Nicotine Patches Appear Safe for CAD Patients

Total Page:16

File Type:pdf, Size:1020Kb

Nicotine Patches Appear Safe for CAD Patients May 1, 2007 • www.internalmedicinenews.com Cardiovascular Medicine 37 Nicotine Patches Appear Safe for CAD Patients BY BRUCE JANCIN 30%, but many physicians have been re- induced myocardial defect on single-photon ment arm jumped from 10.9 to 25.2 Denver Bureau luctant to recommend it for their patients emission computed tomography (SPECT) ng/mL, Dr. Leja said. After 1 week, patients with coronary artery disease (CAD) be- to receive either 21-mg nicotine patches or were encouraged to quit smoking while N EW O RLEANS — Nicotine patches cause nicotine is known to increase heart placebo in addition to continuing their usu- continuing to use their assigned patches. are safe for use in smokers with known rate and blood pressure, and can induce al amount of cigarette smoking. The pri- Upon SPECT imaging at week 4, the coronary artery disease and stress-induced vasoconstriction as well, Dr. Monika J. Leja mary end point of the study was change in size of the perfusion defects in the nico- myocardial ischemia, according to the re- reported at the annual scientific session of total perfusion defect size upon repeat stress tine patch group remained unchanged sults of the first-ever randomized, place- the American College of Cardiology. SPECT imaging performed at 1 week. from baseline, although their plasma nico- bo-controlled, multicenter clinical trial to Dr. Leja and her coinvestigators at the There was no change in the total or is- tine levels remained as high as at week 1. examine this issue. Methodist DeBakey Heart Center in Hous- chemic perfusion defect size, compared The trial was supported by Glaxo- Nicotine replacement therapy doubles ton randomized 55 heavy smokers with with baseline, in either group even though SmithKline Consumer Healthcare. Dr. Leja the successful smoking quit rate to about CAD and a quantified 10% or greater stress- plasma nicotine levels in the active-treat- has no financial relationship to disclose. ■ IMPORTANT SAFETY INFORMATION The most common side effects in hypertension trials with carvedilol were nasopharyngitis Patients taking Coreg CR™ (carvedilol (COREG CR) and dizziness and fatigue (COREG) phosphate) Extended-release Capsules or and were generally mild. Coreg® (carvedilol) should avoid abrupt cessation of therapy. Following abrupt cessation of therapy with certain β-blocking agents, exacerbation of angina pectoris and, in INDICATIONS AND DOSING some cases, MI and ventricular arrhythmias Hypertension: COREG CR and COREG are have occurred. The dosage should be reduced indicated for the management of essential gradually over a 1- to 2-week period and the hypertension. COREG CR and COREG can be patient should be carefully monitored. used alone or in combination with other COREG CR and COREG are contraindicated in antihypertensive agents, especially thiazide-type patients with bronchial asthma or related diuretics. Starting dose for COREG CR: 20 mg bronchospastic conditions, second- or third- QD. Uptitrate to 40 mg QD after 1 to 2 weeks, as degree AV block, sick sinus syndrome, or severe needed for blood pressure control. The bradycardia (unless a permanent pacemaker is in maximum/target dose is 80 mg QD, if required. place), in patients with cardiogenic shock or Left Ventricular Dysfunction Following decompensated heart failure (HF) requiring the use Myocardial Infarction: COREG CR and COREG of intravenous inotropic therapy (such patients are indicated to reduce cardiovascular mortality should first be weaned from intravenous therapy in clinically stable patients who have survived the before initiating COREG CR or COREG), in acute phase of an MI and have a left ventricular patients with clinically manifest hepatic impairment ejection fraction (LVEF) )40% (with or without and in patients who are hypersensitive to any symptomatic heart failure [HF]). Starting dose for component of this product. COREG CR: 20 mg QD. Uptitrate to 40 mg QD Like other β-blockers, COREG CR and COREG after 3-10 days as tolerated. The maximum/target should be used with caution in patients with dose is 80 mg