Navarretia Fossalis (Spreading Navarretia)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolutionary Ecology of Pollination and Reproduction of Tropical Plants
TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. V - Evolutionary Ecology af Pollination and Reproduction of Tropical Plants - M. Quesada, F. Rosas, Y. Herrerias-Diego, R. Aguliar, J.A. Lobo and G. Sanchez-Montoya EVOLUTIONARY ECOLOGY OF POLLINATION AND REPRODUCTION OF TROPICAL PLANTS M. Quesada and F. Rosas Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Y. Herrerias-Diego Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, México. R. Aguilar IMBIV - UNC - CONICET, C.C. 495,(5000) Córdoba, Argentina J.A. Lobo Escuela de Biología, Universidad de Costa Rica G. Sanchez-Montoya Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, México. Keywords: Pollination, tropical plants, diversity, mating systems, gender, conservation. Contents 1. Introduction 1.1. The Life Cycle of Angiosperms 1.2. Overview of Angiosperm Diversity 2. Degree of specificity of pollination system 3. Diversity of pollination systems 3.1. Beetle Pollination (Cantharophily) 3.2. Lepidoptera 3.2.1. Butterfly Pollination (Psychophily) 3.2.2. Moth Pollination (Phalaenophily) 3.3. Hymenoptera 3.3.1. Bee PollinationUNESCO (Melittophily) – EOLSS 3.3.2. Wasps 3.4. Fly Pollination (Myophily and Sapromyophily) 3.5. Bird Pollination (Ornitophily) 3.6. Bat PollinationSAMPLE (Chiropterophily) CHAPTERS 3.7. Pollination by No-Flying Mammals 3.8. Wind Pollination (Anemophily) 3.9. Water Pollination (Hydrophily) 4. Reproductive systems of angiosperms 4.1. Strategies that Reduce Selfing and/or Promote Cross-Pollination. 4.2. Self Incompatibility Systems 4.2.1. Incidence of Self Incompatibility in Tropical Forest 4.3. The Evolution of Separated Sexes from Hermaphroditism 4.3.1. From Distyly to Dioecy ©Encyclopedia Of. Life Support Systems (EOLSS) TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. -
April 26, 2019
April 26, 2019 Theodore Payne Foundation’s Wild Flower Hotline is made possible by donations, memberships, and the generous support of S&S Seeds. Now is the time to really get out and hike the trails searching for late bloomers. It’s always good to call or check the location’s website if you can, and adjust your expectations accordingly before heading out. Please enjoy your outing, and please use your best flower viewing etiquette. Along Salt Creek near the southern entrance to Sequoia National Park, the wildflowers are abundant and showy. Masses of spring flowering common madia (Madia elegans) are covering sunny slopes and bird’s-eye gilia (Gilia tricolor) is abundant on flatlands. Good crops of owl’s clover (Castilleja sp.) are common in scattered colonies and along shadier trails, woodland star flower (Lithophragma sp.), Munz’s iris (Iris munzii), and the elegant naked broomrape (Orobanche uniflora) are blooming. There is an abundance of Chinese houses (Collinsia heterophylla) and foothill sunburst (Pseudobahia heermanii). This is a banner year for the local geophytes. Mountain pretty face (Tritelia ixiodes ssp. anilina) and Ithuriel’s spear (Triteliea laxa) are abundant. With the warming temperatures farewell to spring (Clarkia cylindrical subsp. clavicarpa) is starting to show up with their lovely bright purple pink floral display and is particularly noticeable along highway 198. Naked broom rape (Orobanche uniflora), foothill sunburst (Pseudobahia heermanii). Photos by Michael Wall © Theodore Payne Foundation for Wild Flowers & Native Plants, Inc. No reproduction of any kind without written permission. The trails in Pinnacles National Park have their own personality reflecting the unusual blooms found along them. -
Polemoniaceae
Varied-leaf COLLOMIA annual • 2–12" Polemoniaceae ~ Phlox Family open woods, meadows, roadsides Collòmia heterophýlla The phlox family is composed of annuals and perennials whose radially symmetric flowers have a middle: June 5-lobed calyx and corolla, 5 stamens attached to the corolla, and a 3-parted style that develops As the name indicates, varied-leaf collomia has leaves that vary from entire . While some of our species are quite showy, many are so-called “belly plants”—tiny into a capsule or nearly so at the tips of the stems, to deeply pinnately lobed toward the easy-to-miss annuals. The are attractive to many pollinators. There has been much tubular flowers base of the plant. Both leaves and stems are covered with soft white hairs