaislinked to the The expansionoftheEarth,witha Triassic sialiccrustcove- An analogousproblemcamefromthenecessitytohavebio- It isofparticularinterestthattheCathaysianflorasalsoexistedinnorthern Geologiske UndersøkelseNGU of Indiahappenedinthetime Norway; http://www.ngu.no/). This analogycanbeextended and theclockwiserotationof be judgedtoorapid,because The Pangeareconstructionin at theWeb SiteoftheNorge window 110-85My, doesnot India andSiberiatotheEast. performed usingtheGPMDB block totheWest ofEurasia, it hasthesamerotationrate the Triassic, Radius3300km. The reconstructionhasbeen the dataextractionfacilities Iberia andCorsica-Sardinia. counter clockwiserotation (The GeologicalSurveyof of SpainandSardo-Corso of otherlittleplates,e.g. is acorrespondenceand and Lock(1990,a,b) Database) ofMcElhinny symmetry betweenthe (Global Paleomagnetic The clockwiserotation if wenotethatthere F ig.4 connection to Africa shouldbeviewedasanalogoustothemodern T southern Eurasia,fromwhich itisseparatedfromanarrow North Gondwanabuthasnot completelylostitscontactwith in turnsisnowconnectedto West Australia. Indiaisstillpartof or dividedonlybynarrowand shallowsea,toIndochina,which 2001). Inthissolution(Fig.4)Indianeasternmargin isconnected, restored totheirtrueessenceofnorthernpaleopole (Scalera, Antarctica andtheformerlyconsideredsouthernpaleopoles satisfactory, withtheIndianwesternmargin connectedto facing central Africa. position ofIndiawithitssoutherntipsawkwardlyandimpossibly in thepaleopoledata,which,CarboniferousandPermian,givea be verynear, possiblyfacingIndochina. The problemalsoarises (1971), basedongeology, inwhichtheIndianeast margin hasto Africa, iscompletelyincompatiblewiththesolutionofRidd gin (andMadagascar, inRaffi eSerpagli)constantly slidingnear reported byRaffi andSerpagli(1993),withtheIndianwestmar- points. ForexamplethesolutionofChatterjee,similartothat has beenmodelledbasingthereasoninguponseveralstarting 1992; Scalera,2001a)andthenearly100MalongtripofIndia been proposed(Chatterjee,1984;ChatterjeeandHotton,1986, other Asiatic regions(Scalera,2001a). The same,inmyopinion,shouldbevalidforIndia,andalso ethys marineregion(Stöklin, 1981,1984,1989),anditsstrong

195 The solution,inplanetaryexpansionpaleogeography, ismore Many waystosolvethedifficulty oftheIndianpositionhave Laurentia America T riassic Radius=3300km Eurasia Antarctic India Indochina Australia greatly developedindepth. in my Triassic reconstruction. All thisargument deservestobe strong supportforthenorthern positionofMadagascarasproposed . Ifthisdiscovery remainsisolated,itwillconstitutea northern hemispherehasbeen consideredthezoneoforigin (Battail still thepositionofMadagascar. Somepaleontologicclues providing aunifiedsolutionforallthedifferent cases. the admissionofexpansionEarthhasadvantage introduction oflarger biogeographicalprovinces),Ireaffirm that Cordilleran accretedterrains,Indiaasafurtherterrane; quick tripsofsmallfragmentslikeCimmerian,the Aleutine, andeast Asiatic Indochinese-Australianconnection; tologic problemsintheplatetectonicsview(landbridgeslike rotations). Sardinia-Corsica blockandIberianpeninsula(counterclockwise typical ofotherimportantEurasianfragmentssuchasthe Eurasia whichhasrotatedclockwisewiththesamerotationrate high values. Then Indiahasto beconsideredafragmentof raised theincertitudestatisticalparameterstowardunacceptable Indian fragment,consideringthatthehighrotationratecouldhave -Cretaceous lapseoftime,therotation scarcity orabsencelowqualityofpaleopoledataIndiainthe Sea (Scalera,2001a). The samereasoning couldbeappliedtothe recording oflinearanomaliesonthebottomCooperation that thestrongclockwiserotationofIndiahasnotpermitted T linear magneticanomaliesjustoff thecoastswhereIndia,in hemisphere (Flynn wrong’ this isjudgedsurprisingbecausetheyarelocatedinthe ‘ actual mammals)havebeenfoundinMadagascarsediments, and rodent; andthootsof ofprimordialmammals,( and the Antarctic Peninsulawith Africa. Recentlysome Triassic of India,leavingcompletelyfreethecontactbetween Antarctica Madagascar mayhaveundergone astrongrotation,similartothat T in Pangea,assuminganEarth’s radiusequalto3300inthe can beputinmutualagreementbythisnewIndianpaleoposition Dickins Hotton, 1986;Carey, 1975,1976;DickinsandShah,1987; paleontological constraints(Chatterjee,1984;Chatterjeeand presence ofElephants, Tigers andothersouthwesterntaxa.Many riassic, wasjoinedtothe Antarctic continents. This canbeasign riassic.

196 In thisnewPangea(Fig.4),anotcompletelysolvedproblem is The caseofMadagascar Considering thedifference among thesolutionsofpaleon- Further supporttothispaleopositionistheabsenceofidentified et al. et al. , 1987; Wright and Askin, 1987)indicatesthatalso 1992, 1993;Carey, 1975,1976;Owen,1983b,1992) et al. T ribosfenidis , 1999;Flynn , agroupwhichincludemost Ambondro Mahabo et al. , 1999). Till nowthe , alittle erroneously assumetheradius encloses anareaonlyafourth of non-glacialfloraandfauna circle oraglaciationwithices of warmandequableclimate the climateofoldepochs latitudes, 45°,occupyalesser going intomoreoldperiods. a halfradiusEarth.Ifpeople respect tothemoderncurve of theEarthtobeconstant, The latitutinaltrendofthe is anoutstandingproblem The influenceoftheEarth can bejudgedabnormally from CrowleyandZachos, 2000). Thedistorsionwith enclosed inamodernsize is moreandmarked geological time(modified polar circle.Theexistence As consequencethepolar of themodernareainb). expansion ontheancient continental area(1/4)on climate. Onahalfradius Earth a),thepolarcircle temperature troughthe mild, presentingfossils reaching intermediate in theMeso-Cenozoic of paleoclimatology. F F ig.6 ig.5 ab Climatologic distorsions oceans andatmosphere(Weaver mohaline circulation–aheatinterchangeprocessbetween enon, andapossibleconnectionhasbeenfoundwiththether- Antarctic (Vakhrameev, 1991). the presenceoffossilsthermophilicflorain Artic and reduced size,ofthepolaricecapshasbeenreportedtogetherwith Huber Sloan andBarron,1990; Vakhrameev, 1991;Huber along theMesozoic(Fig.5)andalsoinolderepochs(Barron,1983; climate thatEarthexperiencedinlonglapsesofgeologicaltime Temperature °C -20 -10 -30 10 20 30 40 50 A 197 Different modelshavebeenproposed toexplainthisphenom- 0 classical problemofclimatologyisthewarmandequable 0153 et al. , 2000).InMesozoic,theabsence,orextremely 45 Holocene 03 Ma-Pliocene 16 Ma-Miocene 55 Ma-Eocene 66 Ma-Maastrichtian 94 Ma-Cenomanian 0 ° ° 045607590 -135 Latitude ° et al. -90 , 1999;Marotzke,1991; ° 60 -60 45 -45 ° et al. -45 ° ° 30 ° -30 15 ° -15 ° 0 ° ° ° ° , 1995; 0 ° true polarwander polar motionand Earth rotation, latitude variation,because it ismoreeffective onlongitudinal The continentaldriftdoes not seemabletooperatesuchrapid more than10cm/y(3.5marcs/y) (Dick,2000;Dickman,2000). Preliminary considerations net ishypothesizedmustbere-discussed. tion ofsomeEarthrotationparametersifanexpansion thepla- rotation ofourplanet(Williams, 2000).Inmyopiniontherela- opinion isrepeatedinwell-documentedreviewpapers on paleo- expanding Earthwasexcludedonthesebases,andalsotoday this which wasnotconfirmedfromthepalaeontologicdata. The quence anearlyhalvedlengthoftheday(LOD)inPalaeozoic, doublingoftheEarth’s radiusshouldhavehadasconse- 1964). A have hadanobservableeffect onitsrotationaldynamic(Runcorn, the beliefthatasubstantialincreaseinsizeofplanet should scientific communityinfavouroftheconstantradiustheorywas as anexpectednaturalphenomenon(Fig.6). gical records.IntheexpandingEarthframeworkallthisappears make itverydifficult todetermine thePolepositionfromgeolo- Paleozoic andinthe Archean withrespecttothecontinents could globe (Scalera,2001a). The small dimensionoftheicecapin larger withrespecttothedecreasing totalsurfaceareaofthe respect tothecontinentsthat,oncontrary, become larger and gical time,thepolaricecapbecomessmallerandwith perate ones,thelastofwhich could findarangeofvalues Zachos, 2000)assumingerroneouslythemodernradius,we evident thatmeasuringthepaleotemperatures(Crowleyand latitudinal distancefromPoletoEquator, itbecameimmediately range intheMesozoic–onasmallerradiusEarthentire a threequartersofthePole-to-equatormeridianinlatitudecould Royer 1989; SchmidtandMysak,1996;JayneMarotzke,2001; still active(Barronand Washington, 1982;BarronandPeterson, sion aboutthevalidityofthisglobalheathcirculationmodelis ators. Butalsotheyleavelarge uncertaintyareas,andthediscus- the higherMesozoictemperaturesdeducedfromfossilindic- tents ofCO sphere, becauseofdifferences inoceanicsalinityand/oraircon- intense polewardoceanicheatflowfromtheoceantoatmo- Marotzke and Willebrand, 1991). The modelsproposeamore h oainpl stdyditn oad 9Wataspeed of The rotationpoleistodaydrifting towards79°W The argument thatplayedamajor roleinthedecisionof comingbackingeolo- On anexpandingEarthinfact(Fig.6), 198 If weconsiderthatamoderncontinentalplateaurangesfor et al. 2 , 2001). , andareabletogrosslyexplain,withsomecriticity, from xedtoo extend equatorial temperaturestotem- much towardthepole. remains steadyinthecelestial total polarmotionisopposite happens, withadisplacement of theprincipalaxisinertia The contributionofNPtothe planet reorientsitselfuntilP’ This isthemaincontribution of therotationpole.Ifamass the principalinertiapoleand goes incoincidencewithN. reference frame,theentire A simplifiedrepresentation r istheradiusatlatitudeL; rotation axisfromPtoN. While therotationaxisN a andbaretheequatorial m isinsertedinapointof in thetwohemispheres. P istheinitialpositionof geocenter fromOtoO’ from PtoP’andofthe latitude L(colatitude a displacementofthe and thepolarradius; of arotatingplanet. to polarmotion. F ig.7 f ), E year. respond toaCretaceousradiusgradientoffewcentimetresper McFadden (2000)map–intheEarlyCretaceoustimecouldcor- value, whilethemaximumexpansionrate–inMcElhinnyand Then Gerasimenko’s resultscouldbeconsideredtheactualRecent mm/y. indicated anincreaseoftheEarth’s radiusof+4.15±0.27 and VLBI dataforstablenon-orogenic continentalregions,has searching forchangeofEarthdimensions,which,usingLAGEOS by ananalysisofspacetrackingdata(Gerasimenko,1993)in mum ornearzerorateofexpansion. This possibilityissupported an influenceonthedifficulty atdetecting geodeticallythismini- on whichtogroundthesearchforaradiusvariationcanalsohave near-zero rateofglobalexpansion. place toaminimumoftectonicactivity, whichcouldleadtoa expansion, becausetheminimumphaseofpulsationcouldgive 1997) couldhinderthegeodeticrevelationofunambiguousglobal 5.19 inMcElhinnyandMcFadden,2000–basedonMüller dow. The Recentglobalminimumexpansionrate(mapofFig. ––– = dR ≈220 Maago,thenmyestimatedannualrateofradiusincreaseis: Earth theory. variation. Itissimpletoputthissituationinrelationexpanding dt