QD. If clinically indicated, start at peripheral vascular disease, thyrotoxicosis, or who 10 mg QD and/or uptitrate more slowly. Patients are undergoing major surgery. Caution should also should be maintained on lower doses if higher β doses are not tolerated. No dosing alteration be used in diabetic patients as -blockers may β mask some of the manifestations of hypoglycemia, needed when started after IV or oral -blocker MI particularly tachycardia. Worsening heart failure or treatment. fluid retention may occur during uptitration of Heart Failure: COREG CR and COREG are COREG CR or COREG. indicated for the treatment of mild to severe HF The most common side effects reported in the of ischemic or cardiomyopathic origin, usually in addition to diuretics, angiotensin-converting controlled trials in HF (reported in *10% of patients [both the mild-to-moderate and the enzyme (ACE) inhibitor, and digitalis, to increase severe populations studied] and more frequently survival and, also, to reduce the risk of on COREG) were dizziness, fatigue, weight hospitalization. Starting dose for COREG CR: 10 increase, hypotension, and bradycardia. mg QD for 2 weeks. Uptitration to 20, 40, and 80 Worsening HF symptoms were also reported, but mg QD should occur over successive intervals of with equal or greater frequency in placebo-treated at least 2 weeks, based on tolerability. The patients. maximum/target dose is 80 mg QD. Patients should be maintained on lower doses if higher The most common side effects reported with doses are not tolerated. COREG in the CAPRICORN trial were consistent with the profile of the drug in the US HF trials and the COPERNICUS trial, as well as the health status Please see brief summary of Prescribing of patients. The only additional adverse events Information on the following page. reported in >3% of patients and more frequently on COREG in CAPRICORN were dyspnea, lung edema and anemia. References: 1. Wetzels GE, Nelemans P, Schouten JS, et al. Facts and fiction of poor compliance as a cause of inadequate blood pressure control: a systematic review. J Hypertens. 2004;22:1849-1855. 2. Prescribing Information for COREG CR. GlaxoSmithKline. ©2007 The GlaxoSmithKline Group of Companies COREG CR and COREG are trademarks of GlaxoSmithKline. All rights reserved. Printed in USA. CCR170R0 March 2007.
Recommended publications
  • Intravenous Therapy Procedure Manual
    INTRAVENOUS THERAPY PROCEDURE MANUAL - 1 - LETTER OF ACCEPTANCE __________________________________________ hereby approves (Facility) the attached Reference Manual as of _____________________. (Date) The Intravenous Therapy Procedure Manual will be reviewed at least annually or more often when deemed appropriate. Revisions will be reviewed as they occur. Current copies of the Intravenous Therapy Procedure Manual shall be maintained at each appropriate nursing station. I have reviewed this manual and agree to its approval. __________________________ (Administrator) __________________________ (Director of Nursing) __________________________ (Medical Director) - 2 - TABLE OF CONTENTS TABLE OF CONTENTS INTRODUCTION A. Purpose 1 B. Local Standard of Practice 1 RESPONSIBILITIES A. Responsibilities: M Chest Pharmacy 1 B. Responsibilities: Administrator 1 C. Responsibilities: Director of Nursing Services (DON/DNS) 1 D. Skills Validation 2 AMENDMENTS GUIDELINES A. Resident Candidacy for IV Therapy 1 B. Excluded IV Medications and Therapies 1 C. Processing the IV Order 1 D. IV Solutions/Medications: Storage 2 E. IV Solutions/Medications: Handling 3 F. IV Solutions and Supplies: Destroying and Returning 4 G. IV Tubing 5 H. Peripheral IV Catheters and Needles 6 I. Central Venous Devices 7 J. Documentation and Monitoring 8 K. IV Medication Administration Times 9 L. Emergency IV Supplies 10 I TABLE OF CONTENTS PROTOCOLS A. IV Antibiotic 1 1. Purpose 2. Guidelines 3. Nursing Responsibilities B. IV Push 2 1. Purpose 2. Guidelines C. Anaphylaxis Allergic Reaction 4 1. Purpose 2. Guidelines 3. Nursing Responsibilities and Interventions 4. Signs and Symptoms of Anaphylaxis 5. Drugs Used to Treat Anaphylaxis 6. Physician Protocol PRACTICE GUIDELINES A. Purpose 1 B. Personnel 1 C. Competencies 1 D.