confusion about the classification of species within this family and many of the species have been that can feel quite slimy. Clusters of sessile, narrow-tubed, pink-lobed flowers moved between various genera several times. are nestled among the upper leaves. This small annual is common at low to middle elevations west of the Cascade LARge-flOWERED COLLOMIA annual • 4–36" (10–90 cm) crest from Vancouver Island to California and also occurs in Idaho. Tire and dry meadows Collòmia grandiflòra Heckletooth mountains, Illahee Rock, Mt. June and Abbott Butte are a few plac- middle: July es where it can be seen. Peach is an uncommon color for a flower and makes this pretty annual distinctive, although it can be paler, almost to white. The long tubu- lar flowers are sessile and sit in tight clusters subtended by leafy bracts. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Jacob's-Ladder
Jacob’s-ladder (Polemonium vanbruntiae) Phlox Family (Polemoniaceae) Pennsylvania Endangered Plant Species State Rank: S1 (critically imperiled) Global Rank: G3 (vulnerable) SIGNIFICANCE The Jacob’s-ladder has been given a status of Endangered on the Plants of Special Concern in Pennsylvania list by the Pennsylvania Biological Survey and the Department of Conservation and Natural Resources, based on the relatively few populations that have been documented in the state. It is considered a globally rare species by the Natural Heritage Program. DESCRIPTION The Jacob’s-ladder is a perennial herb to three feet in height. The leaves are alternately arranged and divided into numerous leaflets with entire margins. The individual flowers, appearing in late June and early July, have blue petals and protruding stamens and style. The fruit is a many-seeded capsule. A more common and widespread species, Polemonium reptans, is similar but is smaller in size, has the stamens and style not protruding from the flower, has more of a woodland habitat, and blooms in spring. North American State/Province Conservation Status Map by NatureServe (August 2007) State/Province Status Ranks SX – presumed extirpated SH – possibly extirpated S1 – critically imperiled S2 – imperiled S3 – vulnerable S4 – apparently secure S5 – secure Not ranked/under review HABITAT The species grows in wet soil in woods, thickets and openings. RANGE The Jacob’s-ladder is found in northeastern North America from southern Canada to West Virginia. It is known historically from several widely scattered occurrences in Pennsylvania, although all of the currently known populations are in the northeastern part of the state. REFERENCES . -
Nomenclature of the Main Subdivisions of Phlox (Polemoniaceae)
NUMBER 4 GRANT: PHLOX NOMENCLATURE 25 NOMENCLATURE OF THE MAIN SUBDIVISIONS OF PHLOX (POLEMONIACEAE) Verne Grant Section of Integrative Biology and Plant Resources Center, The University of Texas, Austin, Texas 78712 Abstract: The task of finding the correct names for the main subdivisions of Phlox has been beset with difficulties in interpreting the intent of older authors, particularly Asa Gray. Gray divided Phlox into four main subgroups, some of which have been considered sections, but these are now seen to be only informal groups. Currently Phlox is subdivided into three sections: Phlox, Divaricatae Peter, and Occidentales A. Gray. The name Occidentales A. Gray was not validly published as a section; Gray used it only as part of a heading. The oldest valid name for what has been called sect. Occidentales is sect. Pulvinatae Peter. Recent papers have used the name sect. Annuae A. Gray in place of sect. Divaricatae, on grounds of priority. However, the name that Gray actually used was Annuae, Texenses, and it, like Occidentales, was not validly published. The sections of Phlox are being reconsidered at present in the light of new molecular evidence. Some changes will be needed, but old valid infra generic names will still have a role to play in new infrageneric classifications. Keywords: Phlox, nomenclature, Asa Gray. The genus Phlox has had a history of terms subgenus and section in the nine problems with the nomenclature of the teenth century. Some authors used the cat main infrageneric subgroups. Gray (1870, egory subgenus, others the category section, 1878, 1886) did not make it clear in his still others used both, or neither. -
Evaluating the Future Role of the University of California Natural Reserve System for Sensitive Plant Protection Under Climate Change