199 The accurateornot-accurateselectionofthegeodeticstations This valueisanaverageupontheentiregeologicaltimewin- If aradiusof3300kmisassumed(Scalera,2001)in Triassic, (6370 -3300)km ––––––––––––––––– 220 My L m a r P' ~ = f 14.0 mm/y O' NP O b et al. PP' cement intherigidcaseis: the equator. Then, therelationtocomputeinertialpoledispla- tion andwithaprobabilitynearlyequalzerotohappen very near port ontheEarthhappenswitharoughlycasualspatial distribu- sidered smallincomparisonwiththefirsttermifmass trans- and isnormallyneglected(Schiaparelli,1891)because itiscon- PP' smaller terms,thatwhenamass sible toprove,referringFig.7andneglectinghigherorder More quantitative considerations effects ofthepureequatorialasymmetrical volumevariation. preponderant effects onthePolar motionwithrespecttothe Earth regions,surfaceareasordeepvolumes,both,whichhave itions orsubtractionsofmasshappeninsomenon-equatorial 2000). The conclusionisthateffective displacementsordepos- the realPolardisplacementofmorethan10.0cm/y(Dickman, evidently notsufficient –oneorderofmagnitudelesstoexplain longitude (Fig.7,Fig.8). This valueofthepolardisplacementis displacement of0.7cm/ywillbeobservedinthedirectionthat diameter, centredonanequatorialpoint,isassumed,thenapole asymmetrical growthoftheplanetradius0.7cm/y, 1.4cm/yin + radius increaserateis, mum andasconsequenceIconservativelyassumethattodaythe duction oftheLovenumbers into account(Lambek,1980, 1988;Spada,1992,1997)theintro- NP =r the term (1) In arises fromthedisplacementofcentremass PP' is addedinapoint 4.15±0.27 mm/yfoundbyGerasimenko(1993).Ifacompletely 4.15±0.27 In thecaseofarigidEarth(Schiaparelli,1883,1891),itispos- I thenassumeherethattodaytheEarthpulsationisatamini- 200 If amorerealisticviscoelasticbehaviouroftheEarthis taken = ≈ ≈ ~ B 506 – – – – – sin i s · ––– ––– ––– ––– ––– – – – n i s ––– ––– ––– 2 br br B-A M (B - A) – n i s ––– m M and 2 2 2 · m T m r (B - A) – n i s ––– A M m (1 + f m are thepolarandequatorialmomentofinertia, T ( k' 2 ( L 2 f ) f at acolatitude ) -r ). e.g. ( – n i s ––– 2 , 7mm/year, avalueverynearthatof f T ). k' leads toasimilarrelation: f m . (with f : m << M T = Earth’s mass) O to (1) O ' expansion. Thisfigureisbased expanding withtheexpansion on theEarthpolarmotion for NorthPoleandSouth old geocenterdatabankcould databank, from1850to2002, c) Iftheemplacementofnew latitude, inthiscasesouthern are thesumordifference contains onlythedata of the centered ontheequator, the databank withthefewyears term, linkedtothecenterof Northern andSouthernpath of maximumexpansionwith mass emplacementperfectly a) ThesecularPolarMotions constant size.ThetwoPoles In thecaseshowninb,with otenhmshr.Today northern hemisphere. mass displacement,prevails. second termofequation(1) are symmetricalifEarthhas b) IfEarthisasymmetrically of thePolarsecularMotion is zeroandonlythesecond respectively, andthenhave on the‘orangepeel’figure of thefirstandsecond expansion ofaplanet,but latitude, thelengthof The influenceofthesmall is importanttodetectthe equatorial, thetwopaths drift rotatinginthesame first termofequation(1) the samemeridiancircle. direction roughlyalong mass isatintermediate drift towardsthezone the integrationofthis be helpingtodetect term ofequation(1) different lengths. of Owen(1981). an equalrate. Fig.8 are located,inthesouthern hemisphere, withthemaximumsur- 1 with and Jiang1996;Sabatini only thehypothesisofglacialrebound(Peltier, 1976;Peltier variously interpreted,invokingdifferent geologicalprocessesbut Where the emplacementhappens more rigidbehaviouroftheplanetasawhole. convection intheexpandingEarthframeworkleadstowards a ble radiusmodel,andbecausetheprobableabsenceof mantle etary expansionistrue,shouldbederivedfromaspecific varia- because thetrueviscoelasticityofEarth’s interior, iftheplan- rheology oftheinnerEarth’s materialsisstillnotwellknown, case frameworkinthissimplifiedconsiderations,becausethe smaller thanthevaluesinrigidcase.Iwilladopt formula leadstonumericalvaluesfor an upper-lower mantleboundaryvalue ongoing debateisactivetoday (Clark were oncecoveredbyicecaps, ontherealextentsofwhichan consensus becausethenorthern CanadianShieldandSiberia, )c) b) Nearly, inthesamedirection theNazcaplateandsuperplume Considering thatthefactor(1+ 201 The directionofthepolarmotionis≈79°W. This facthasbeen k' ranging nearlylinearlyfromasurfacevalue a) et al. , 1982)hasfoundmoregeneral k' ) assumesvaluessmallerthan PP' et al. k' =-0.45, theviscoelastic few tenthsofpercents , 2001). k' =-0.30 to by globalseismictomography under theBouvet,Indianand mantle materialaresketched web sitesourceandSuetal., proportional totheobserved the mantleflowasrevealed ocean floorexpansionrate. Pacific triplepoints,with The majorupwellingsof pipes, whosesectionis The globalpatternof (very simplified;from 1992,1994). F ig.9 slow massflow. made onthecompositionandprogressivedifferentiation ofthis revealed superplumes,likeadiapiricprocess.Nohypothesisis ior oftheplanet,raisingverticallyinmaintomographically the Earth’s massisasymmetricallyexpelledfromthedeepinter- model inwhichprogressively, inageologicaltimescale,partof distribution, inEarth’s deepbody. Iconsiderthenonlyarough known physicalprocess,happens,withsphericalsymmetrical that acosmologicallyinducedincreaseofmass,withstillun- ing Earth.Idonotstillconsider, inthissection,thepossibility limits onmassaccretionthissituationisrelevantforanexpand- expansion. interpreted asthemainexpressionofasymmetricalglobal methods (Su, Woodward, andDziewonski,1992,1994)couldbe This superplume,revealedbyseismologyglobaltomographic face expansion,thetriplepoint,atalatitudeof≈30°S(Fig.9). risings ofmantlematerial inthe Atlantic Ocean,theSouth and thismeansthatonemust takeintoaccounttheothertwomain 115°), versus thetriplepointlongitudeof≈ above mentioned79°W PM isdirectedslightlyeastward fromtheNazcatriplepoint(the equivalent polarplotofthe geography. The meandirectionofthe 1990 isshown,superimposed (inadifferent scale)ontheLambert 10.0cm/y. the valueofobservedannualpolardrift≈ PP' following PMdriftwouldbeobtained: ly addedonthegeographicpoint30°S,79°W, nearNazca,the A For example,ifamass10 I havethentotest,withsomeroughcomputation,underwhich 202 In Fig.10therealpathofmeanrotationpolefrom1900 to ≈ factor 4or5,appliedto10 0 · 506 r – n i s ––– M m T ( 2 f ) =506·6370·10 -11 M T -11 ( M M T T = 5 ·10 Earth’s mass)wasannual- is thensufficient toreach -11 · i(4°≈-2.7cm/y sin(240°)≈ . as wellbetweenIndianand the threemajorhypothesized scale). Aroughvectorialsum, contribution toPMprovided by theNazca,SouthAtlantic in blackbrokenlinesamong the resultant arrow, is between SouthAtlanticand geography (notatthesame which aresketchedinFig3. rotation Pole,theredpath Pacific vector. Withthose Pacific vectormagnitude A ratioof1/4isassumed and Indiantriplepoints, neglecting thedifferent latitude, isrepresented The seculardriftofthe simplified assumptions averaged seculardrift. with theobservedPM with arrow, isshown superimposed tothe ngo agreement in good vector, inblack F ig.10 The needfor anincrease ofmass? PM meandriftvector(Fig.10). resultant vectoringoodlongitudinalagreementwiththeobserved is neglected,thevectorialsumofthreecontributionsgivesa assumed, andifthedifferent latitude ofthethreeemplacingpoint other twominorexpandingrateandthePacificexpansionis which aresketchedinFig.9.Ifaratioof1/4betweeneachthe Atlantic Bouvettriplepoint,andintheIndianOcean ent. Then, intheexpandingEarthframework,massincrease difference ofordersmagnitudeispres- of 300millionyears. A volume duringthetimelapse fromPalaeozoictoRecent,alapse ficient totakeinaccount a many-foldincreaseoftheEarth’s on 100billionperyear, asymmetrically emplaced, appearsinsuf- data indication. be observed,morepronouncedwithrespecttothepaleontological the inertialmomentandthenastrongincreaseofLOD should volumetric expansionisassociatednecessarilytoanincrease of authors havemadeexplicitlyorimplicitlytheassumption thata (Runcorn, 1964;Burˇ the problemofapossiblechangeEarth’s inertiamoment Nazca triple point A 203 On theotherhand,anincrease ofmassonlyoneorfewparts Nazca number ofpapershavebeendedicatedto,ormentioned, Bouvet triplepoint 1980 s a, 1990; Williams, 2000), butallofthe 1950 1920

1900 Indian Ocean triple point triple Ocean Indian dt mass increase the slowingdownofEarth’s spin,themoreconsistenttotal The slowing down oftheEarth (Peltier, 1981;Spada material flowsonthesurfaceorininteriorof planet sible significantcontributionstotheinertialpolemotion dueto assumptions onthedensity, withouttakeintoaccountotherpos- roughly evaluatedfromthepaleogeographyandsimplified then around0.02theannualtotalmassincreasewhich hasbeen 5.97 –– = – – ––––– which isinthemagnitudeorderof10 = –––– dM radius radius paleogeographicalreconstruction,adoptinganinitial annual massincrease ing ping towardsthecore-mantleboundaryandinnercore. total accretedmass,withtheheavierchemicalcompoundsdrop- not excludedofaconcomitantchemicaldifferentiation ofthe increase shouldbeconsideredunbalancedandthepossibilityis continental hemisphere.Onlyafewpercentofthetotalmass Pacific hemispherewithrespecttotheslowerexpansionof the contrastofdensitybetweenquickexpansionbasaltic new absorbedmass. The unbalancedmasscouldalsoderivefrom displacement, shouldbeconsideredonlyalittleportionofthe deduced fromsecularPolarMotion,orradiallyunbalancedmass dm/dt K· mass emplacedasymmetrically: K value oftheobservedsecularPolarDrift. Assuming thevalueof with theadimensionalvalueof ––= = –––– dm Then: dM/dt dm/dt could wellgiveplaceandcontribute toamoregeneraldifferen- dt = 4,itispossibletocomputethevalueofratioaccreted While theasymmetricallyemplaced massmustcontributeto The asymmetricallyunbalancedemplacedmass 204 Assuming asimplifiedsituationwithanexpandingEarthretain- its averagedensityduringgeologicaltime,anestimateofthe ·

10

[ –––––––––––= = –––––––––––––––––––––– K · (evaluated fromPolarmotion)intheorderofK·10 r M 27 = 3000km: –––– T g, versusanannualasymmetricallyemplacedmass - 5.97·10 –––– (5.5g/cm 1.37·10 0M 3.0·10 300Ma ––––– 5.97·10 –––––– = = –––––– 10 dM/dt 11 y ––= = –––– 27 19 g 3 · 16 3 4 _ can alsocontributetotheslowing down,but dM/dt p et al. r K· 3 1.74·10 ](5.97·10 )] 5.97·10 , 2000;Sabadini is possibleonthebasisofvariable- ––––––––––––––––––– = = ––––––––––––––––––– K -2 . ranging around4-5,toreachthe 16 g/y, 27 g-1.86·10 -9 of theEarth’s mass 8 y et al. 27 g) , 1983). m 1.37·10 should be 19 -11 M g/y, M T T = . ical radial1cmgrowthof the core-mantlebundary. Assuming thickness 1cm,issymmetrically emplacedeventuallybyaspher- be compensatedifaspherically symmetricshellofmaterial, the orderof10 momentum liquid core. Applying thelawofconservationangular should becompensatedbydifferentiation inthemantleand order of10 which isdifferent from which issmall,nearly10 ∆ daie aeo nijce as 4·10 idealized caseofaninjectedmass,24 moment. different Earth’s strataandtotheredistributionofinertial differentiation, contributetothe variation ofthethickness 4·10 24 moment variationproducedbytheasymmetricallyextrudedmass, pensates fortheslowingdown. ive contributiontothespinacceleration,aprocesswhichcom- fluid coreandwhichinfluencestheEarth’s rotationwithaposit- tiation processwhichalsoinvolvesthepre-existingmantleand .9149 ·10 = 7.292114999 w ∆ of theasymmetricalemplacedmassis: point. The inertiamomentvariationduetotheidealizedextrusion accreted mass1.37·10 conjectural becausewedonotknowabsolutelyhowthetotal which couldbecomeunavoidableassuminglarger upriserates. only waynottoconflictwiththegeodeticobservations,a pen distributedonlarge ocean-floor-ridge area,becausethisisthe ment offewcentimetresormillimetresperyearcouldreallyhap- evaluate. Then Icansupposethatonlyaverticalupwarddisplace- large sectionofaverticalcolumn,theareawhichisdifficult to spreads azimuthally, themassisslowlydisplaceddistributedona from thebottomofmantletoEarth’s surface.Beforeit nri oet8·10 inertia moment8 angle ofdelaywithrespecttoanunaffected Earth. I LOD, isintheorderofmagnitude of10 2 But itisbettertoevaluatethe variationofinertialmomentto I canevaluatetheslowingdownofEarthinsimplified It ispossibletotryevaluatethe All thefollowingconsiderationsshouldbeconsideredlargely =

