Effects of Plastics in Agriculture in the Jordan Valley: Utility, Impact, and Alternative Approaches

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Plastics in Agriculture in the Jordan Valley: Utility, Impact, and Alternative Approaches August 2019 Effects of Plastics in Agriculture in the Jordan Valley: Utility, Impact, and Alternative Approaches Effects of Plastics in Agriculture in the Jordan Valley: Utility, Impact, and Alternative Approaches 19 August 2019 Effects of Agricultural Plastic in the Jordan Valley US EPA Disclaimer: This publication was developed under Assistance Agreement No. 83617201 awarded by the U.S. Environmental Protection Agency to its grantee, Battelle, and Battelle’s sub-grant to EcoPeace. It has not been formally reviewed by US EPA. The views expressed in this document are solely those of Battelle and US EPA does not endorse any products or commercial services mentioned in this publication. Battelle Disclaimer: This report is a work prepared for the United States Government by Battelle and its cooperative agreement partners. In no event shall either the United States Government or Battelle have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on any product, information, designs, or other data contained herein, nor does either warrant or otherwise represent in any way the utility, safety, accuracy, adequacy, efficacy, or applicability of the contents hereof. i Effects of Agricultural Plastic in the Jordan Valley Table of Contents 1. Introduction........................................................................................................................... 3 1.1. Definition of Plastic Mulch Film ........................................................................................ 3 1.2. The Life Cycle of Plastic Mulch ........................................................................................ 3 1.3. Utilization of Plastic Mulch Film in Agriculture in Jordan .................................................. 8 2. Assessment of the Impacts of Plastic Mulch Film Use ...................................................... 9 2.1. Environmental Impacts .................................................................................................... 9 2.2. Economic Impacts ......................................................................................................... 13 2.3. Health and Social Impacts ............................................................................................. 15 3. Biodegradable Alternatives to Plastic Mulch .................................................................... 18 3.1. Alternatives to Plastic Mulch Film .................................................................................. 18 4. Best Practices in the Use of Plastic Mulch and Biodegradable Alternatives ................. 21 4.1 Best Practices in the Use of Plastic Mulch ..................................................................... 21 4.2 Best Practices in the Application of Biodegradable Alternatives .................................... 23 5. Practical Considerations in Selecting Alternative Approaches in Jordan ...................... 23 6. Environmental Justice Considerations ............................................................................. 25 7. References .......................................................................................................................... 26 ii Effects of Agricultural Plastic in the Jordan Valley Acronyms BDM ............................................................................................................ Biodegradable mulch EPA ......................................................................................... Environmental Protection Agency JOD ..................................................................................................................... Jordanian dinar PAE .............................................................................................................Phthalate acid esters PE ............................................................................................................................ Polyethylene WUE ............................................................................................................. Water use efficiency iii Effects of Agricultural Plastic in the Jordan Valley Executive Summary The use of plastic mulch film in agricultural practices in the Jordan Valley provides numerous benefits when properly managed, however, improper use and disposal can lead to myriad unintended negative environmental, social, and economic impacts. Plastic use for agriculture began to proliferate Jordan in the early 1960s as a way to increase water use efficiency (WUE). Today, plastic mulch provides an opportunity for Jordanian farmers to increase crop production through the regulation of inconsistent growing climates due to extreme temperatures and inconsistent rainfall, particularly in arid regions. Plastic mulch increases soil temperature, keeps soil moist, and controls growth of weeds, contributing to an increase in usable farmland and water conservation efforts, higher crop yields, and potential for increased income-generation. However, if not maintained and removed from the field(s) properly, degraded plastic, known as mulch residue, can infiltrate the soil or contaminate the surrounding environment. Mulch residue may impact soil structure, moisture retention, and microbial biomass, leading to decreased crop yields in the longer-term. For example, to increase efficiency, some farmers in Jordan use the same plastic mulch to grow two rounds of crops in one growing season; however, oftentimes, the mulch begins to lose its plasticity, break apart and degrade after the second use. Lingering