    [Show full text]
  • Attachment 3
    CURRICULUM CLINICAL BASE / CA-1 / CA-2 / CA-3 ANESTHESIOLOGY RESIDENCY PROGRAM GOALS AND OBJECTIVES AND CORE COMPETENCIES Department of Anesthesiology University of Missouri at Kansas City School of Medicine Saint Luke’s Hospital Truman Medical Center Children’s Mercy Hospital Revised 2011 Table of Contents Pages Introduction – Statement of Curriculum ................................................................................................................... 3 I. Rendering Patient Insensible to Pain ............................................................................................................. 4-10 II. Support of Life Functions ............................................................................................................................. 11-16 III. Clinical Base Year A. Cardiology ................................................................................................................................................. 17-32 B. Emergency Medicine ................................................................................................................................. 33-44 C. General Medicine ....................................................................................................................................... 45-49 D. Infectious Disease ...................................................................................................................................... 50-59 E. Nephrology ..............................................................................................................................................
    [Show full text]
  • Intravenous Infusion Drug Administration: Flushing Guidance
    Intravenous Infusion Drug Administration: Flushing Guidance April 2019 Acknowledgements: Andrew Barton – Author/reviewer NIVAS Chair Advanced Nurse Practitioner, IV Therapy and Vascular Access Frimley Health NHS Foundation Trust Tim Jackson – Reviewer/contributor, NIVAS Board Deputy Chair Consultant in Anesthesia & Intensive Care Medicine Calderdale & Huddersfield NHS Foundation Trust Gemma Oliver - Reviewer/contributor NIVAS Board Nurse Consultant, Integrated IV Care East Kent Hospitals NHS Foundation Trust Nicola York - Reviewer/contributor NIVAS Board Clinical Nurse Manager Vascular Access and Nutrition support Oxford University Hospitals NHS Foundation Trust Matt Jones - Reviewer/contributor NIVAS Board Consultant Anaesthetist East Kent Hospitals NHS Foundation Trust Steve Hill - Reviewer/contributor NIVAS Board Procedural Team Manger The Christie NHS Foundation Trust Marie Woodley - Reviewer/contributor NIVAS Board Clinical Nurse Specialist IV therapy/OPAT Lead Buckinghamshire Healthcare Trust Contents: Introduction………………………………………………………………………… Page 1 Methods of administering intravenous therapy………………………………… Page 2 Intravenous bolus injection…………………………………………….… Page 2 Continuous, variable dose syringe driver injection……………………. Page 2 Intravenous infusion…………………………………………………….… Page 3 Option 1: Discarding the infusion set………………………………….… Page 3 Option 2: Flushing the Infusion set manually…………………………... Page 4 Option 3: Flushing the infusion set with a closed system…………….. Page 4 General Guidance…………………………………………………………………. Page 5 Conclusion………………………………………………………………………….
    [Show full text]
  • Intravenous Therapytherapy
    IntravenousIntravenous TherapyTherapy Department of EMS Professions Temple College IVIV TherapyTherapy OverviewOverview I DefinitionsDefinitions && IndicationsIndications I FluidFluid ResuscitationResuscitation I EquipmentEquipment andand SuppliesSupplies I ChoosingChoosing FluidsFluids andand CathetersCatheters I ProcedureProcedure andand TechniqueTechnique TipsTips – Peripheral Venipuncture – Intraosseous Access I PotentialPotential ComplicationsComplications DefinitionsDefinitions I IVIV // VenipunctureVenipuncture I CrystalloidsCrystalloids I PeripheralPeripheral // CentralCentral I ColloidsColloids I IntraosseousIntraosseous AccessAccess I HypertonicHypertonic I FluidFluid ResuscitationResuscitation I IsotonicIsotonic I MedicationMedication AccessAccess I DripDrip RatesRates I KVOKVO // TKOTKO IndicationsIndications forfor VenipunctureVenipuncture I VolumeVolume I VenousVenous AccessAccess toto – Dehydration CirculationCirculation I Water – Blood collection I Electrolytes I Labs – Blood Loss I Field Chemistry I Colloids – Medication I Crystalloids Administration FluidFluid ResuscitationResuscitation I DehydrationDehydration andand I ShockShock VolumeVolume LossLoss ManagementManagement – Replace Lost Fluid or – Controversial Blood – Definitive therapy = – Often requires 2 -3 Surgery and blood times the amount replacement lost (2:1 rule) – EMS → judicious replacement – Improve end organ perfusion (BP at 90 - 100 mm Hg) EquipmentEquipment andand SuppliesSupplies I FluidsFluids I SuppliesSupplies – Normal Saline – IV Catheters (0.9%
    [Show full text]
  • Intravenous Medicine Administration Self-Directed Learning Package