Evaluating the Future Role of the University of California Natural Reserve System for Sensitive Plant Protection under Climate Change ERIN C. RIORDAN* AND PHILIP W. RUNDEL DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90095 USA *EMAIL FOR CORRESPONDENCE: [email protected] WINTER 2019 PREPARED FOR THE UNIVERSITY OF CALIFORNIA NATURAL RESERVE SYSTEM Executive Summary Description Protected areas are critical for conserving California’s many sensitive plant species but their future role is uncertain under climate change. Climate-driven species losses and redistributions could dramatically affect the relevance of protected areas for biodiversity conservation this century. Focusing on the University of California Natural Reserve System (NRS), we predicted the future impact of climate change on reserve effectiveness with respect to sensitive plant protection. First, we evaluated the historical representation of sensitive plant species in the NRS reserve network by compiling species accounts from checklists, floras, and spatial queries of occurrence databases. Next, we calculated projected climate change exposure across the NRS reserve network for the end of the 21st century (2070–2099) relative to baseline (1971–2000) conditions under five future climate scenarios. We then predicted statewide changes in suitable habitat for 180 sensitive plant taxa using the same future climate scenarios in a species distribution modeling approach. Finally, from these predictions we evaluated suitable habitat retention at three spatial scales: individual NRS reserves (focal reserves), the NRS reserve network, and the surrounding mosaic of protected open space. Six reserves—Sagehen Creek Field Station, McLaughlin Natural Reserve, Jepson Prairie Reserve, Landels-Hill Big Creek Reserve, Sedgwick Reserve, and Boyd Deep Canyon Desert Research Center—were selected as focal reserves for analyses. -
Palouse Forbs for Landscaping
More Palouse Forbs for Landscaping. by David M. Skinner, Paul Warnick, Bill French, and Mary Fauci November, 2005 The following is an additional list of native forbs which may be found in the Palouse region. These forbs may be less suitable for the landscape because of growth habit, aggressiveness, difficulty in propagating and growing, rarity, or it simply may be that we haven’t yet tried to do anything with them. For a list of Palouse forbs which may be more suitable for landscaping and about which we have more information to share, please see “Characteristics and Uses of Native Palouse Forbs in Landscaping.” Nomenclature used in this document also follows Hitchcock, C. Leo, and Arthur Cronquist. 1973. Flora of the Pacific Northwest. Univ. of Washington Press. Seattle, WA. In order to facilitate searching for a particular species, we have included some common names and alternate scientific names, but this is by no means intended to be a comprehensive source of common names or synonyms. Detailed information on propagation of many native species can be found at <http://nativeplants.for.uidaho.edu/network/search.asp?SearchType=Continental> Agastache urticifolia is probably too large a plant for a small garden. Requires a moist site. Easy to grow from seed. Plants have a minty smell and a very interesting flower. Common names include nettle-leafed giant hyssop, horsemint. Agoseris grandiflora is not a particularly attractive plant, it looks rather like a weed. Short-lived and attracts rodents, which eat the taproot and kill the plants. Easy to grow from seed, which is wind-borne and goes everywhere. -
Leptosiphon Bolanderi (A
Leptosiphon bolanderi (A. Gray) J.M. Porter & L.A. Johnson synonym: Linanthus bakeri H. Mason, Linanthus bolanderi (A. Gray) Greene Baker's linanthus Polemoniaceae - phlox family status: State Sensitive, BLM sensitive, USFS sensitive rank: G4G5 / S2 General Description: Slender annual up to 25 cm tall. Inconspicuously hairy; glandular on the pedicels and sometimes beneath the nodes. Leaves opposite, sessile, less than 1 cm long, palmately cleft, with 3-7 linear segments. Floral Characteristics: Flower pedicels slender, elongate, with stalked glands. C alyx 3.5-5 mm long, sepals fused into a tube, the tube longer than the teeth; herbaceous ribs somewhat 3-nerved, wider than the connecting membranous portions. C orolla white to pink or violet, sometimes bicolored; petals fused into a slender tube distinctly protruding from the calyx, with an internal ring of hairs near or below the middle. C orolla lobes 5, usually