plastic residue from practices like double-cropping may impact moisture and nutrient transport by physically blocking absorption of water and nutrients. Mulch residue could change soil properties in ways that impact the effectiveness of fertilizer or pesticides on crops and may result in leaching into groundwater supplies, negatively impacting human health. Another threat to human health is the potential for phthalates or other cancer-causing compounds to leach into the soil and groundwater, which could be absorbed by crops and enter the food supply. Additionally, deteriorated plastic may contaminate adjacent land or waterways like the Jordan River or Dead Sea, posing additional environmental and economic risks. Because the Jordan River is used extensively for irrigation, water containing microplastics may be used to irrigate fields and microscopic pieces of plastic could be returned to the fields and potentially enter the food supply. Additionally, in the Jordan Valley, many farmers rely on livestock, such as sheep or goats, as an additional source of income. Plastic residue can be easily ingested by livestock grazing in areas close to mulched fields, which can become impacted in the rumens (stomachs) and possibly cause death. Another challenge presented by the use of plastic mulch film is awareness and access to proper disposal options. While recycling is the preferred method of disposal for plastic mulch, if this option is not available, landfilling is a better choice than incineration, open burning or illegal dumping. Currently, plastic mulch is typically burned on the farm site, illegally dumped, or left on fields to disintegrate. Open burning on-site releases a variety of harmful pollutants (e.g., hydrochloric acid, sulfur dioxide, furans, heavy metals, nitrous oxide, methane, and others) into the air and across the farmland, which can be detrimental to humans, livestock and other wildlife. Leaving the plastic mulch to degrade into the field or illegal dumping through burying or disposing of plastic mulch into waterways contributes to plastic pollution of the surrounding environment in the Jordan Valley. Complicating factors for proper disposal include the current solid waste management and recycling infrastructure and capacity in country. Additional challenges to recycling of plastic mulch in Jordan include soil/dirt/vegetative contamination of the plastic mulch, disintegration of plastic after multiple growing cycles, and lack of interest in use of recovered plastic mulch in a degraded condition. 1 Effects of Agricultural Plastic in the Jordan Valley Currently, it is not feasible or practical to collect, clean, transport, market and utilize recovered plastic mulch in the manufacture of new products in the Jordan Valley. However, environmentally preferable alternatives to plastic mulch film should be considered, including biodegradable mulch (BDM) that is designed to be tilled into soil after use, as well as cornstarch or paper-based alternatives which naturally break down over time. Other organic options include compost, flax-wool, and chopped leaf litter. Such environmentally friendly alternatives not only reduce the burden of collection and disposal at the end of the growing season but may also offer cost-savings in some instances and are generally safer for human health and the environment. For BDM alternatives to be considered for adoption in Jordan, there must be additional steps taken to prove the performance and economic feasibility. While there currently is no local manufacturer of BDM in Jordan, there has been expressed interest by current manufacturers of plastic mulch to explore the possibility of producing BDM. Additionally, there has been expressed interest by the farming community to participate in pilot testing to compare the performance of BDM over plastic mulch due to the benefits to human health and the environment. Alternatively, should BDM not prove to be a viable option for consideration, another
Recommended publications
  • Alternatives to Plastic Mulch
    Alternatives to Plastic Mulch for Organic Vegetable Production Carol Miles, Kathryn Kolker, Jenn Reed and Gail Becker WSU Vancouver Research & Extension Unit 1919 NE 78th Street, Vancouver, WA 98665 (360) 576-6030, [email protected], http://agsyst.wsu.edu Introduction Weed control is one of the primary concerns in organic farming as it is labor intensive, expensive and time consuming. Since its introduction in the 1950s, plastic mulch has become a standard practice used by many farmers to control weeds, increase crop yield, and shorten time to harvest (Lamont, 1991). Plastic mulch has contributed significantly to the economic viability of farmers worldwide, and by 1999 almost 30 million acres worldwide were covered with plastic mulch, with more than 185,000 of those acres in the United States (American Plastics Council, 2004; Takakura and Fang, 2001). However, each year farmers must dispose of their plastic, and although agricultural plastic recycling has begun, the disposal option that most choose is the landfill (Garthe, 2002). Many organic farmers, especially those who are small-scale, choose not to use plastic mulch because of the waste disposal issues. An effective, affordable, degradable alternative to the now-standard plastic mulch would contribute the same production benefits as plastic mulch and in addition would reduce non-recyclable waste. Previous work. In 2003, we conducted a preliminary study at Washington State University Vancouver Research and Extension Unit (WSU VREU) to evaluate paper and cornstarch mulches as alternatives to plastic mulch. We used 81 lb Kraft paper with and without oil application. We evaluated three oils (soybean, linseed and tung) applied before and after laying the paper.