    Acute Services Division Practice Development Department Intravenous Medicine Administration Self-directed Learning Package Margaret A. Connolly Katherine Hill Lynne Robertson Debbie Thompson Pinky Virhia First published August 2007 Revised July 2014 For review July 2016 Contribution by Christina Ronyane © Practice Development Department, NHS Greater Glasgow and Clyde 2014. All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying,recording or otherwise without the prior permission of Practice Development Department, NHS GG&C. Acknowledgement of sources of illustrations Figure 1 – page 7 Yellow Card Reproduced with the kind permission of the MHRA. Figure 2 – page 9 Peripheral venous access. Reproduced with the kind permission of Smith and Nephew. Figure 3 – page 10 Midline. Images provided by Vygon (UK) Ltd – © Vygon (UK) Ltd 2012. Figure 4 – page 10 Peripherally inserted central catheter. Provided by Vygon (UK) Ltd - © Vygon (UK) Ltd 2012. Figure 5 – page 10 Non Skin Tunnelled Central Line. Reproduced with the kind permission of Smith and Nephew. Figure 6 – page 11 Skin Tunnelled central venous access. Provided by Vygon (UK) Ltd - © Vygon (UK) Ltd 2012. Figure 7 – page 11 Indwelling Central Venous Access Device. Provided by Vygon (UK) Ltd - © Vygon (UK) Ltd 2012. Figure 10 – page 19 Anaphylaxis algorithm - Reproduced with the kind permission of the Resuscitation Council (UK). Contents Prerequisites for undertaking the IV
    [Show full text]
  • Improvement of Biodistribution with Pegylated Liposomes Containing
    ANTICANCER RESEARCH 31: 153-160 (2011) Improvement of Biodistribution with PEGylated Liposomes Containing Docetaxel with Degradable Starch Microspheres for Hepatic Arterial Infusion in the Treatment of Liver Metastases: A Study in CC-531 Liver Tumor-bearing WAG RIJ Rats U. POHLEN, H.J. BUHR and G. BERGER Department of Surgery, Charité Universitaetsmedizin Berlin, Benjamin Franklin Campus, Berlin, Germany Abstract. Aim: To improve the drug concentration in liver metastatic breast cancer develop liver metastases and have a metastases, docetaxel was encapsulated in polyethyleneglycol- poor prognosis, with a median survival of 1-2 years and a 5- liposomes and administered regionally with degradable starch year survival rate of approximately 20% (6, 7). microspheres (DSM). Materials and Methods: A rodent model The most frequently applied chemotherapeutic agent for of solitary metastasis (CC-531 adenocarcinoma) was studied. advanced breast cancer, ovarian cancer and gastric cancer is The animals were randomized into six groups and treated with docetaxel (8-10). 15 ng/kg docetaxel: I: intravenous (i.v.). II: PEG-liposomes Docetaxel inhibits cell proliferation by inducing a i.v.; III: intraartial (i.a.) via the hepatica artery; IV: i.a.) + sustained mitotic block at the metaphase/anaphase anticancer DSM; V: PEG-liposomes i.a.; and VI: PEG-liposomes i.a. + agents in this class promote the polymerization of stable DSM. The docetaxel concentration in the serum, liver and liver microtubules, inhibit their disassembly and profoundly affect tumor at defined times (5, 15, 30, 60,120 240 min and 24 h) a number of key cellular functions that depend on the was measured using HPLC.
    [Show full text]
  • Improving Intravenous Therapy: Opportunities for Designing the Next Generation Infusion System Part 3 – Workflow Efficiency & Cost-Effectiveness
    IMPROVING INTRAVENOUS THERAPY: OPPORTUNITIES FOR DESIGNING THE NEXT GENERATION INFUSION SYSTEM PART 3 – WORKFLOW EFFICIENCY & COST-EFFECTIVENESS AUTHORED BY: Matthew B. Weinger, MD, MS Andrew Kline, BA Department of Anesthesiology, Vanderbilt University School of Medicine INTRODUCTION In this three-part series, we strive to provide an overview of the current status and apparent effectiveness from the user’s point- of-view of infusion pump design. We acknowledge the advances in the field while highlighting opportunities for future improvements. In focusing on some of the usability issues of current pump interfaces and insufficient interoperability, we highlight some of the existing pitfalls and offer human factors-based guidance for next-generation designs. Here, we define infusion pump usability as the relationship We focus on issues related to the between the technology and clinicians’ ability to use that technology general usability, process efficiency and to attain their work goals effectively, safely, efficiently, and with both clinician and patient satisfaction. cost effectiveness of infusion pump use. In this, the third part of the series, we focus on issues related to the general usability, process efficiency and cost effectiveness of infusion pump use. We also address current shortcomings of the integration of infusion pump technology with medication management software. 1 Workflow Efficiency and Cost Effectiveness An important added benefit of optimal pump designs is the prospect of significant cost savings. Each preventable ADE has been reported to cost nearly $9,000,[1] and smart pumps could, through built-in designs to adhere to the “Rights,” decrease the incidence of ADEs (see Part 1 of this series for more information on this topic).