205 ·10 = 24 w 16 1 · g. Itisclearlyunrealistictohypothesizeadisplacement ––– I I 2 1 16 -5 = I ·( 1 w geographical degrees. The lengtheningoftheday, ––––––––––––––– = ––––––––––––––––––––––––––––––– .915·10 7.292115 R 1 = -15 · cos(30°)) I 809 ·10 (8.0394 ) andtheannualangulardelayisonlyin 2 -5 w rad/sec 2 , itispossibletoevaluate 40 19 gm w g/y andthepre-existingmass,inongoing 1 -10 2 2 . This meansthatanequivalent value only ontheninthdecimal( -5 . ·10 = 7.6 times, withrespecttotheEarthpolar rad/s·8.0394·10 40 +7.6x10 30 gm 30 upper limit )gm 2 , 16 -1 g, intheNazcatriple 2 ms/century. 40 gm w 2 2 , andtheannual of theinertial w 1 - w 2 is in bution ofthevolumesas1/ ∆ with thesumofthreecontributions: of momentinertiacanbeevaluatedfromtheassumedvalues tude of10 of themantlewithrespecttoinnercoreinordermagni- the variationof to thecompensationofslowing downcouldbeprovidedfrom Christensen, 2000). the surfaceofinnercore(Buffet the solidificationheatreleasedbyironwhichisdeposited on able tosustainthematerialflowinconvectiontubular cellsis geodynamo modeloftheEarthinterior, wherethemechanism hererequestedhasbeenrecentlyproposedinthe theoretic differentiation ofthe requested masstransportexistsuptonow. A dow coveredbytheactualseismiccatalogues. 1996; Nataf,2000; Vidale, 2000)usingthedataintimewin- by seismologicalmethods(SongandRichards,1996;Su angles, 0,1°-3.0°,andprobablyintherangeofnon-detectability small incomparisontotherangeofseismologicallydetected superrotation ofthecoreduetoeffects ofanexpandingEarthis rical andsymmetricalmassemplacements,theannualangleof mean lowermantledensity, 2.0g/cm 3.0 g/cm in therightmagnitudeorder, 10 in thisoversimplifiedEarthmodeltheannualincreaseofmassis rebound (Argus g/cm mantle andtheuppermantle-lithospheredensity, andfinally5.0 magnitude of10 The annualinertialmomenttobecompensatedisofthe orderof from themantleandfluidcoretowardinnersurface. slowing downduetoexpansion. This meansatransportofmass which couldbeabletocompensate–atleastpartiallyfor geochemical differentiation inthe mantleandintheliquidcore, msec/century. The hypothesismustthenbemadeofastillactive few millimetresperyear, Ihaveobtainedasecular the bestcaseofasymmetricalcontributiontoexpansion century, whiletheobservedvalueisaround2.4msec/century. In value intheorderofmagnitudefewtensmillisecondsper Fig. 11, andanunderestimated meteorologicphenomenon,well time, ofanumberphenomena, amongwhichthoseshownin effect, ontheEarth’s rotationandshapeoververylonglapses of I The computationtakesinconsiderationthesphericalredistri- Also itshouldberememberedthatatleastapartialcontribution The

206 = 3 ∆ the difference betweenthemantleandfluidcoredensity, I ∆ surf LOD, inthissymmetricalemplacementcase,risestoa 3 + the Earthaveragesurfacedensityand5.0g/cm -3 ∆ I geographical degrees.Inbothcases,forasymmet- 700km et al. -9 + ∆ of theEarth’s moment,butno model ofthe J I 2 2900km , 1999).Butnobodyknows thecombined geoidal coefficient duetotheglobal glacial . r 2 , andgivesanannualangleofdelay -9 of theEarthmass. The variation 3 the difference betweenthe et al. , 1996;Kutznerand ∆ LOD of20.0 tal. et 3 the , a excess ofequatorialbulge,an It ispossibletoshowthatthe equator andcouldbehidden other threedifferent secular compared withtheobserved oblate Earthundergoes beside thedecayof expansion, hasanopposite and thedecayofexcess effect onthelengthof The thirdprocess,thepure effects 1and2aresmallif Beside theglacialrebound of equatorialbulge,other -90 processes canaffect the deformations ° J 2 by alltheothers. time derivative. 60 -60 ° 45 -45 ° 30 ° -30 J 2 ° 15 -15 ° 0 ° ° ° variation. ° F ig.11 3 2 1 approximation ofareallyfixed referenceframe).Othermodels frameasatleastarough path (ifweacceptthe‘hot spot’ (Richards path derivedfromthesemodelisations ofthemantleconvection convection andhotspotconcepts areincompatible. The synthetic tern oftheconvectivecells, notconsideringthefactthatmantle 2000; Cottrelland Tarduno, 2000;Prevot hasbeenstillveryhotinthelastyears (SagerandKoppers, TPW geophysical processeshasbeenfound. The discussionabout 1973), butnodefinitivelinkingofthisphenomenonwith other paleomagnetism (Goldreichand Toomre, 1969;McElhinny, intrigued thegeophysicalcommunityfrombeginning of T tion storyoftheplanet Venus (Pollak,1990). planets, aneffect consideredofparticularimportancefortherota- the atmospheresactasaforcethatopposesslowingdownof known instudiesofcomparativeplanetology:thethermaltides rue polarwanderandexpandingEarth nepaaino h P hasbeensoughtintheglobalpat- An explanationofthe TPW 207 The existenceandmeaningofatruepolarwander(TPW) has due toincreasinginnerdensity b due toincreasingLOD et al. -90 -90 a pureexpansion a variationof a variationof ° ° -90 ° , 1997)isinoveralldisagreement withtheobserved 60 60 -60 -60 ° ° 45 45 -45 -45 60 ° ° J J -60 30 30 ° ° -30 -30 ° 45 ° ° 15 15 2 -45 -15 -15 ° ° 2 0 0 ° ° ° 30 ° ° ° ° ° -30 ° ° ° 15 -15 ° 0 ° ° ° ° et al. c planet withanequatornearly deformations canresultina an apparentsupplementary equal totheinitialoneand the additionofallfour a growingpolardiameter: component oftheglacial -90 , 2000). isostatic rebound ° 60 -60 ° 45 -45 ° 30 ° -30 ° 15 -15 ° 0 ° ° ° ° Reconciling thepast TPW withthepresent PM interpretation. Theredfilled asymmetric expandingEarth The 100-0MaTPWdetected by Besse&Courtillot(1991) possible True PolarWander (TPW) asitcamefromthe The reconstructionofthe positions oftheresultant of avectorialsumthe circle aretheestimated

from Kreta T to Paleocene rias R=3300 215 Ma 225 225 P aleocene R=5300 144 57 Ma 80 57 F ig.11 the socalledglacialrebound (Peltier, 1976; Sabadini explanation,butwiththeinfluenceof vection usedforthe TPW methods –isexplainednot with thesamemodelofglobalcon- lar driftoftherotationpole observedtodaybyastro-geodetic puted TPW, butcannotavoidotherproblems. model reachesagreatersimilaritybetweenthetrueand thecom- to theadvectionofmantledensityunhomogeneities. This kindof (Steinberger andO’Connell,1997)trytoputinrelationthe TPW

208 The modern TPW, namelythepolarmotion (PM)–thesecu- from Trias 100 to Jura Ju 225 ra 144 Ma 144 180 60 R=3700 0 ° E 0 ° 50 E Nazca triple point 75 ° N from Paleocene 60 °

Atlantic Ocean to Recent N triple point

from Jura to Kreta 225 Recent R=6370 PM 144 100 0 Ma 80 0 Kreta R=4800 225 TPW 144 57 80 Ma 80 et al. , 1982; point triple Ocean Indian of thePMdriftrate,andthat paleogeographical mapswas framework, theoverallgood different factorsofdamping that wedonotknowallthe paleogeography, ifinverted TPW (ontheactualPMrate agreement oftheobserved TPW andthereconstructed is ableeasilytoexplainthe reconcile TPWandmodern triple points.Inthecentral optimal fixedframeinthe frame isnotaguaranteed towards thegeodynamics, attention totheTPWand emplacements duetothe box theobservedTPWby TPW pathanditsslowing PM. Consideringthatthe favouring theexpanding down andcomingback the hotspotreference basis), isnewevidence around 50Ma,andto The expandingEarth not constructedwith contribution ofmass planetary expansion Besse &Courtillotis Earth geodynamics. represented. I assume: T to reproduce,atleastroughly, thealreadyknown pathsofthe and PW. detectable geodynamicconsequences,namelyinthedataof TPW East, passingtheequatorialline,shouldalsohavehadother of thesuperplume. This migration fromNorth-West toSouth- Rise appearasthetraceofslowsouth-easterndisplacement ages ofthe Western Pacific point (seethesuccessionofmapsinFig.11). Boththepatternand towards itsactualsouthernhemisphereposition,underNazcatriple (Fig.11) fromits Triassic positionnear Asia, northernhemisphere, a slowdrift,throughgeologicaltime,ofthePacificsuperplume 2001), andmypalaeogeographicreconstructions,areinfavourof superplumes onglobalincreasingradiusgeodynamics(Scalera, same phenomenon. This isanunacceptabledoubleormultipleexplanationofthe isactiveonahundreds-of-million-yeartimescale. while TPW few millionyearsor, morerealistically, fractionofamillionyear, onlyfor 2001). Moreovertheglacialreboundcansustaina TPW on CanadianandSiberianshieldsrespectively(Clark estimation oftheextensionsandthicknessespaleo-icecap Peltier andJiang,1996). The maindifficulty inthisviewisthe )From Triassic totheRecenttime,fluctuations ofthetectonic 4) )Acorrectivefactor A 3) Theepoch oftheequatorcrossingsuperplumeisas- 2) Themodern observedPolarMotionistheactualmodern 1) rue Polar Wander (Andrews,1985;BesseandCourtillot,1991).

209 Also inthiscaseImadesimplifiedassumptionsordertotry The hypothesesIhavemadeconcerningtheinfluenceof may belargely conjectural. rate totheintensityofsuperplume rising,albeitpossible, for thisbecausethecorrelation ofthemaximumspreading on. InthepresentpaperIdo notapplyanycorrectivefactor with aminimumtodayand a maximumat25-30Maandso activity havehappened(McElhinnyandMcFadden,2000) sent time. lapse oftimefromthecrossingequatorupto pre- ple pointistodayat32°SandthenIcanassume factor sin proaches theequator. The slowingdownisinfluencedbythe the slowingdownofPMasaccretedmassflow ap- sumed tobearound50Ma. rective factors,tothegeologicalpast. graphical degreeeverymillionyear)canbeapplied,withcor- drift (littlemorethen10cm/y, equivalenttonearly1geo- expression ofthe True Polar Wander, andtheactualrateof ( 2 f ) which hasamaximumif q <1 shouldbeappliedtotakeintoaccount ocean floorvolcanism f = p / 4. The Nazcatri- and theDarwin q =1/3 forthe et al. , The notationiscomplexand –– complete formneglectingterms thatareverysmall(Spada,1992): A alization oftheEulerequationtoanon-rigidbody, mustbesolved. the problemofEarth’s rotation, theLiuvilleequation,agener- and MacDonald,1975;Lambeck,1979,1980,1988)that tosolve emplacement ofmasswillbeprovided.Itiswellknown (Munk sibility ofexcitingtheChandlerwobbleonlybyasymmetrical Chandler Wobble excitationanddamping equator. sin(2 PM ratedecreasesandbecomeszeroundertheinfluenceof diapirical model,intheexpandingEarthframework,because evaluation. This isexplainedinmy Besse andCourtillot TPW shortening lengthoftheintervalsnearinversionpointin near theinversionpointat50-40Ma,whichisevidentin their Fig.1)andcannotexplaintheslowingdownof TPW (seetheequalintervalsevery10Main constant rateof TPW results ofSteinberger andO’Connell (1997)presentanearly mic tomographyandtheplatemotionin Tertiary. Butthe rising ofthelow-densityzonemantleasrevealedbyseis- Steinberger andO’Connell(1997), whichtakesintoaccountthe tion ismoreinagreementwiththeadvectivemodelproposedby the different contributionoftheother ocean-floorexpansions. pathbytakingintoaccount sibility ofbetterfittingthereal TPW PM asonetheprolongationofother. Finally, Itrustin thepos- andthe that itispossibletorepresentinthesamefigures TPW furtheradvantageis tions ondiapiricalriseofmantlematerials. A paleogeographical seriesofreconstructionswithsimpleassump- ing pointnear50Ma,albeitroughly, isfairlyreproduced bymy magnitude andtheoscillatingpathofobserved TPW, withturn- Mato0(seetheboxinFig.11). Itisnoticeablethat the 100 ofBesseandCourtillot(1991)from with theobserved TPW above point3). rective factor to PalaeoceneandfromCretaceousIapplythecor- Cretaceous, Jurassic,andfinally Triassic. InthepathsfromRecent Palaeocene, 57Ma,andthenfromthePalaeocenebackto path goingbackingeologictimefromtheRecentto s j dm linearised formoftheLiuvilleequationisderivedfrom a more

W 210 In thissectiononlyabriefandincompleteaccountofthe pos- My geodynamicalinversionofpaleogeographicalreconstruc- inFig.11 canbecompared The resultingreconstructed TPW ––+ + –––– dt ith thesefourassumptionsIamabletoreconstructthe TPW f ) factorastheaddingofmassapproachesandcrosses m = Ψ . q =1/3 becauseofthereasoningexplainedin m = jm x + m y , and Ψ is theexcitation a) Intheshortterm,fromdata b) Inthedeephistoricaltime (simplified fromStephenson, from thelasttwocenturies. The secularvariationofthe length ofday(LOD). F ig.12 1997).