about half as long as the tube. Stamens Illustration by Jeanne R. Janish, 5; filaments only 1-2 times as long as the anthers, attached to the ©1959 University of Washington Press corolla at or just below the recess between the lobes. Flowers A pril to M ay. Fruits: Multichambered capsules with several seeds per compartment. Identif ication Tips: Leptos iphon s eptentrionalis * and L. liniflorus * are distinguished by their corolla lobes, which are about equal to or more often distinctly longer than the corolla tube, and their filaments, which are several times as long as the anthers. Leptos iphon harknes s ii* is distinguished by its shorter corolla (1.5-2.5 mm long, less than 1.5 times as long as the calyx). -
Chromosome Numbers in the Polemoniaceae Representatives Of
1937 171 Chromosome Numbers in the Polemoniaceae By Walter S. Flory Division of Horticulture, Texas Agricultural Experiment Station This family is divided by systematists into two subfamilies. Cobaeoideae is composed of the genera Cantua, Huthia, and Cobaea which are tall shrubs, trees, or vines. The approximately fourteen other (herbaceous or low shrubby) genera comprise the subfamily Polemonioideae. From the standpoint of number of included species the most important of these latter genera are Gilia, Phlox, Polemo nium, and Collomia. The genera Phlox and Polemonium are each quite distinct and their species are seldom confused with those of other genera, but the remaining twelve genera of this subfamily apparently do not have taxonomic boundaries of equivalent distinctness. Certain species have been placed in one genus by one author, and in one or more different genera by others. The genus Gilia has been ex tended by some writers to include practically all species of the Polemonioideae outside of the genera Phlox and Polemonium. This was first pointed out to me by Professor Edgar T. Wherry who is making a taxonomic and geographic study of the Polemoniaceae, and was increasingly emphasized as literature sources and herbarium specimens were consulted and examined. It has been the purpose of the work herein presented to secure data on all obtainable polemoniaceous species with respect to chro mosome numbers, size, and general morphology. Especial attention has been given to securing information of significance from a taxono mic standpoint. Since several factors combine to make the immedi ate completion of the original program impossible it seems desirable, meanwhile, to present the accumulated data, together with suggested conclusions. -
Navarretia Tagetina Greene Marigold Navarretia Polemoniaceae - Phlox Family Status: State Threatened, BLM Sensitive, USFS Sensitive Rank: G5 / S1
Navarretia tagetina Greene marigold navarretia Polemoniaceae - phlox family status: State Threatened, BLM sensitive, USFS sensitive rank: G5 / S1 General Description: Prickly annual herb, up to 2.5 dm tall; stems unbranched or branched, minutely hairy below, with soft, longer hairs among the flower clusters. Leaves mostly alternate, up to 3 cm long, firm, pinnately to bipinnately dissected into narrow, spine-tipped segments, with the terminal segments generally elongate. Floral Characteristics: Flowers in dense clusters terminating the main stem and branches; subtended by prickly, pinnately dissected bracts. C alyx 7-8 mm, fused into a tube, membranous between the ribs, hairy; lobes very strongly unequal, the larger ones toothed and spiny. C orolla light blue to pale lavender or white, tubular, 8-11 mm long, with 5 spreading lobes 2-2.5 mm long. Petal vein splits into 3 well down inside the corolla tube, so that 3 veins enter each corolla lobe. Stigmas 3. Stamens 5, attached to upper throat of corolla; filaments much longer than the anthers, 1.5-2 mm. Blooms May to June. Illustration by John H. Rumely, Fruits: Translucent capsules, adhering to seeds until wet. Seeds ©1955 University of Washington Press mucilaginous when wet. Identif ication Tips: Distinguished from other species of Navarretia by the following characters: petal veins 3 below the middle of the corolla tube, corolla color and size, stigmas 3, filaments much longer than the anthers, terminal segments of the leaves elongate, and bracts below inflorescences distinctly pinnately lobed rather than palmately lobed. Range: WA south to CA. Habitat/Ecology: O pen rocky places, scablands, vernal pools, grasslands and stony washes; with standing water or saturated soil in early spring, becoming completely dry in summer.