    [Show full text]
  • Intravenous Therapy
    Intravenous therapy What is an intravenous? An intravenous is a thin, plastic tube called a catheter that is put into a vein to give you fluid. The catheter is attached to a solution bag hanging on a pole. This is all called an IV. The type of solution you have depends on your special needs. The IV needs to go into a vein so the blood can carry the fluid around your body. Most often, the IV is put in your hand or forearm. An IV can be put in a foot, upper arm or inner elbow. You may have an IV lock called a saline lock. This means that the catheter is attached to a very short tube with a cap. When it is time for fluid or medication, the cap is taken off and the catheter is attached to a longer tube and solution. This is most often done if you need an IV for medications but do not need extra fluid. Why do I need an IV? There are many reasons for having an IV. Here are some reasons: to give fluids to give medication to give blood or blood products please turn over Intravenous therapy What is an IV pump? Your IV may be connected to an IV pump. The nurses program the pump to deliver the right amount of medications and fluids. It will beep or alarm for different reasons. What activities can I do with an IV? After the IV is put in, there is no needle left in your vein. The tube is held in your vein with tape.
    [Show full text]
  • (Not for IV Bolus Injection) RX ONLY ERAXIS™ (Anidulafungin
    NDA 21-632/S-010 Page 6 [INTRAVENOUS INFUSION, DILUTED WITH STERILE WATER FOR INJECTION] (not for IV Bolus Injection) RX ONLY ERAXIS™ (anidulafungin) FOR INJECTION DESCRIPTION ERAXIS for Injection is a sterile, lyophilized product for intravenous (IV) infusion that contains anidulafungin. ERAXIS (anidulafungin) is a semi-synthetic lipopeptide synthesized from a fermentation product of Aspergillus nidulans. Anidulafungin is an echinocandin, a class of antifungal drugs that inhibits the synthesis of 1,3-β-D-glucan, an essential component of fungal cell walls. ERAXIS (anidulafungin) is 1-[(4R,5R)-4,5-Dihydroxy-N2-[[4"-(pentyloxy)[1,1':4',1"-terphenyl]-4­ yl]carbonyl]-L-ornithine]echinocandin B. Anidulafungin is a white to off-white powder that is practically insoluble in water and slightly soluble in ethanol. In addition to the active ingredient, anidulafungin, ERAXIS for Injection contains the following inactive ingredients: 50 mg/vial - fructose (50 mg), mannitol (250 mg), polysorbate 80 (125 mg), tartaric acid (5.6 mg), and sodium hydroxide and/or hydrochloric acid for pH adjustment. 100 mg/vial - fructose (100 mg), mannitol (500 mg), polysorbate 80 (250 mg), tartaric acid (11.2 mg), and sodium hydroxide and/or hydrochloric acid for pH adjustment. The empirical formula of anidulafungin is C58H73N7O17 and the formula weight is 1140.3. The structural formula is: H H OH O HO OC5H11 H O NH HO NH O H C H 3 HN CH N 3 H O H HO O H OH H NH N H3C H H OH HO N O H H H O OH H H OH Prior to administration, ERAXIS for Injection requires reconstitution with sterile Water for Injection and subsequent dilution with either 5% Dextrose Injection, USP or 0.9% Sodium Chloride Injection, USP (normal saline).