b Variation of the LOD (millisec.) a ∆ LOD (ms) +10 -10 -50 -40 -30 -20

211 -4 -2 0 0 2 4 1800 r eference LOD=86400sec. 0 0 500 500 b ..d.C. a.C. C a.C. .C. 0 +2,4 millisec/century +2,4 millisec/century (evaluated from tidal friction) T Modern data Ancient data ime (Julianyears) T ime (years) 0 0010 2000 1500 1000 500 0 0010 2000 1500 1000 500 +1,4 millisec/century 1900 Babilonian b.C. Arabian midage Eclipses: modern data 2000 Chandler Wobble) toverylong enters aperiodofminimumor short (tensofyears,capable zero expansionrate,astability different symbolsfordifferent strong underestimationofthe of Cretaceous(thetimethe to theEarth’s inertiamoment. of theoveralltrend(thelarge Deccan trapsisaround65Ma) bivalves, andbrachiopodsare possible ofapulsatingglobal Long periodvariationsofthe fossils. Onlydatafromcorals, or adecrementoftheLODis from thepaleontologicdata. Although cautionshouldbe extracted fromtheWilliams (2000). Theinterpretationis modern one)themaximum expansion, withfluctuation Te Williams (2000)withstrong minimum globalexpansion of theexpansionratefrom The figureisredrawnfrom exerted inconsideringthis of theinnermaterialsand data (seeforexamplethe The paleo-LODasderived decremental contribution continued differentiation rtiary datanearesttothe continuously excitingthe is inagreementwiththe periods. WhentheEarth possible prevailingofits rate recognizableinthe McElhinny &McFadden same periodinthehalf geologic timehasbeen possible becauseofthe simplifications andno grey band)intheend compilation, andthe length ofday(LOD). started at500Ma. spreading mapof F ig.13 m = linearised equationis: of therotationpoleinx-yplane. The solutionoftheLiuville function ofthepolarmotion,whichisproportionaltoposition impasse absence ofotherexcitationsources. is thecauseofChandlermotionstillremainunexplained in in astraightlinewithoutthecircularChandlerianmotion. What in alinearpath(seefig.2.7Spada,1992). The motionresolves ing factor, usually anexponentialone,andthecycloidtransforms the Chandlercomponentisprogressivelyattenuatedbyadamp- due toviscosityoftheEarth),isthatamplitudecoils problem ofthissolution,inpresencedamping(internalfriction around theshiftingpoleofrotation which ifrepresentedintheplane )Therole ofothersurfacemasstransport(erosion-sediment- 3) TheinfluenceofearthquakesonexcitationChandlerwob- 2) 1) )Astrongnonuniformityintime, alsoonourhistoricaltime A 4) Hours per day A

212 25 24 23 22 21 ation) (Spada ble. of theChandlerwobble. Liuville equationthatmakepossibleaconcomitantexcitation Some specialnon-lineartermsshouldbeaddedto the scale, oftheasymmetricalmass emplacement(anddifferenti- 2000). plethora ofhypothesiscouldbeformulatedtoavoid this 500 o e : roSl eoCroProJr rt Tertiary Kreta Jura Permo Carbo Devo Silu Ordo j s ? o t , ? 400 et al. , 2000)orgeo-fluidcirculation (Chao 0 0 0 0 100 200 300 Age (Ma) T rias Ψ m x (Spada - m y describes acycloid et al. min. exp.rate? spinning up= , 1999). The Late Kreta

Modern Recent et al. , universal planetary expansion Clues ofa rains. Strongsimilaritiessubsist, inmorphologyandagecontrasts, exist thatcanbejudgedto youngerthantheotherpartofter- On theknownsurfaceanumber oflesscraterizedbasinsorplanes Internal planets the different possibleinterpretations. evidence ofepisodesexpansiononplanetandsatellites reporting at sometime.Inthisveryshortreviewmyaimistoexamine the activeontheplanets interpreted asduetosome‘platetectonics’ detected ontheplanetarybodiesandsomeofthemhave been surveys ofthespaceprobes.Manysignsexpansionhave been the solarsystemplanetsandtheirsatellites,especially withthe deserves amorecarefulinvestigation. to theoverallEarth’s expansion.Inanycasetheentirematter be inrelationtothemajorsuperplumesdiapiricalexpansionand This asymmetricallyandnon-uniformlydisplacedmasscanwell the Chandler Wobble againstthecontinuousviscousdamping. which asymmetricallydisplacedpartscanbecapableofexciting interior oftheEarth’s body, –onverydifferent timescales – be anindicationthatirregularmassdisplacementshappeninthe in Fig.13. The concomitantpresence ofthesephenomenacould long periodsofvariation,andrelatedconsiderations,areshown the secularPMpath(Markowitz,1970;Poma oscillation (nearlythreedecadesinperiods)issuperimposedon 1997). And, asfurtherelementofdisturbance,theMarkowitz longer lapsesoftimeaswitnessedbyancienteclipses(Stephenson, lations oftheLODaretypicallyonperiodsfewdecadesand tion; Jordi Fig.12 (Scalera,1999;datafromMorrison,personalcommunica- right characteristicsofirregularvariations. As itcanbeseenin because thedataseriesoflengthday(LOD)presents among theitemsofthisincompletelistIpreferpoint4) negligible effect onPM,andactinadifferent direction. Then, sedimentation geologicalprocesses(Spada rents ingeo-fluids,isstillanopenproblem,whiletheerosionand ical ifnotdisproved(Spada,1997). Also 3),theroleofcur- The influenceofcollectiveactionearthquakes2)ishypothet- Mercury hasbeenphotographed onlypartiallybyspaceprobes. Strong progresshasbeenrecentlymadeintheknowledge of 213 No indicationinfavourofpoint1)iscomingfromliterature. Eulerian wobble(anexampleofthisinSpada ending oftheperturbationwithrespecttoinitialcircular the excitationlasting,andinacasualphaseofstarting ation) whichcanresultinacasualsuccessionoflapsetime et al. , 1994;Stephenson,1997)strongirregularoscil- et al. et al. et al. , 2000)have , 1987). Very , 1999). which couldprotecttheSouth this isexplainedbyagreather

on thesouthernhemisphere, Averaged amount of H2O vapour where juvenilewatersources flows arepresent.Although analogy betweentheEarth’s hemisphere, wherebasaltic (precipitable in micrometers) Pacific basaltichemisphere, are suspectedtoexist,and occurrence ofduststorms the Martiannorthernone. 20 40 60 80 CO concentrated innorthern Mean watervapourinthe be posedinanexpanding -90 planets viewofapossible ° Martian atmosphereas light, thequestioncan 2 -60 Ice CupfromtheSun Latitude (geog.degree) function oflatitude. ° Atmospheric H -30 ° 0 ° 30 ° Fig. -60 2 O is ° 14 -90 ° the continentalfragmentsafter theirseparation–afactthatdid dissolved NaCl,theOceans, hasluckilypreservedtheshapeof of ageologicalliquidstrata, composedessentiallyofwaterand granitic toprevailingbasaltic around200Maago. The presence style ofcrustproductionseems tohaveevolvedfromprevailing ocean floorsare,theolder continentalcrustandlitosphere. The tinental andoceanic,withdifferent meanages. The youngerthe Earth todayobservableinmostofthem. become thelarge ‘resurfacing’ whichinthenextstagesof planetary bodyevolutioncan ial, asymmetrical emplacementofthediapiricalrisinginner mater- ejecta –arenotlakingonthem. long andlarge tectonicvalleys,perfectly circularcraterswithout le ation tinuosly throughgeologicaltime. The othersatellitespresentsitu- preted asanasymmetricalexpansionthathashappeneddiscon- Rhea, Iapeto, Ariel, Miranda,andthisbimodalitycanbeinter- of satelliteslikeGanymede,Europa,Enceladus, Tethys, Dione, ets. Bimodaldistributionsofterrainsagesarepresentonanumber Mars, canalsoberecognizedonthesatellitesofexternalplan- Moons oftheexternal planets of adiapiricalmaterialrise. northern hemisphereandcanbeinterpretedasthesurficialresult situation islessclear, butthecoronaeareconcentratedin and olderterranesofthesouthernhemisphere(Fig.14). Venus’ northern hemisphere,notlinkedtoimpacts,isantipodalhigher sponds. LikewiseithappensonMars,wherealltheyounger European-Mediterranean regionofminimumexpansioncorre- where tothemaximumexpansionregion,Nazca,antipodal Caloris Maris. The sameantipodalityisobservableontheEarth, as theresultsofaslowasymmetricalexpansioncenteredon than thering-likehills,andasconsequencescouldbeinterpreted because fracturingoftheannularmuntainbelt,arethenyounger terranes exist.MoreovertheradialgrabendepartingfromCaloris, with theterrestrialMoon,whereantipodallytomariahigh impact thatgeneratedtheCalorisbasin. Also thisisasimilarity the resultsofafocalisationseismicwavesproducedby islocated, thatarecommonlyinterpretedas of ‘strangeterrains’ radially bylonglinearfractures. Antipodally toCaloristhezone is boundedbyconcentriccircularchainsofmountains,broken with respecttotheMoon’s Maria. The greatestbasin,CalorisMaris, Phobos, a large dominantcraterwithout ejecta(

214 The planetEarthpresentsastrongbimodalityofterranes, con- V Many ofthesamecharacteristicsMercury, Earth,Moon, ery impressiveisthepresence,onmanyofthesemoons, of ss clearbutsymptomsofexpansions–likerift,grabens, etc …) thatcouldbeinterpretedasthebeginningof e.g. in Tethys,Mimas, of theexpansion Causes logical one(Fig.15). lines ofthoughtcanberecognized:acosmogonicalandcosmo- gony andcosmologyacceptedbyeachauthor. Essentiallytwo Earth’s expansionhavebeenproposed,dependingonthecosmo- ical cosmologicalprocess,andnottoacontingentone. this phenomenoncouldbemorelikelylinkedtoageneralphys- increase insizeisjudgedveryimportant. This isasymptom,that is moreclearlydelineated,theEarth,Ganimede,Enceladus, one episodeofexpansion,andonthebodieswherethisexpansion ental lithosphereduetoglobalexpansion. the greatestOceanandinterpretbreak-upofoldcontin- on someOceans,othergeologistsfindsuchsimilaritiesalso forces likeconvectivefluxes,andfindjigsaw-likesimilarityonly continents aswanderingontheglobesurfacedrivenbyinternal contacts ofthefragments.Butwhilesomegeologistsinterpret possibility ofreconstructingtheancientmutualpositionsand not occuronothersolarsystemplanetarybodies–allowingthe )The 1)

215 In thecourseoftimeanumberdifferent causesofthe In conclusionalltheplanetsappeartohaveundergone atleast large ironcore(OliverManuel,2000). recently inaconceptionof Hoyle ofaSunconstituted propose solarcatastroficorigins fortheplanets,andmore roots intheconceptionsof FrenchnaturalistBuffon, which a supernovathatcreatedthesolar system. All thishashistorical Helium andstrangexenoncouldcomefromtheouterlayer of helium associatedwithstrangexenonispresentinJupiter. and all primordialheliumisaccompaniedby‘strangexenon,’ Manuel (2000).Essentiallytheevidenceisthatinmeteorites cosmochemical evidencehasbeenrecentlypresentedbyOliver the otherplanets(Fig.15,leftside).Infavourofthis view, couldbe phases transformation ofthedenserphasesintolighterchemical hydrogen, heliumandotherlightelements. The progressive chemical speciesoftheouterlayersthatstar–mostly ments likeiron,sulfurandsilicon–,theouterplanets of matter comingfromtheinnerpartofthatstar–heavierele- collapsed supernovacore. The innerplanetsareconstitutedof innermost coreoftheplanetarybodies. The sunformedona droplets ofhighdensitymatterthattodaymayconstitutethe the resultsofasupernovaexplosionthatshotintospacelittle rotating discoidalLaplacenebula,butthattheplanetswere system wasnotformedbyprogressiveaccretionofdustina of HughOwen(1992). The ideaisthattheprimevalsolar cosmogonical hypothesis the causeofexpansionEarthand has beendefendedintheworks of superdensemattercoming of different stages:terrestrial the planetceasestoexpand. states. Asaconsequencethe higher (multiplyngcreation, at thispointofitsevolution of phasetowardslessdense passes throughasuccession core growstogethertothe little dwarfstar, andsoon. following Dirac).Theinner mantle, andtheexpansion ofanexpanding a mattersourcewherethe it iscompletelyexhausted, planet, Jupiterlike does notcease.theplanet an unknowncosmological a supernova.Thismatter matter densityisalready the planetisafragment undergoes slowchange inner superdensecore T causation isproviding from theexplosionof decreases insizeuntil wo different waysof Fig. planet. Right: Left: 15