    [Show full text]
  • AGRICULTURAL PLASTICS Q & a Vers Feb 8, 2016
    Lois Levitan, PhD Recycling Agricultural Plastics Program Department of Communication Cornell University, Ithaca NY 14853 AGRICULTURAL PLASTICS Q & A vers Feb 8, 2016 • What are agricultural plastics? • What is plastic? • How is plastic film used on dairy farms? • How is plastic film used in producing fruits, vegetables & ornamentals? • What is done with waste plastic after it is no longer useful on the farm? • What new products are made from recycled agricultural plastics? • Why is plastic ground up or baled before shipping to markets? • Are all agricultural plastics made from the same material? • Is it ok to burn waste plastic in a back field on the farm? • What about pesticide containers? WHAT ARE AGRICULTURAL PLASTICS? ‘Agricultural Plastics’ are the array of plastic products and packaging used in agricultural production and sales. Most have a short useful life. Plastic products are typically lighter to lift and transport, less fragile, safer to use, and have a higher production efficiency than the concrete, glass, ceramic and other materials they have replaced over the past several decades. Silage Bags • Bunk Silo Covers • Polytwine • Bale Wrap • Netwrap • Maple Tubing • Irrigation Drip Tape & Polytubes • High Tunnels • Tarps • Seedling Plug Trays • Plant Pots • Mulch Film • Fumigation Film • Pesticide & Dairy Chemical Containers • Boat Wrap • Bee Hive Frames • Bird Netting • Aquaculture Supplies • Row Covers • O2 & Moisture-Barrier Film • Bags for Seed, Feed, Fertilizer, Peat, Wood Pellets, Potting Mix, etc. • Low Tunnels • • F.I.B.C. (totes, supersacks) • Grain Bags • Greenhouse Covers • Hoophouses • Solarization Film • WHAT IS PLASTIC? Plastics are solid materials that can be molded, pressed, or extruded into a variety of forms and shapes.
    [Show full text]
  • Groundwater-Based Agriculture in Arid Land : the Case of Azraq Basin
    Groundwater-Based Agriculture in Arid Land: The case of Azraq Basin, Jordan of Azraq in Arid Land: The case Agriculture Groundwater-Based Majd Al Naber Groundwater-Based Agriculture in Arid Land: The case of Azraq Basin, Jordan Majd Al Naber Propositions: 1. Indirect regulatory measures are more efficient than direct measures in controlling the use of groundwater resources. (this thesis) 2. Decreasing the accessibility to production factors constrains, but does not fully control, groundwater-based agriculture expansion. (this thesis) 3. Remote sensing technology should be used in daily practice to monitor environmental changes. 4. Irreversible changes are more common than reversible ones in cases of over exploitation of natural resources. 5. A doctorate title is not the achievement of one's life, but a stepping-stone to one's future. 6. Positivity is required to deal with the long Ph.D. journey. Propositions belonging to the thesis, entitled Groundwater-Based Agriculture in Arid Land: The Case of Azraq Basin, Jordan Majd Al Naber Wageningen, 10 April 2018 Groundwater-Based Agriculture in Arid Land: The Case of Azraq Basin, Jordan Majd Al Naber Thesis committee Promotors Prof. Dr J. Wallinga Professor of Soil and Landscape Wageningen University & Research Co-promotor Dr F. Molle Senior Researcher, G-Eau Research Unit Institut de Recherche pour le Développement, Montpellier, France Dr Ir J. J. Stoorvogel Associate Professor, Soil Geography and Landscape Wageningen University & Research Other members Prof. Dr Ir P.J.G.J. Hellegers, Wageningen University & Research Prof. Dr Olivier Petit, Université d'Artois, France Prof. Dr Ir P. van der Zaag, IHE Delft University Dr Ir J.
    [Show full text]
  • COT Microplastics Overarching Staement 2021
    COMMITTEE ON TOXICITY OF CHEMICALS IN FOOD, CONSUMER PRODUCTS AND THE ENVIRONMENT Overarching statement on the potential risks from exposure to microplastics Background 1. Plastic pollution has been widely recognised as a global environmental problem (Villarrubia-Gómez et al., 2018). The adverse effects of plastic litter have been widely documented for marine animals (e.g. entanglement, ingestion and lacerations); however, the potential risks from exposure to smaller plastic particles i.e. micro- and nanoplastics in humans are yet to be fully understood. Scope and purpose 2. As part of horizon scanning, the Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (COT) identified the potential risks from microplastics as a topic it should consider. Upon review of the literature, it was decided that nanoplastics should also be included. An initial scoping paper was presented to the COT in October 2019 (TOX/2019/62)1, since when the topic and additional information has been discussed several times by COT with the final substantive discussion in December 2020. A list of all discussion papers considered by the COT during the review is given in Annex A. 3. The purpose of this overarching statement is to bring together these discussions, summarise the COT conclusions reached to date and provide a high-level overview of the current state of knowledge, data gaps and research needs with regards to this topic. 4. Future sub-statements, which will consider in detail the potential toxicological risks of exposure from microplastics via the oral and inhalation routes, are intended to provide supplementary material for this overarching statement.