    [Show full text]
  • IV Infusion Therapy Forms
    Intravenous (IV) Infusion Therapy Checklist of what to bring: Your completed Intravenous (IV) Therapy Intake Form A copy of your most recent bloodwork (including G6PD) is helpful Your signed Consent Form Make sure that you are well hydrated prior to your visit; we suggest drinking one to two 16oz. bottles of water. Dehydration can make it difficult to insert an IV. Make sure you eat something prior to you visit; we suggest a high protein snack, such as nuts, seeds, a protein bar, cheese, yogurt, or eggs. Low blood sugar can make you feel weak, light-headed, or dizzy. During your first visit for IV Therapy infusions: During the first visit, the healthcare practitioner will discuss your symptoms and desired outcomes. Based on this assessment, your IV infusion will be customized to address your needs. If you have any complex medical conditions, the healthcare practitioner may request that you obtain blood work and/or your PCP’s approval prior to administering any IV infusions. What to eXpect: The IVs used during your Intravenous (IV) infusion therapy are eXactly the same that you would find in a hospital. Instead of a clinical eXperience though, our IV infusions are given in a peaceful spa setting and leave you feeling calm, relaXed, and refreshed. Depending on your customized IV cocktail, the infusion can be finished in as little as 20- 30 minutes. Our friendly and attentive staff will keep you calm, cared for, and comfortable during your infusion. Patients find the eXperience tranquil and healing. Patients leave feeling vibrant, energized, and refreshed. Flatiron Functional Medicine 400 S.
    [Show full text]
  • Home Health Care (For Nebraska Only) – Community Plan Coverage
    UnitedHealthcare® Community Plan Coverage Determination Guideline Home Health Care (for Nebraska Only) Guideline Number: CS137NE.O Effective Date: July 1, 2021 Instructions for Use Table of Contents Page Related Community Plan Policies Application ..................................................................................... 1 • Home Hemodialysis (for Nebraska Only) Coverage Rationale ....................................................................... 1 • Private Duty Nursing (PDN) Services (for Nebraska Definitions ...................................................................................... 2 Only) Applicable Codes .......................................................................... 3 • Skilled Care and Custodial Care Services (for References ................................................................................... 11 Nebraska Only) Guideline History/Revision Information ..................................... 11 Instructions for Use ..................................................................... 11 Commercial Policy • Home Health Care Medicare Advantage Coverage Summary • Home Health Services and Home Health Visits Application This Coverage Determination Guideline only applies to the state of Nebraska. Coverage Rationale Indications for Coverage The services being requested must meet all of the following criteria: A written treatment plan must be submitted with the request for specific services and supplies. Periodic review of the written treatment plan may be required for continued Skilled
    [Show full text]
  • ISMP Safe Practice Guidelines for Adult IV Push Medications
    ISMP Safe Practice Guidelines for Adult IV Push Medications A compilation of safe practices from the ISMP Adult IV Push Medication Safety Summit Prepared by the Institute for Safe Medication Practices (ISMP) Table of Contents Introduction 1 Factors that Increase the Risk of IV Push Medication Errors in Adults 2 Risks Associated with Lack of Patient Information 3 Risks Associated with Lack of Drug Information 3 Risks Associated with Communication of Drug Information 3 Risks Associated with Drug Labeling, Packaging, and Nomenclature 3 Risks Associated with Drug Storage, Stock, Standardization, and Distribution 4 Risks Associated with Device Use 4 Risks Associated with Environment, Staffing, and Workflow 4 Risks Associated with Staff Education and Competency 4 Risk Management and Quality Improvement Challenges 5 Current Practices with IV Injectable Medications 6 Developing Consensus Guidelines for Adult IV Push Medications 7 Safe Practice Guidelines 8 1. Acquisition and Distribution of Adult IV Push Medications 8 2. Aseptic Technique 9 3. Clinician Preparation 10 4. Labeling 12 5. Clinician Administration 13 6. Drug Information Resources 14 7. Competency Assessment 15 8. Error Reporting 15 Future Inquiry 16 Conclusion 16 References 17 Definitions 19 ISMP Adult IV Push Medication Safety Summit Participants 20 Appendix A — ISMP Safe Practice Guidelines for Adult IV Push Medications 22 Disclosure 24 About ISMP 24 ISMP SAFE PRACTICE GUIDELINES FOR ADULT IV PUSH MEDICATIONS © ISMP 2015 Introduction Intravenous (IV) therapy is considered an essential component of current healthcare delivery, with over 90% of hospitalized patients receiving some form of infusion therapy. 1-2 Errors involving IV medications can occur in all phases of the medication use process and can be particularly dangerous based on the drug’s properties and the complexity of its therapeutic action.
    [Show full text]