216 The 2) right side). more massiveuntiliteventually becomesablackhole(Fig.15, through asuccessionofstages culminatinginastarsteadly to thecosmogoniccase,does notstop,drivingtheplanet process, itturnsintoordinary matter. The expansion,contrary ior oftheplanetarybodyand finally, inanunknownphysical (cannot flowintheoppositedirection)fromdeepest inter- It alsotransportssomeamountofenergy thatcannotescape flowing towardsthecentersofattraction–centroidaplanet. 1919) equation.Hilgenberg’s spaceisadynamic viour ofthegravitationalfield,linkedtoRiemann(1826- was theviewadoptedbyHilgenberg ofahydrodynamicbeha- cosmological view yyy yyy yyy has manybranches. The classicalone should beconsideredstillopen, waitingfornewresultsfromneu- judgement shouldbepostponed, andthesolutionofproblem for aSunwithanironcoreremains. Butatthemomentadefinitive this interpretationofthecomparison isconfirmed,littlepossibility ferent apparatusesandmethodology isalwaysverydifficult, but,if to a toolowneutrinofluxtotheconversionoftheseelusive particles the standardsolarmodelandattributelong-standingproblem of sensitivity tonon-electronneutrinos)areingoodagreement with neutrinos) andattheSuperkamiokande(Japan)experiment (low Neutrino Observatory)experiment(nosensitivitytonon-electron results oftheappearanceneutrinosolarfluxinSNO (Sudbury able tothegeosciencecommunity, itisalsotruethattherecent 1988). problem-solving occasionforplatetectonicsadherents (Nunan, the easyconvectivefluxphysicswhichhasbeenalongstanding in theexpandingEarththeoryeasyphysicsstilldoesnotexists,like leading totheexpansionofplanet,anditisbeadmittedthat waytoprovide acoherentexplanationoftheinnerprocess able onic orcosmologic,acombinationofthetwo,ismoreprob- furtherpossibilityisthecoexistenceofbothcosmog- A 3) t 217 Albeit thecosmogonichypothesiscouldseemsmoreaccept- It isnotsimpletoargue whichofthe twoconceptions,cosmog- onic andthecosmologicalcauseofexpansion. rence frame. of anew-bornmatterwithzerovelocityinco-movingrefe- which producesastrongerdespinningwithrespecttothecase tion mustbeconsideredasasuccessionofinelasticcollisions, concerns thespinvariationofplanet,becauseabsorp- otherwise elusivematter–producesstrongerproblemsasthat affected bytheproblem. This branch–theabsorptionof Dynamics ofclusterandsuperclustergalaxiesarethemost be explainedwithoutthepresenceofundetecteddarkmatter. dimension areconsidered.Rotationcurvesofgalaxiescannot becomes increasingimportantwhenstructureof detectable byopticaltools(Trimble, 1987). The problem ered evidenceofthepresenceahugeamountmassnon expected consideringthevisiblemassofstars,isconsid- ties ofthestarsnearSun,whichare30-50%higherthan critical density. The anomalousbehaviourofthefall-veloci- ance andthetotalmassofuniversehypotesizedtobenear the universebaryonicmassdeducedfromdeuteriumabund- physics isserchingtodaytoexplainthedifference between wimps, orsomeothermassivebutelusivematter. Modern orexoticparticles, the longserchedfor‘darkmatter,’ absorb fromspacesomeexoticspeciesofmatter, likepartsof and Other branchesofthisviewtrytoassumethattheplanets m neutrinos. To comparetwoexperimentswhich usedif- A spiralgalaxyisconstituted far edgesofthearms,while is notanellipsearoundthe the starsbecomeolderand galaxy centerbutthesame central bulge.Thisisaclue by youngbluestarsinthe older comingtowardsthe that therealtripofastar spiral arm.Thisispossible A simple-minded if thegravitationalfield increases withthetime. cosmological experiment Fig. 16 vr30 oftheopenorbit)atestmass. over 360° both thedoublingtime system appearstohimasunboundthatconcernstotal energy. not takeinaccounttheincreaseofmasssystem. The bound is detectedfromthevirtualobserverifhim,becauseunaware, do in boundsystemsisnotrespectedandaneccessofkinetic energy (Fig.16c). The virialrelationbetweenkineticandpotentialenergy rotation ofthegalaxiesversusdistancefrom center envelope isverysimilartotheobservedcurvesofvelocity of ofalltheseries(Fig.16b). The resulting the obseved‘presenttime’ and acurveenvelopeistracedbecauseitmorestrictlyrepresents plots thiscomponentofthevelocityeachi-thmass(Fig.16a) along thelinemass-observer. The graphicpartoftheprogram can measureonlythecomponentofvelocitymasses attraction (neartheinfinity)onplaneofopenorbitsand ses spiralizewithregularitywithoutlarge differences amongthem. increases exponentially, onlyimposingtheconditionthatmas- thrown, inthesameplane,acentralgravitationalfieldwhich numberoftestmassesweresuccessively of 1994(Scalera,1994). A Ma. The oversimplifiedvirtualexperiment isdescribedinapaper possible increaseofgravityhavingadoublingtimehundreds puterized experimentsearchingforthemacroscopicaleffect ofa increase ofmassthecelestialbodiesandtootherrelatedeffects. supercluster andintherotationofgalaxiesmaybedueto serve asaviolationofthevirialtheoreminboundclusterand limited importance,andthatthegravitationalanomaliesweob- sense thatdarkmattermaynotexistatallorcouldhaveavery ly seesomelinkswiththeunsolvedproblemofdarkmatter, inthe to preferthelattercosmologicalhypothesis,ofwhichIindistinct- although Icannotprovideanydecisiveproof,myprejudicestend possible coordinatedgrowthofoutercoreandmantle. Then, terior notnecessarilyofiron,aconceptionthatcanbelinkedto of therecentneutrinophysicsresultsrequiresanEarth’s deepin- tomography oftheEarth. riment) andothers,veryusefulalsoforarefraction-freeneutrino Sasso Laboratory, Borexinoexperiment),inGreece(Nestorexpe- trino physicsexpectedintheexperimentsunderwayItaly(Gran the openorbits(periodisan improperword, )andif 3) )if 2) )If 1)

218 There isalsoadependenceofthekindspiralization from The virtualobserverisconsideredveryfarfromthecenterof On thissubject,manyyearsago,Iperformedaverysimplecom- Also aconsiderationisneedaboutthefactthatconfirmation T T ≈ >> t T t the orbitisaspiralresemblig thegalaxiesarms, << the orbitiselongatedandnear astraightline, t the orbitbecamevirtuallyan ellipticalone. t of thegravityfieldand‘period’ T is thetimetorun T of and thex-axesisinsame curves oftheV In c)theobservedrotational an astonishremblanceexists In b)theenvelopeofall for thevirtualobserver, and and theanomalousvelocity in directionoftheobserver different times,inacentral is shown.TheV only 'observablequantity' of eachtestmassvelocity, on thecenteroffield is represented.Thisthe found formanygalaxies. gravitational fieldwhich In a)ontheright,avery between thecurveinb) is performed.Sometest curves whichhavebeen In a)thecomponentV (located attheinfinity) increases exponentially scale ofthetruepaths masses arethrown,at simplified experiment velocity forsixspiral of thetestmasses. y components y axes pass galaxies. in time. y

219

Rotational velocity (km/sec) 150 250 350 50 05 Distance fromGalacticcenter(kpc) b a c 01 025 20 15 10 Milky Way Sa NGC4884 Sbc NGC7664 Sbc NGC1620 Sbc NGC3145 Sa NGC4378 Order

Ornithischia Herrerasauria Suborder

Segnosauria Theropoda ??? Oviraptorosauria Deinonychosauria Ornithomimosauria P Scelidosauria Sauropoda Prosauropoda Carnosauria Coelurosauria achycephalosauria Infraorder

220 Chubutisauridae ? Dicraeosauridae Euhelopodidae Barapasauridae Cetiosauridae V Y Melanorosauridae Blikanasauridae Anchisauridae Ingeniidae Oviraptoridae Caenagnathidae A Eustreptospondylidae ? A Itemiridae Ceratosauridae Baryonychidae T Therizinosauridae Tr Deinocheridae Garudimimidae Ornithomimidae Noasauridae Halticosauridae Archaeopterygidae Pa Hadrosauridae Iguanodontidae Hypsilophodontidae Herrerasauridae Staurikosauridae Enigmosauridae Segnosauridae T Diplodocidae Brachiosauridae Camarasauridae Dryptosauridae Abelisauridae Coeluridae Coelophysydae Compsognathidae Homalocephalidae Chaoyoungosauridae Huayangosauridae Stegosauridae Heterodontosauridae Thescelosauridae Camptosauridae Lambeosauridae Dryosauridae F Ty Megalosauridae Spinosauridae Allosauridae Dromaeosauridae Protoceratopsidae Ankylosauridae Nodosauridae Psittacosauridae Scutellosauridae Scelidosauridae unnanosauridae orvosauridae itanosauridae abrosauridae ulcanodontidae vimimidae ublysodontidae oodontidae (Saurornitidi) r c annosauridae hycephalosauridae F amily 1.0-4.0 1.5-4.0 W 2.-4.0? >5.0? ≈ >60.0 >10.0 >10.0 <50.0 <18.0 0.003 ≈ ≈ <1.5? >1.5? 10.0? <8.5 <5.5 <1.0 >2.0 >2.0 >0.1 5.0? 0.03 ≈ ≈ ≈ ≈ ≈ ≈ ton 0.12 3.0? eigth <25. ≈ 7.5 E E .03 0.1 0.1 6.0 6.0 0.2 5.5 4.0 20 Length 1.0-3.0 2.0-9.0 0.5-3.0 1.0-5.0 2.0-8.0 3.0-9.0 0.5-1.5 13.-20. 10.-27. 1.0-7.0 4.0-15. 2.5-6.5 3.5-15. 4.0-9.0 1.0-2.5 2.0-3.0 5.0-9.0 16.-27. 10.-25. 12.-18. 6.0-12. 5.0-6.0 2.0-3.0 3.5-6.0 7.0-9.0 10.-13. 1.8-4.0 3.5-6.0 1.2-2.4 0.6-3.0 0.6-0.9 5.0-11. 2.0-11. 9.-18. 9.-21. >12.0 >10.0 ≈ ≈ ≈ ≈ ≈ ≈ mt ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 23.0 18.0 10.0 15.0 1 1 >20 2.0 4.0 4.0 2.0 1.2 3.5 1.0 7.0 1.0 1.0 6.5 1.4 1.8 2.0 1.5 7.0 2.5 9.0 2.0 3.5 2.4 5.5 1.0

Bip./Quad. P B-B Q B Q Q B B B Q Q Q Q B-B Q Q Q Q Q Q Q Q Q Q Q B Q B Q B-B Q B-B Q B Q B-B Q B-B Q B-B Q B B B B B ? B Q Q Q B Q B Q B B B B B B B B B Q B Q B B B B B B B B-B Q? B B B B B B B B B B B osture In boldtheweigthsgreater with indicationofposture, possibility towalkandrun high weigthofbipedslike (Ormithomimosauria) and with abonestructurelike All thedinosaursfamilies, orarborealanimals. mechanical problemsthe It isapaleontologycand (Carnozavria), andtheir or equalto5.0tons. length andweigth. P T yrannosauridae aleogravity Deinocheridae Fig. 17 for arboricollife. This typicalpostureisadoptedtodayonly by arboricol species. Also theirshortharmscouldhavebeensuitable igrade buttridigital(tridactyl), andtheposteriordigitistypicalof biped orbiped-quadruped.Moreover theirposturewasnotplant- genera itispossibletoverify thatnearly73%oftheirfamiliesare 7-8 tons.Fromthecomplete catalogueoftheknowndinosaur evidence isthepostureofbipeddinosaurwhoseweight was upto footmarks areextremelyrare. Another pieceofpaleontological dinosaurs, whosetracesofdraggingonthegroundnear thefossil discussed thepositionofheavytailbiggestquadruped to walkand,stillmoredifficult, torun(Fig.17).Neiman(1990) architecture (especiallythegiantbipedDynos)arenot suitable bases. The firsttopicsaysthattheDinosaursizesandtheirbone going backthroughgeologicaltimehasbeendefendedon different prefer thecaseforanincreasinggravity. above describedpossiblecosmologicallinks,Iamorientedto sensible decrementofgravity(Hladil,1991).Consideringthe an increasinggravity(Stewart1977),andinacasefavourof conclusions ofsometheseareincompletedisagreementwith already performedconstant-masssuper-computer simulations. some expertinthefieldintroducingmorecomplicationson My onlyhopeisthatthevirtualexperimentcouldberemadeby mass creationbecauseofyetunknowncosmologicalprocesses. linking alsothemorphologyofgalaxiestoprocessnew to expansionismcouldconsequentlylinkEarthcosmology, lems ofastrophysics,butcouldbeindicativehowanadherent not haveanypretensetobethesolutionofcomplicateprob- in favourofthisview. (high redshift),andconsequentlyintime,couldbeanevidence and ellipticalgalaxesdonotchangegreatlygoingfarinthespace black holes. The observationthat theproportionbetweenspiral galaxies whichevolveinellipticalandthenmassive fossils ofgalaxiesarenothingbutthesameirregularandspiral Dark matterdonotexistsinthisview, andthelongtimesearched are thepathsalongwhichstarsaproachtogalacticnuclei. a newwaythespiralarmsofgalaxies,whichinthissimulation galaxies infewbillionyears.Itisalsofavourofconsidering sequence startingfromopenspiralsandendingontheelliptical nucleus. The argument isalsoinfavourofagalacticevolutive izes ellipticallyinalimitedregionresemblingthegalactic by eachtestmass,whichafterasufficient amountoftimespiral-