    [Show full text]
  • Plasticulture in California Vegetable Production
    PUBLICATION 8016 Plasticulture in California Vegetable Production WAYNE L. SCHRADER, UC Cooperative Extension Vegetable Farm Advisor, San Diego County Plasticulture is the art of using plastic materials to modify the production environ- UNIVERSITY OF ment in vegetable crop production. Plasticulture began in the 1950s and early 1960s with the introduction and use of plastic films, mulches, and drip irrigation systems. CALIFORNIA Vegetable growers frequently use plastics in pest management, stand establishment, Division of Agriculture harvesting, and postharvest handling operations, and in containers for marketing. and Natural Resources Plasticulture system components can include http://anrcatalog.ucdavis.edu • plastic mulches to control soil temperature, control weeds, and repel insects • plastic films for erosion control, soil fumigation, or solarization • row covers for temperature control, wind or frost protection, and insect exclusion • drip irrigation for improved water management and for the application of chemi- cals (chemigation) and fertilizers (fertigation) during irrigation • plastic windbreaks • plastic barriers against vertebrate pests Plasticulture has developed into management systems that allow growers to achieve higher-quality produce, superior yields, and extended production cycles. Growers using plasticulture can produce vegetables for markets during the winter, early spring, and late fall that would otherwise be impossible to address. Benefits of plasticulture include • earlier production (7 to 30 days earlier) • increased
    [Show full text]
  • Paper-Based Products As Promising Substitutes for Plastics in the Context of Bans on Non-Biodegradables
    EDITORIAL bioresources.com Paper-based Products as Promising Substitutes for Plastics in the Context of Bans on Non-biodegradables Wei Liu,a,# Huayu Liu,a,# Kun Liu,a,# Haishun Du,b,* Ying Liu,c and Chuanling Si a,c,* As a global environmental problem, plastic pollution has attracted worldwide attention. Plastic wastes not only disrupt ecosystems and biodiversity, but they also threaten human life and health. Countries around the world have enacted regulations in recent years to limit the use of plastics. Paper products have been proposed as promising substitutes for plastics, which undoubtedly brings unprecedented opportunities to the pulp and paper industry. However, paper products have some deficiencies in replacing certain plastic products. Research and development to improve paper properties and reduce production costs is needed to meet such challenges. Keywords: Plastic; Plastic bans; Pulp and paper industry; Paper-based materials Contact information: a: Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; b: Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA; c: Tianjin Jianfeng Natural Product R&D Co., Ltd., Tianjin 300457, China; *Corresponding authors: [email protected]; [email protected] # Co-first author with the same contribution to this work Plastics and Plastic Bans Plastic products have the advantages of light weight, low cost, good ductility, and excellent insulation, which explains why they have been widely used in industry, agriculture, medicine, and other fields (Geyer et al. 2017). Over the past few decades, the production of plastics has experienced rapid growth. It is reported that by 2015, 8.3 billion tons of plastics had been produced in the world; however, of that amount, 6.3 billion tons had become plastic waste (Geyer et al.