221 The possibilitythatpaleogravitycouldbelesserand lesser About thepaleogravitytopicsdifferent viewsexsist,andthe I amcertainthatthissimple-mindedcomputersimulationcan- These threeconditionsareallexperiencedinsuccessivetimes Concluding remarks 1999). MobilisminEarthsciences, system andoftheconceptions ofGalileiandKepler(Scalera, at leasttwocenturiesthecomplete acceptanceoftheCopernican ( exceed themodernonesupto30°-40° logical timescale. The maximum recordedvaluesoftheangle repose higherthanthepresentonesgoingbackthroughgeo- Neiman (1990).Fossilheapsofloosematerialsshowangle (1990), butitwasdiscussedonthebasisofadifferent data-setby bear witnesstothis. from giganticsizetomoremoderateofanimals,allseems pumping bloodtowardshigherheadsandagainstgreatergravity), partite heartofreptilstotetrapartiteheartsmammals(capable versal tocolumnarlegs,fromthebipartiteheartoffishestri- factor inbiologicalevolution? The evolutivepassagefromtrans- progressive increasingofgravityhasbeenafundamentaldrive- century in the religious book of Plaçet (1666), was favoured by the by century inthereligiousbook ofPlaçet(1666),wasfavoured On thesebasesastrongerpointcan gravity. undoubtedly interpretedasevidenceoflesserMesozoic on theaveragethroughMesozoicandCenozoic,thiscanbe from angiospermtogymnospermandsoonhavedecreasedinsize and thendirectlyfromgravity. The mostimportantgroupofplants, depends onthepossibilitytotransferwaterandsophigherleaves, decrease ofthedimensionstrees,whosemaximumheight igrade (canguroesandsimilar)orquadruped. birds, verylightanimals,andheavierspeciesarenowallplant- philosophical-religious dogmas andpolitical Earth inrotationandorbital motionaroundtheSun.Strong new scientific revolutionneededtoput centre oftheUniverse. A least theglobewasmotionlessandlocatedin Aristotelian became aglobe,butpeoplecomfortedthemselveshoping thatat (with thefinalevidencecomingfromlossofaday) Earth cal Earth. And onlyafterthetrips ofColumbusandMagellan Earth. ItrequiredtensofcenturiestopassfromflatEarth to spheri- for anexpandingEarth. (this book)seemstoindicatethenecessityofanincreasinggravity to agravitylowerthanthemodernone. The workofLeoMaslov testify ive compactationofthestrata. Angles ofreposeupto60° factual becausewehavetoespectthecontrarybiasofaprogress- based onthefossilheapsseemstomeconvincingandnotarti- ofpossibleincrease. The evidence Earth’s spin,assignsonly10° ing thebig-bangcosmologyandplausiblevariationsin while themoreconservativeestimateofdifferent effects, assum- Another argument hasbeenproposed byMannandKanagy From thevegetalrealmitispossibletonoteaprogressive 222 I fullyunderstandthereclutanceofpeopletoacceptexpanding be made:itis timidly proposed in in timidly proposed e.g. some Silurianvalues) events possible prevented for the 17 that a th eso h osatrdu iw simplelistofafewtopics: lems oftheconstantradiusview. A sible torevealimportantfactsandresolvesomeoutstandingprob- recent yearsthroughthediscoveringthatusingitsopticsitispos- munity. the physicsawarenessofscientificandphilosophicalcom- Probably hisconceptionofspace-timewillbethenextstepin general thanthemoderncurrentlyacceptedexpandingUniverse. tions arecosmologyandaverydifferent fromandmore energy andconsequentlytheplanets grow. Hilgenberg concep- with respecttous.Spacetransportsastillunexperiencedformof space, andwefeelaforce(gravitation)ifspaceisaccelerating perfectly symmetrical:weneedaforcetobeputinacceleration and the planet essentially movement. The Hilgenberg spaceismovingtoward Einstein, Hilgenberg passedto a universalmediumwhichis space-time. Fromthestaticandgeometric,motionless,spaceof isted abeginningofdifferent andmorecompletedescriptionof just thegeologicalconceptions.InHilgenberg’s ideasthereex- to archievethistaskwemayhavechangemoreconceptsthen live onaplanetinexpansion. the Second World War, andtodaywetrytoconvincescientists body andmoreoveron Wegener’s driftingcontinentsonlyafter 1933. The scientificcommunityacceptedarotating,orbitating planet wasdefendedbytheItalianRobertoMantovaniupto Genesis inthebookofSniderPellegrini(1858).Expansionour (progressive contraction)wasproposedinthesevendaysof mechanicism ofDescartes.ButstrongvariationinEarthsize )ExpandingEarthcanalsoprovide aplainandeasilyunder- 3) Platetectonicshavenotbeenabletogiveadefinitesolution 2) While platetectonicsdonotexpecttheexistenceofsimilar- 1)

223 The expandingEarthviewhasgainedmoregroundonlyin problems. case platetectonicsdonotprovide auniquesolutiontothese like thePolarMotionand True Polar Wander. Also inthis standable explanationofsome astro-geodeticphenomena framework. India andIndianOceanperi-continentsintheplatetectonics This solutionisunivocal,whilemany, many solutionsexistfor western margin, inthezoneofactualCooperationSea. the geology. Indiawasconnectedto Antarctica alongits tion inagreementwiththepaleopoledata,palaeontology and ent inthePangea.ExpandingEarthprovidesanelegant solu- to theproblemofpaleopositionIndianmicrocontin- experiments, isabletofindthem(Scalera,1993). similarities, likethe Atlantic similarities,and,bycartographic (and donotsearchforthem),expandingEarthexpectsthese ities ofcoastalcontoursbetweentheoppositePacificcoasts the Einsteinianprincipleofequivalencebecomes T ruly very hard…. consideringthat ruly very volcanoes andtheDarwinRise. paleogeography theevolution the openingrateofother of theMediterraneanseahas a morefavourableprojection that platetectonicsclaimsto of maximumexpansionrate. the NorthernHemisphereto into theFuture.Thisregion, Eurasian regionisantipodal (see thevioletzonesinfigs. T Oceans becausethecentral Mediterraneum islessthan behind atrackofsea-floor be destinedtoacomplete rias-Future) migratesfrom The expansionrateofthe the Southernoneleaving closing, intheexpanding to thePacifictriplepoint Earth viewwillcontinue The regionofmaximum asymmetrical expansion In theexpandingEarth to remainopen. F ig.18

224 Future +250MyR=9000km Recent 0MyR=6370km T

riassic -220MyR=3300km Africa

Baltica Antarctic India

S.America Australia Laurentia progress couldhavebeenpossible. techniques comingfromthe oldconception,withoutwhichno ive, butremainingrespectful oftheresults,databasesandnew conceptions, moreprepared toacceptanewchangeinperspect- new generationmoreopen-mind,willingtoaccept minority to formanewmoderngenerationofprofessionalgeoscientists, a new conceptsinglobaltectonics,whichthemainaim mustbe versity courses,alsooffewweeks,willbededicatedto oldand different globaltectonicconceptions. Then mywishisthatuni- ful tothinkandeventuallycombinerelevantfactsopinions in the classroomfromintermediatetouniversitypublicinstruction. be transmittedatleastascomplementarydidacticalmaterial to that theexpandingEarthhasbeensufficiently developednowto to thisvolume,andthebibliographicdatabases)Iamconvinced palaeogeography etc.(seealltheotherpapersofcontributors veloped asfarpetrologyisconcerned,geologicinterpretation, far fromasolution.Butbecauseexpansiontectonicsisnowde- et, inconnectionwiththecausesofexpansionarestillvery the contraryproblemsconnectedwithinteriorofplan- position oftheplanethavefoundasatisfactoryexplanation;on ing Earththeorynotrelatedtothedeepinnerstructureandcom- sciences. InconclusionIcansaythatalltheproblemsinexpand- before anewrevolutionchangestheevermobileworldofEarth plate tectonicsandIamconvincedthatnotmanyyearswillpass plethora ofotherconvincingarguments areactuallybesieging some ofthemonwhichIhavefocusedmyrecentresearch.Buta 5) )Itispossibletodaytoovercomethemajor 4)

225 In myexperienceofactiveresearchIhavefounditvery use- Many othertopicscouldbeaddedandIhavementionedonly (Fig.18). and thenamorefavourabledestinyfortheMediterraneanSea logic time,forecastingafurtherspreadingofalltheoceans, tion work consentstoprolongthesametectonicstateofevolu- Mediterranean (Scotese,1997),theexpandingEarthframe- plete closureofthe Atlantic andIndianoceansof the a comingbackofthecontinentstoward Africa, withthecom- ing Eartharedifferent. While platetectonicsforecastat250Ma As forprojectionsintothefuture,platetectonicsandexpand- floor spreadingandthenofglobalexpansion. which itisevidentthattodayweareataminimumofocean Spreading RateofMcElhinnyandMcFadden(2000)in methods, consideringthenewglobalmapofHalf by 250Ma,andonlyafewmillimeterstoday)geodesic (which shouldbeintherangeofd dilatation, namelythedifficulty ofrevealingtheexpansion along alltheMesozoic,Cenozoic,RecentandFuturegeo- R /d t = 1-2cm/yaveraged scolio of planetary References Burrett, C.,Long,J.andStait,B.,1990: Early-MiddlePalaeozoicbiogeographyof Burrett, C.F., 1974:Platetectonicsandthefusionof Asia. Buffett, B.A.,Huppert,H.E.,Lister, J.R.and Woods, A.W. 1996:Onthethermalevolu- Buffetaut, E.,Sattayarak,N.andSuteethorn, V., psittacosauriddinosaurfrom 1989: A Buffetaut, E.,1989b: Archosaurian reptileswithGondwananaffinities intheUpper Buffetaut, E.,1989a: The contributionofvertebratepalaeontologytothegeodynamic Briggs, J.C.,1996: Blinov, extensiononthebasisofinstru- V.F., 1987:OncontinentaldriftandEarth’ Bhalla, M.S.and Verma, R.K.,1969:Palaeomagnetismof Triassic Parsora Besse, J.andCourtillot, V., 1991:Revisedandsynthetic Apparent Polar Wander Paths Ben-Avraham, Z.,Nur, A. Jones,D.andCox. A., 1981:Continentalaccretion:from Battail, B.,Beltan,L.andDutuit,J.M.1987: Africa andMadagascarduringPermo- Barron, E.J.and Washington, W.M., 1982: Atmospheric circulationduringwarmgeo- Barron, E.J.andPeterson, W.H., 1989:ModelsimulationoftheCretaceousoceancir- warm,equableCretaceous:thenatureofproblem. Barron, E.J.,1983: A Astibia, H.,Buffetaut, E.,Buscalioni, A.D., Cappetta,C.,Corral,Estes,R., Argus, D.F., Peltier, W.R. and Watkins, M.M.,1999:Glacialisostaticadjustment Andrews, J.A.,1985: True Polar Wander: ananalysisofCenozoicandMesozoic Altamimi, Z., Angermann, D., Argus, D.,Blewitt,G.,Boucher, C.,Chao,B.,Drewes, Ahmad, F., 1983:LatepalaeozoictoEarlyMesozoicpalaeogeographyofthe Tethys Ager, D.V., 1986:Migratingfossils,movingplatesandanexpandingEarth. AA.VV. versusNewton,C.R.,1988:Paleobiogeographyofthe Ancient Pacific, 226 eorN 12,163-174. Memoir N° C.R. (eds): Asian terranesderivedfromGondwana. In:McKerrow, W.S. andScotese, Letters inof tion history of Asia. the Cretaceousof Thailand anditsimplicationsforthepalaeogeographical Cretaceous ofEurope. T history ofSouthEast Asia. In:Sengör, A.M.C. (ed.): mental measurements(inRussian). Sandstones fromIndia. W of the African, Eurasian,North American andIndianPlates, True Polar oceanic plateaustoallochthonousterranes. Mon. n°41,147-155. Gondwana Six:Stratigraphy, Sedimentology, andPaleontology T ling factor? logic periods:Istheequatortopolesurfacetemperaturegradientcontrol- culation, Science Reviews 460-466. affinities oftheLateCretaceouscontinentalfaunasEurope. from Laño(BasqueCountry, );newevidenceonthecompositionand Rodriguez-Lazaro, J.,Sanz,J.L.and Tong, H.1990: The fossilvertebrates J.M., Orue-Extebarria,X.,Pereda-Superbiola,J.,Powell,J.E.,Rage,J.C. Garcia-Garmilla, F., Jeager, J.J.,Jimenez-Fuentes,E.,LeLoeuff, J.,Mazin, geodesy. observed usingverylongbaselineinterferometryandsatellitelaserranging paleomagnetic poles. terrestrial referenceframeandthedynamicEarth. 2001: G., Ray,The J.,Ries,Scherneck,H.-G.,Sillard,P. and Watkins, M., Larson, K.,Ma,C.,Manning,J.,Meertens,Nothnagel, A., Pavlis,E.,Petit, H., Eanes,R.,Feissel,M.,Ferland,Herring, T., Holt,B.,Johannson,J., University of Tasmania, 131-145. region. InCarey, S.W. (ed.): Geology Science ethyan region riassic time:theevidenceofvertebratefaunas.In:McKenzie,G.D.(ed.): ander since200Ma. , 21,181-189. the Earth’s core. , 249,680-683. , 10,377-390. J. Science

, Geology Geophys. Res. Global P alaeozoic Palaeogeography andBiogeography . Kluver Academic Publishers,645-653. T , 19,305-338. , 244,684-686. erra Nova , 10,633-636. J our.Geophys.Res. T J Phys.Earth Planet.Interiors erra Nova our. Geophys.Res. J. , 104,n.B12,29077-29093.

Geophys. Res. , 1,370-373. Expanding EarthSymposium . Elsevier, Amsterdam, pp.452. , 1,69-73. P acific Geology , 90,7737-7750. , 101,7989-8006. , 96,4029-4050. Science EOS , 213,47-54. , 2,138-146. , 5,94-101. Earth andPlanetarySci. T ectonic evolution ofthe , vol.82,n.25,273-279. , Sydney, 1981, . AGU Geophys. . AGU . Geolog.Soc. T erra Nova Modern Earth- , 2, Clark, P.U., Mix, A.C. andBard,E.,2001:Icesheetssealevelofthelastglacial Chao, B.F., Dehant, V., Gross,R.S.,Ray, R.D.,Salstein,D.A., Watkins, M.M.and Carey, S.W., 1988: Carey, S.W., 1976: Carey, S.W., 1975: The ExpandingEarth–an Assay Review. EarthScienceReviews, Dickins, J.M.,andShah,S.C.,1987: The relationshipoftheIndianandwestern Australian Dickins, J.M,Shah,S.C., Archbold, N.W., Jin Yugan, LiangDingyiandLiuBenpei, Dickins, J.M,Choi,D.Rand Yeates, A.N., 1992:Pastdistributionofoceansandcon- Dickman, S.R.,2000: Tectonic andCryosphericexcitationoftheChandler Wobble Dick, S.,McCarthy, D.andLuzum,B.(eds.),2000: kinematicperspectiveonfiniterelativeplate motion,provided Cronin, V.S., 1992: A Creer, K.M.,1965: An expandingEarth? Cottrell, R.D.and Tarduno, J.A.,2000:LateCretaceoustruepolarwander:notsofast. Chudinov, Y.V.,1998: Chatterjee, S.andHotton,N.(eds.),1992: Chatterjee, S.andHotton,N.1986: The paleopositionofIndia. newtheropoddinosaurfromIndiawithremarksonthe Chatterjee, S.1987: A Chatterjee, S.,1984: The driftofIndia:aconflict inplatetectonics. Burˇ Dearnley, R.,1965:Orogeny, fold-belts,andexpansionoftheEarth. Davidson, J.K.,1997:Synchronouscompressionalpulsesinextensionalbasins. Davidson, J.K.,1983: Tethys andPacificstratigraphicevidenceforanExpanding Crowley, T.J. andZachos, J.C.,2000:Comparisonofzonaltemperatureprofilesforpast

227 s a, M.,1990:SeculartidalandnontidalvariationsintheEarth’s rotation.In: Earth maximum. The Netherlands,pp.201 geophysical fluids. W 1 Geophysical Monograph59/IUGGSeries9,43-45 McCarthy, D.D.andCarter, W.E. (eds): Sedimentology, andPaleontology marinefaunas.In:McKenzie, G.D.(ed.): M.R. and Veevers, J.J.(eds.) Banks, of PeninsularIndia,Himalayasand Tibet. In:Findlay, R.H.,Unrug,R., 1993: Someclimaticandtectonicimplications ofthePermianmarinefaunas T tinents. In:Chatterjee,S.andHotton,N.(eds): Chelsea, Michigan,421-435. ConferenceSeriesvol.208,SheridanBook, Italy, 27-30September1999, ASP problems McCarthy, D.andLuzum,B.(eds.) S., and abriefreviewoftheSecularMotionEarth’s RotationPole.In: Dick, Sheridan Book,Chelsea,Michigan,pp.641 ConferenceSeriesvol.208, Sardinia, Italy, 27-30September1999, ASP scientific problems 1284-1290. Concepts inGlobal Tectonics by thefirst-ordercycloidmodel.In:Chatterjee,S.and.Hotton,N.,(eds.): (with aresponseofSagerandKoppers). T Asian EarthSciences Geophys. Mon.n°41,183-189. Gondwana Six:Stratigraphy, Sedimentology, andPaleontology Gondwana-Laurasia connectionintheLate Triassic. In:McKenzie,G.D.(ed.): Fr Marine andPetroleum Geology University of Tasmania. 191-197. Earth. In:Carey, S.W. (ed.): climates inEarthhistory warm timeperiods.In:Huber, B.T., MacLeod,K.G.and Wing, S.L.(eds.): 1,c105-143. ectonics ech UniversityPress.Lubbock,pp.450. ilson, C.R.,2000:Spacegeodesymonitorsmasstransportsinglobal ance Sciences. StanfordUniversityPress,Stanford,California,pp.400 , N.S.,n°147,c43-48. . ProceedingsofIAUColloquium178heldinCagliari,Sardinia, . Texas Tech UniversityPress.Lubbock,193-199. EOS The ExpandingEarth Theories oftheEarthandUniverse: A historyofdogma inthe , vol.82,n.22,May29,241-247. Global eductiontectonicsoftheexpanding Earth . ProceedingsofIAUColloquium178heldinCagliari, EOS , 1,145-189. , may30,247-250. . CambridgeUniversityPress,Cambridge,50-76. Gondwana Eight ,T , 14,(5),513-549. Expanding EarthSymposium exas Tech UniversityPress,Lubbock,13-21. . AGU Geophys.Mon.n°41,15-20. . Elsevier, Amsterdam. pp.488 New conceptsinGlobal Tectonics P olar Motion,Historicalandscientific Science , 205,539-544. V ariations inEarthRotation . Balkema,Rotterdam,333-343. P , 288,2283-2283. olar Motion,Historicaland Gondwana Six:Stratigraphy, New conceptsinGlobal J ournal ofsoutheast Mém. Soc.Géol. . Sidney1981. Nature S BV, . VSP . AGU . Texas . AGU , 206, W New arm Lambeck, K.,1988: Markowitz, W.M. 1970:Suddenchanges in rotationalaccelerationoftheEarthand Manuel, O.K.(ed.),2000: Lambeck, K.,1980: Lambeck, K.,1979: The historyoftheEarth’s rotation.In:McElhinny, M.W. (ed.): La Greca,M.,1989:zoogeografiaelatettonicaaplacche(Biogeography andplate Kutzner, C.andChristensen,U.,2000:Effects ofdrivingmechanismsingeodynamo Goldreich, P. and Toomre, A., 1969:Someremarksonpolarwandering. Gerasimenko, M.D.,1993:ModellingofthechangeEarthdimensionsand Fukao, Y., Widiyantoro, S.andObayashi,M.,2001:Stagnantslabsintheupper Kremp, G.O.W., 1992:Earthexpansiontheory versusstaticalEarthassumption.In: Jordi, C.,Morrison,L.V., Rosen,R.D.,Salstein, D.A.,andRossellò,G.,1994: Huber, B.T., MacLeod,K.G.and Wing, S.L.(eds.)2000: Huber, B.,Hodell,D.andHamilton,C.,1995:Middle-LateCretaceousclimateofthe Hladil, J.,1991: The UpperOrdoviciandropstonesof CentralBohemiaandtheir Hilgenberg, O.C.,1933: Heki, K., Takahashi, Y. andKondo, T., 1989: The baselinelengthchangesofcircum- Grigg, R.W. andHey, R.,1992:PaleoceanographyofthetropicaleasternPacific Flynn, J.J.,Parrish,J.M.,Rakotosaminimanana,B.,Simpson, W.F. Whatley, R.L. Jayne, S.R.andMarotzke,J.,2001: The dynamicsofoceanheattransportvariability. Hilgenberg, O.C.,1974:Geotektonik, neuartiggesehen–Geotectonics,seeninanew Hilgenberg, O.C.,1965:Diepaläogeographie derexpandierendenErdevomKarbon Flynn, J.J.,Parrish,J.M.,Rakotosaminimanana,B.,Simpson, W.F. and Wyss, A.R., review. In: Faccenna, C.,2000:LaboratoryexperimentsofSubduction– A Egyed, L.,1969: The slowexpansionhypothesis. In:Runcorn,S.K.(ed.): Egyed, L.,1956:DeterminationofchangesinthedimensionsEarthfrom 228 secular motionofthePole.In:Mansinha, L. Academic/Plenum Publisher, New York, pp.646. Symposium held August 22-261999, innewOrleans,Louisiana,USA.Kluver post-1957 observations Oxford SciencePublications,New York, pp.718. sequences Earth: ItsOrigin,Structure andEvolution tectonics). models. Res. December 6-11, 215-217. deformations fromspacetrackingdata. lower mantletransitionregion. T Chatterjee, S.andHotton,N.(eds.): nomical data. Fluctuations intheEarth’s rotationsince1830fromhigh-resolutionastro- thermal gradients, southern highlatitudes:Stableisotopicevidenceforminimalequatortopole paleogravity significance. Tr pacific VLBI networksandtheirbearingonglobaltectonics. Ocean. Dinosaurs. Triassic FaunafromMadagascar, includingEarly and Wyss, AR., 1999: A Reviews ofGeophysics history way. 878-924 bis zum Tertiär nachpaläomagnetschenMessungen. Pankow, pp.56. 99 MiddleJurassicMammalfromMadagascar. 1999: A of theInternationalSchool EarthandPlanetary Sciences of ModernPhysicstotheEarthandPlanetaryInteriors palaeogeographical data. ech UniversityPress.Lubbock,p.297-307. ansactions onInstrument. And Measur. , 74,2555-2567. Geotekt. Forschungen . CambridgeUniversityPress,Cambridge,pp.462. Science Geophys. Res.Lett. . CambridgeUniversityPress,Cambridge,pp.447. Scienza & Tecnica (EST) Science Geophys. J. Int. The Earth’s variablerotation –Geophysicalcausesandcon- Geophysical Geodesy– The SlowDeformationsoftheEarth , 255,172-178. Geol. Soc. Am. Bull., , 286,763-765. V Origin ofelementsinthesolarsystem, implicationsofthe om WachsendenErdball. , 39,385-411. . Proceedingsofthe American ChemicalSociety Nature Bull. Geol.Survey Prague , 45,1-194. , 27,29-32. , 117, 811-818. Reviews ofGeophysics , 173,534. , Mondadori,Milano,122-134. New conceptsinGlobal Tectonics Proceedings oftheCRCM'93 107(10), 1164-1191. , 38(2),680-683. . Academic Press,London,59-81. et al. Gießmann &Bartsch,Berlin- (eds.): Geologis. Rundschau , 66(2),65-74. . Wiley, London,65-75. W Nature , 39(3),291-323. arm climatesinEarth . Siena2000,53-63. Earthquake displace- , 401,57-60. The Application J Proceedings our. Geoph. , Kobe, . Texas IEEE , 55, The . Marotzke, J.1991:Influenceofconvectiveadjustmentonthestabilitythermo- McElhinny, M.W. andLock,J.,1990a:GlobalPaleomagneticDatabaseProject. cerw ..adSoee ..(d. 1990: McKerrow, W.S. andScotese,C.R.(eds.) globalpaleomagneticdatabase. McElhinny, M.W. andLock,J.,1990b:IAGA McElhinny, M.W., 1973:Mantleplumes,paleomagnetismandpolarwandering. Marotzke, J.and Willebrand, J.,1991:Multipleequilibriaoftheglobalthermohaline Nie Shangyou,Rowley, D.BandZiegler, A.M., 1990:Constraintsonthelocationsof etn .. 98 infcneo Ttin fossilsinthe American Cordillera. Newton, C.R.,1988:Significanceof‘Tethian’ Neiman, V. B.,1990: An Alternative to Wegener’s Mobilism.In: Augustithis, S.S. Milanovsky, E.E.,1980:Problemsofthetectonic developmentoftheEarthin Meetcalfe, I.,1993:Southeast Asian terranes:Gondwanalandoriginsandevolution. McElhinny, M.W. andMcFadden,P.L., 2000: Owen, H.G.,1992:HastheEarthincreasedinsize?In:Chatterjee,S.and Hotton,N. Nunan, R.,1988: The theoryofanexpanding Earthandtheacceptabilityofguiding Nataf, H.C.,2000:Innercoretakesanotherturn. Geophysical Munk, W.H. andMacDonald,G.J.F., 1975: The RotationoftheEarth-A Müller, R.D.,Roest, W.R., Royer, J.Y., Gahagan,L.M.andSclater, J.G.1997:Digital Peltier, W.R., 1976:Glacialisostaticadjustment,2, The inverseproblem. atro,C n wn .. 91 ninIoaino otc?Aresponseto Patterson, C.andOwen,H.G.,1991:IndianIsolationorContact? A Owen, H.G.,1983b: Owen, H.G.,1983a:SomeprinciplesofPhysicalPalaeogeography. In:Sims,R.W., Owen, H.G.,1981:ConstantdimensionsoranexpandingEarth.In:Cocks,L.R.M. Plaçet, F.F., 1666: Peltier,W.R. andJiang,X.,1996:Glacialisostaticadjustment andEarthrotation: Peltier, W.R., 1981:Iceagegeodynamics. 229 etfields andtherotation oftheEarth ment haline circulation. Biogeography Academic Press,New York, pp.380. Geophys. J. Int. Earth Planet.Int. Nature circulation. Kerrow, W.S. andScotese,C.R.(eds.): Asian microcontinentsinPalaeo-Tethys duringtheLatePalaeozoic.In:Mc Biogeography Science Theories), Theophrastus Publications,S. A., Athens, Greece,3-18. al. Geographie Physique light ofconceptonitspulsationsandexpansion. Eight In: Findlay, R.H.,Unrug,R.,Banks,M.R.and Veevers, J.J.(eds.): (eds.): sent assumptions. In:Donovan, A. Discussion. CambridgeUniversityPress,Cambridge,pp.323. isochrons oftheworld’s oceanfloor. R. Astron.Soc. Briggs. Lubbock, 241-257. Academic Press,LondonandNew York, 85-114. Emergence oftheBiosphere Price, J.H.and Walley, P.E.S. (eds.): University Press,LondonandCambridge,179-192. (ed.): Academic Publishers,289-314. peché d’Adam g 101, 3269-3290. Refined constraintsontheviscosity ofthedeepestmantle. emens funestesarrivezentoutl’univers eenlanature humainedepuisle (eds.): . CambridgeUniversityPress,Cambridge,pp.159. . Balkema,Rotterdam,181-200. The evolving Earth , 241,523-524. , 242,385-391. New conceptsinGlobal Tectonics Syst. Zool. Critical aspectsofthePlatetectonicstheory, Volume II La corruptiondugrand etpetitmonde. Oùilest traité deschan- J .of PhysicalOceanography elg o.Mmi °12,pp.440. , Geolog.Soc.MemoirN° elg o.Mmi °12,397-409. , Geolog.Soc.MemoirN° Atlas ofcontinentaldisplacement,200millionyears tothepre- . Alliot & Alliot, Paris,pp.367. , 46,669-705. , 101,763-766. , 63,1-6. J 40 (1),96-100. .of PhysicalOceanography , 22,15-27. . BritishMuseum(NaturalHistory)andCambridge . Systematic Association Special Volume N°23, et al. Ann.Rev. EarthPlanet.Sci. J. P

aleomagnetism, continentsandoceans (eds.): ScrutinizingScience.Kluwer Geophys. Res. , 21,1372-1385 , 68-81. Nature Evolution, Time andSpace, The P P alaeozoic Palaeogeography and . Texas TechPress, University alaeozoic Palaeogeography and , 21,903-907. , 405,411-412. Revue deGeologie etde , 102,3211-3214. J.