    [Show full text]
  • Allowed Mulches on Organic Farms and the Future of Biodegradable Mulch
    Allowed Mulches on Organic Farms and the Future of Biodegradable Mulch All farmers know that conventional polyethylene (aka: plastic) mulch is widely used for crop production because it controls weeds, conserves soil moisture, increases soil temperature, improves crop yield and quality, has a relatively low cost, and is readily available. Conventional mulch is also widely used on organic farms although organic farmers and others have questioned its use because it is often non- recyclable, and is generally made from non-biodegradable based materials. At this time, no biodegradable mulch is allowed for use on organic farms. None of the commercially available biodegradable mulches have been proven to meet the requirements of the National Organic Standards. In this document we answer common questions about the currently allowed mulches on organic farms and the potential of using biodegradable mulches in the future. How does the National Organic Program define “mulch”? 7 CFR 205.2 The National Organic Program (NOP) states that mulch is any non-synthetic material, such as wood chips, leaves, or straw, or any allowed synthetic material such as newspaper or plastic that serves to suppress weed growth, moderate soil temperature, or conserve soil moisture. What specifically can organic farmers use now for mulching? 7 CFR 205.601 Currently allowed options for mulching are: • Non-synthetic, untreated materials such as wood chips, leaves, or straw • Newspapers or other recycled paper, without gloss, glossy inks, or color inks • Plastic mulches and covers provided they are removed from the field at the end of the growing season, and they are petroleum-based, but not polyvinyl chloride (PVC) • Biodegradable bio-based mulch film - provided that it complies with the requirements and restrictions of the USDA organic regulations, and Policy Memo 15-1 in the NOP Program Handbook.
    [Show full text]
  • And Microplastics on an Agricultural Farmland Received: 31 May 2018 Sarah Piehl 1, Anna Leibner1, Martin G
    www.nature.com/scientificreports OPEN Identifcation and quantifcation of macro- and microplastics on an agricultural farmland Received: 31 May 2018 Sarah Piehl 1, Anna Leibner1, Martin G. J. Löder 1, Rachid Dris 1, Christina Bogner 2 & Accepted: 8 November 2018 Christian Laforsch 1 Published: xx xx xxxx Microplastic contamination of aquatic ecosystems is a high priority research topic, whereas the issue on terrestrial ecosystems has been widely neglected. At the same time, terrestrial ecosystems under human infuence, such as agroecosystems, are likely to be contaminated by plastic debris. However, the extent of this contamination has not been determined at present. Via Fourier transform infrared (FTIR) analysis, we quantifed for the frst time the macro- and microplastic contamination on an agricultural farmland in southeast Germany. We found 206 macroplastic pieces per hectare and 0.34 ± 0.36 microplastic particles per kilogram dry weight of soil. In general, polyethylene was the most common polymer type, followed by polystyrene and polypropylene. Films and fragments were the dominating categories found for microplastics, whereas predominantly flms were found for macroplastics. Since we intentionally chose a study site where microplastic-containing fertilizers and agricultural plastic applications were never used, our fndings report on plastic contamination on a site which only receives conventional agricultural treatment. However, the contamination is probably higher in areas where agricultural plastic applications, like greenhouses, mulch, or silage flms, or plastic-containing fertilizers (sewage sludge, biowaste composts) are applied. Hence, further research on the extent of this contamination is needed with special regard to diferent cultivation practices. Plastic debris is ubiquitous in all ecosystems on earth1 and yet, only a fraction of this environmental issue is visi- ble.
    [Show full text]
  • Black Polypropylene Non-Woven Textile As Mulch in Organic Agriculture
    II 38 I BIOACADEMY 2009 BLACK POLYPROPYLENE NON-WOVEN TEXTILE AS MULCH IN ORGANIC AGRICULTURE DVORAK, P." HAMOUZ, K." KUCHTOvA, P." TOMAsEK, J. 1 & ERHARTOvA, 0,1 Key words: polypropylene black mulch, soil temperature, soil water potential, weed Abstract Black polypropylene textile was used in potatoes by organic agriculture and it had positive effect on soil temperature (in the depth of 100 mmJ. Slightly higher soil temperatures under black polypropylene mulch in the vegetation oeriod after planting had favourable influence on stands emergence. The water potential depth of250 and also ~vater content have been beneficial for black polypropylene mulch. Signihcantly IO'Ner values the water potentials have been found in the period after planting and at the ofvegetation. Black polyprooylene mulch provided favourable temperatures and soil moisture. Introduction Black polyethylene mulches are used for weed control in a range of crops under the organic system. The use of black polypropylene woven mulch is usually restricted to perennial crops. Various colours of woven and solid film plastics have been tested for weed control in the field (Horowitz, 1993). White and green covering had little effect on weeds, whereas brown, black, blue or white on black (double colour) films prevented weeds emerging (Bond and Grundy, 2001). There are additional environmental benefits if the mulch is made from recycled materials (Cooke, 1996). Aim of this research was found favourable growing procedure of the potatoes in organic agriculture. Foil or black mulches textile reduce weed biomass, increase soil temperature and soil water content but their application in praxis is exacting. Materials and methods The trial was conducted in year 2008 at Experimental station of Department of Crop Production of the Czech University of life Science Prague-Uhffneves.