, 9,199-225. Geophys. Res. (Alternative Geophys. J. Gondwana Phys. et . , Scalera, G.,1993:Non-chaoticemplacementsoftrench-arczonesin thePacific Scalera, G.,1999: Scalera, G.,1998:Paleogeographical reconstructionscompatiblewithEarthdilatation. Scalera, G.,1997:Unmusicistascienziatoacavallotra800e900:Roberto Mantovani Scalera, G.,1995:Ricostruzionipaleogeograficheecinematicadelleplacche suuna Scalera, G.,1994:Earthcomplexityvs.platetectonicsimplicity. In: Scalera, G.,1990:PalaeopolesonanexpandingEarth:acomparisonbetween synthetic Scalera, G.,1988:NonconventionalPangaeareconstructions.Newevidence foran Sahni, A., Rana,R.S.andPrasad,G.V.R., 1987:Newevidence forpaleobiogeographic Sahni, A., 1984:Cretaceous-Paleocene Terrestrial FaunasofIndia:Lackendemism Sager, W.W. and Koppers, A.A.P., 2000:LateCretaceouspolarwanderofthePacific Royer, D.L.,Berner, R.A.andBeerling,D.J.2001:PhanerozoicatmosphericCO Ridd, M.F., 1971:South-East Asia asapartofGondwanaland. Richards, M.A.,Ricard, Y., Lithgow-Bertelloni,C.,Spada,G.andSabadini,R.,1997: Rhodes, M.andDavies,J.H.,2001: Tomographic imagingofmultiplemantleplumes Rees, P.M., Ziegler, A.M. and Valdes, P.J., 2000:Jurassicphytogeographyandcli- Sabadini, R., Yuen, D.A.andBoschi,E.,1983:Dynamiceffects frommantlephase Sabadini, R., Yuen, D.A.andBoschi,E.,1982:Polarwanderingtheforcedresponses Runcorn, S.K.,1964:ChangesintheEarth’s Momentofinertia. Ranalli, G.,Pellegrini,R.andD’Offizi, S., 2000: Time dependenceofnegative Ranalli, G.,2000:Rheologyandsubductionofcontinentallithosphere.In: Pollak, J.B.,1990: Atmospheres ofthe Terrestrial Planets.In:Beatty, J.K.and Raffi, S.andSerpagli,E.,1993: Poma, A., Proverbio,E.andUras,S.,1987:LongtermvariationsintheEarth’s 230 Hemisphere. T Annali diGeofisica Olmo, Como24-25maggio1996. Tipogr.Editrice C.Nani,Lipomo,p625-642. XVI Congresso diStoria dellaFisica edell’Astronomia e lateoriadelladilatazioneplanetaria. In:Pasquale Tucci (curatore): novembre 1994,Esagrafica,Roma,257-262. Te Y Fundamental Physics and realdatasets. expanding Earth. Mon. n°41,183-189. Gondwana Six:Stratigraphy, Sedimentology, andPaleontology Paleocene coastalfaunasfrompeninsularIndia.In:McKenzie,G.D.(ed.): intercontinental GondwanarelationshipsbasedonLateCretaceous–Earliest during driftingoftheIndianplate. plate: Evidenceofarapidtruepolarwanderevent. December 31,531-533. 372-375. An explanationforEarth’s long-termrotationalstability. in theuppermostlowermantle. Press, Cambridge,297-318. W mates: newdataandmodelcomparisons.In:Huber, B.T., MacLeod,K.G.and transitions ontruepolarwanderduringiceages. of arotating,multilayered,viscoelasticplanet. Geodynamics buoyancy andthesubductionofcontinentallithosphere. 2000, 21-40. Proceedings oftheInternationalSchool EarthandPlanetarySciences (eds.): Chaikin, A. Science Review change: Evaluatinggeochemicalandpaleobiologicalapproaches. T motion andcrustalmovements. Publishing Corporation,Cambridge,91-106. angram-Istituto NazionalediGeofisica, Roma,pp.195. ipografica Editrice Torinese,ipografica Torino,pp.654. ork, 257-273. ing, S.L.(eds.): rra inespansione. I motielaformadella Terra (MotionsandshapeoftheEarth) Annali diGeofisica , 30,539-555. , 54,349-392. T Phys.Earth.Plan.Int. ectonophysics The new SolarSystem , 41(5-6),819-825. W tidl1°Convegno Annuale delGNGTS Atti del13° . Barone,M.andSelleri,F. (eds.) PlenumPress,New arm climatesinEarthhistory Introduzione allaPaleontologia Geophys. J. Int. J. , XXXVI,n°5-6,47-53. , 146,365-383.

Geodyn. Science , 62,126-140. . CambridgeUniversityPress&Sky , 226,441-443. , 8,245-261. J.

Geophys. Res , 147,88-92. Nature Science . CambridgeUniversity , 303,694-696. Nature . Centro Volta, Villa , vol.287,455-459. TT–Unione . UTET ., 87.2885-2903. Science Nature . AGU Geophys. . AGU , 204,823-825. , Roma28-30 Fr J ournal of , vol.234, , vol.275, ontiers of Atti del . Siena Earth- 2 . Shields, O.,1996:Geologicalsignificanceoflandorganisms thatcrossedoverthe Shields, O.,1983: Trans-Pacific BioticLinksthatSuggest EarthExpansion.InCarey, Scalera, G.,2001a: The globalpaleogeographicalreconstructionofthe Triassic inthe Scalera, G.,2000: Attualità delleconcezionigeodinamichediGiovanniSchiaparelli. Shields, O.,1979:EvidenceforinitialopeningofthePacificOceaninJurassic. Scotese, C.H.,1997: Schmidt, G.A.andMysak,L.A.,1996:Canincreasedpolewardoceanicheathflux Schiaparelli, G.V., 1883:Larotazionedella Terra sottol’influenzadelleazionigeolo- Schiaparelli, G.V., 1891:Dellarotazionedella Terra sottol’influenzadelleazionigeo- Sluys, R.,1994:ExplanationsforbiogeographictracksacrossthePacific Ocean:a climate duringEarthhistory? Sloan, L.C.andBarron,E.J.,1990:‘Equable’ Scalera, G.,Favali,P. andFlorindo,F., 1996:Paleomagneticdatabase: The effect of Scalera, G.andBraun, T., 2001:OttChristophHilgenberg nellageofisicadel900.In: andExpanding Scalera, G.,2002:SimpleconsiderationsaboutEarth’s Rotation, TPW Scalera, G.,2001b:Nuoviconcettiintettonicaglobale.In:Laforgia, A., Dellisanti,F., Smith, A.B., 1988:LatePalaeozoicbiogeographyofEast Asia andpalaeontological con- Spada, G., Alfonsi, L.andBoschi, E.,1999:Chandlerwobbleexcitationbycata- Snider-Pellegrini, A., 1858: Snider-Pellegrini, A., Spada, G., Alfonsi, L.andSoldati,G.,2000: Effects ofriverloadonpolarmotionand Spada, G.,1997: Why areearthquakesnudgingthepoletoward140°E?. Spada, G.,1992: Song, X.andRichards,P.G., 1996:Seismologicalevidencefordifferential rotationof 231 atr ehs‘are’duringthePermo-Triassic. Eastern tethys‘Barrier’ T S.W. (ed.): Geofisica Earth’s dilatationframeworkandthepaleopositionofIndia. Universitaria EditriceCagliaritana,255-264. storia dell’Astronomia In: Calledda,P. andProverbio,E.(eds.): P pp.45. Department ofGeology, Universityof Texas at Arlington, Arlington, Texas, explain thewarmCretaceousclimate? 468-486. giche; discorsodel30agosto1882. Pieraccini-Salvioni, Pisa. sua festasemisecolare. logiche; memoriapresentataall’OsservatoriodiPoulkovanell’occasionedella Society SpecialPublicationNo.105,225-237. Physical Geography challenge forpaleogeographyandhistoricalbiogeography. 18, 489-492. (eds.): quality filteringforgeodynamicalstudies.inMorris, A. and Tarling, D.H. dell’Astronomia Edvige Schettino(ed.): Earth. Submitted. Barletta 17-19October2000,EditriceRotas,Barletta.343-376. società contemporanea Filippi, O.Giovine,M.P., Isernia,G.(eds.): straints onplatetectonicreconstructions. strophic floodingoftheBlackSea. Res. Lett. in honourof Adam M.Dziewonski. EditriceCompositori,Bologna,531-537. (eds.): long-wavelength Stokescoefficients. In:Boschi,E.,Ekström,G.andMorelli, A. Bologna, pp.303. lastico stratificato the Earth’s innercore. pp.487. alaeogeog. Palaeoclimat.Palaeoecol. asmania, 199-205. P Problems inGeophysicsfortheNew Millennium alaeomagnetism andtectonicsoftheMediterranean region , 44(1),13-32. , 24,539-542. Rebound post-glacialeedinamicarotazionale diunpianetaviscoe- Expanding EarthSymposium P . Napoli1-3giugno2000.EditriceCUENsrl,Napoli,307-327. aleogeographic Atlas . Tesi diDottoratoRicercainGeofisica,Università , 18,1,42-58. La créationetsesmystères dévoilés . Cagliari,september24-25,1999.CUECCooperativa Nature Atti delXXCongresso NazionalediStoriadellaFisica e Il Nuovo Cimento . ProceedingsoftheNationalMeetingMathesis, , 382,221-224. Bollettino delClub Alpino Italiano Annali diGeofisica AEMPPregressReport90-0497, . PALEOMAP , 26,181-220. P Phil.Trans.R.Soc.Lond. aleoceanography Proceedings delConvegno annualedi , Terzaserie, Tomo XXX, Tipografia . Sydney, 1981,Universityof Il ruolodellaMatematicanella P alaeobotanist collectionofpapers . A , 42(4),749-754. . FrankeDentu,Paris, , 11 (5),579-593. A , 43(3),85-95. 326, 189-227. Progress in . Geological Annali di Geophys. Geology , Torino, , W W V W V T T Su, W., Woodward, R.L.andDziewonski, A.M., 1994:Degree12modelofshear Su, W., Woodward, R.L.andDziewonski, A.M., 1992:Deeporiginofmid-ocean Su, W.J., Dziewonski, A.M. andJeanloz,R.,1996:Planetwithinaplanet:rotationof Stöcklin, J.,1989: Tethys evolutioninthe Afghanistan-Pamir-Pakistan region.In: Stewart, A.D., 1977:Quantitativelimitstopaleogravity. Stephenson, F.R., 1997: Steinberger, B.andO’Connell, R., 1997:ChangesoftheEarth’s rotationaxisowing Stöcklin, J.,1984: The Tethys paradoxinplatetectonics.In: Vav der Voo, R.,Scotese, briefreportongeodynamicsinIran.In:Gupta,H.K.andDelany, Stöcklin, J.,1981: A ruswell, E.M.,1991: Antarctica: ahistoryofterrestrialvegetation.In: Tingey, R.J. ripathi, C.andSingh,G.,1987:Gondwanaassociatedrocksofthehimalaya akhrameev, V.A.,1991: idale, J.E.,Dodge,D.A.andEarle,P.S., 2000:Slowdifferential rotationofthe eaver, A.J., Bitz,C.M.,Fanning, A.F., andHolland,M.M.1999: Thermohaline cir- right, R.P. and Askin, R.A.,1987: The permian-Triassic boundaryinthesouthern 232 illiams, G.E.,2000:GeologicalconstraintsonthePrecambrianhistoryof Earth’s rotationandthemoon’s orbit. P McKenzie, G.D.(ed.): Morondava basinofMadagascarasdefinedbyplantmicrofossils.In: the Atlantic. culation: High-latitudephenomenaandthedifference betweenthePacificand 445-448. Earth’s innercoreindicatedbytemporalchangesinscattering. Cambridge UniversityPress,Cambridge,pp.318. (ed.): Sedimentology, andPaleontology their significance.In:McKenzie,G.D.(ed.): B4, 6945-6980. velocity heterogeneityinthemantle. ridge seismicvelocityanomalies. the innercoreofEarth. Academic Publishers,241-264. Sengör, A.M.C. (ed.): Sengör, A.M.C. Press, Cambridge,pp.432. to advectionofmantledensityheterogeneities. magnetism C.R. andBonhommet,N.(eds.): Geodyn. Ser. n°3,70-74. F 281-291. .M. (eds.): aleontology The Geology of Antarctica . AGU Geodyn.Ser. n°12, 27-28. Ann. Rev. EarthPlanet.Sci. , AGU Geophys.Mon.n°41,157-166. Zagros, HinduKush, Himalayageodynamic evolution Historical eclipsesandEarth’s rotation Ju r assic andCretaceous floras andclimatesoftheEarth T Gondwana Six:Stratigraphy, Sedimentology, and ectonic evolution ofthe Tethyan region Science . ClarendonPress,Oxford,499-537. . AGU Geophys.Mon.n°41,195-205. Nature Plate reconstruction from Paleozoic paleo- , 288,2002-2007. J ournal ofGeophysicalResearch Reviews ofGeophysics , 27,231-285. , 360,149-152. Nature Gondwana Six:Stratigraphy, J ourn.Geol.Soc.London , 387,169-173. . CambridgeUniversity , 38,1,37-59. Nature . Kluver , 99,No. . AGU , 405, , 133, .