    [Show full text]
  • Bio-Based and Biodegradable Plastics – Facts and Figures Focus on Food Packaging in the Netherlands
    Bio-based and biodegradable plastics – Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Rapport nr. 1722 Bio-based and biodegradable plastics - Facts and Figures Focus on food packaging in the Netherlands Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Report 1722 Colophon Title Bio-based and biodegradable plastics - Facts and Figures Author(s) Martien van den Oever, Karin Molenveld, Maarten van der Zee, Harriëtte Bos Number Wageningen Food & Biobased Research number 1722 ISBN-number 978-94-6343-121-7 DOI http://dx.doi.org/10.18174/408350 Date of publication April 2017 Version Concept Confidentiality No/yes+date of expiration OPD code OPD code Approved by Christiaan Bolck Review Intern Name reviewer Christaan Bolck Sponsor RVO.nl + Dutch Ministry of Economic Affairs Client RVO.nl + Dutch Ministry of Economic Affairs Wageningen Food & Biobased Research P.O. Box 17 NL-6700 AA Wageningen Tel: +31 (0)317 480 084 E-mail: [email protected] Internet: www.wur.nl/foodandbiobased-research © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research All rights reserved. No part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. The publisher does not accept any liability for inaccuracies in this report. 2 © Wageningen Food & Biobased Research, institute within the legal entity Stichting Wageningen Research Preface For over 25 years Wageningen Food & Biobased Research (WFBR) is involved in research and development of bio-based materials and products.
    [Show full text]
  • Commercial Vegetable Production with Plastic Mulches
    Commercial Vegetable Cooperative Extension Service College of Agriculture and Production With Home Economics Plastic Mulches Guide H-245 George W. Dickerson, Extension Horticulture Specialist This publication is scheduled to be updated and reissued 12/07. In New Mexico, growing vegetables commercially, yields. Black plastic mulch can accelerate crop whether for vegetable sheds or farmers’ markets, re- production as much as one to two weeks. Clear quires intensive management and marketing skills. plastic mulch has been shown to increase earli- Success involves properly managing scarce water ness as much as three weeks in northern cli- supplies, controlling weeds and other pests and sup- mates. Weed growth, however, can be a major plying a high-quality product when the price is high. problem under clear plastic unless appropriate High prices generally are associated with limited sup- herbicides or fumigants are used. Selecting the ply and high demand. crop type (vine crops like pumpkins, squash, melons) also is important in warmer areas of Mulches the state for good ground cover or shading in the summer to prevent excessive heat build up un- Mulching is an agricultural cropping technique that der the plastic. involves placing organic or synthetic materials on the • Reduced evaporation. Plastic mulches help re- soil around plants to provide a more favorable envi- duce evaporation of moisture from the soil. Irri- ronment for growth and production. Organic mulches gation frequency and amounts generally can be traditionally are used in backyard gardens and smaller reduced, although additional water may be truck gardening operations, since materials may be needed to support earlier and greater crop pro- limited and application techniques are labor intensive.
    [Show full text]
  • Water and Agriculture in Jordan: Understanding Current Water and Agricultural Priorities and Futures
    Water and Agriculture in Jordan: Understanding Current Water and Agricultural Priorities and Futures West Asia-North Africa Institute, August 2019 This project was led by the WANA Institute, funded by the Netherlands Enterprise Agency (RVO). This publication was developed in close collaboration with the University of Oxford, and reflects the views of the authors only, and not necessarily that of the Netherlands Enterprise Agency (RVO). PERMISSION TO REPRODUCE The information in this publication may not be reproduced, in part or in whole and by any means, without charge or further permission from the WANA Institute. For permission to reproduce the information in this publication, please contact the WANA Institute Communications Department at [email protected] Published by The WANA Institute, 70 Ahmad Al-Tarawneh St, Jubeiha, 11941, Amman, Jordan. Author: Dr. Majd Al Naber, Eng Reem Al Haddadin, and Dr. Michael Gilmont Cover image: The WANA Institute Printed in Amman, Jordan © 2019 WANA Institute. All rights reserved. Manufactured in Jordan 1. Table of Contents 1 Objective ................................................................................................................... 2 2 Background ............................................................................................................... 2 3 Findings ..................................................................................................................... 3 3.1 Literature Review ..........................................................................................................
    [Show full text]