<<

A Nuclear and Chloroplast Phylogeny of (Acer L.) and their close relatives (Hippocastanodeae, ) Emma Frawley1,2, AJ Harris2, Jun Wen2 1 Department of Environmental Studies, Bucknell University

2 Department of Botany, National Museum of Natural History

INTRODUCTION: RESULTS AND DISCUSSION:

Section Key: Acer carpini olium Acer elegantulum A. Map Key: -/97Acer elegantulum B. subsp. grandidentatum Acer pubipalmatum The primary goal of this study is to reconstruct a molecular phylogeny of the woody Palmata Acer elegantulum Acer pubipalmatum Acer hycranum Western Acer wuyangense Handeliodendron (Rehder) Acer wuyangense Handeliodendron Acer psuedosieboldianum Macrantha 99/100 Acer psuedosieboldianum trees and in Acer (L.), (Oliv.), the two members of the Acereae tribe, Acer miyabei subsp. miaotaiense 99 Acer oliverianum Rehder Platanoidea Acer saccharum subsp. floridatum Eastern North America Acer sp. - AJ Harris Acer subsp. - US National Acer sp. - Hybrid and (L.), (Peyr.), and Handeliodendron (Rehder) of the Hippocastaneae Acer Acer diabolicum Acer sieboldianum Acer tataricum subsp. ginnala Acer sp. - Tibet Acer sp. - Tibet Lithocarpa Acer tschonskii Acer sp. - Tibet Aesculus (L.) Acer pycnanthum Acer sp. - Tibet tribe. These five taxa make up the subfamily in the family 98/100 Billia Peyr. Acer sacharinum Acer davidiiAcer davidii Ginnala 98 Acer davidii Acer rubrum Acer davidii Sapindaceae. Acereae is especially interesting as it is a large, well-known, and Acer saccharum subsp. floridatum Acer crataegifolium Section Kevin Nixon Negundo 99/100Acer crataegifolium 99 Acer tegmen osum Acer tegmen osum Trifoliata Acer triflorum 89/100 Acer miyabei subsp. miaotainse horticulturally important tribe that differs from its close relatives morphologically (Fig. 89 Acer miyabei subsp. miaotainse Billia (Peyr.) Acer sp. - US National Arboretum Acer sp. - US National Arboretum Aesculus L. Paviflora Acer tataricum subsp. semenovii Acer pseudoplatanus Acer pseudoplatanus 1) and in richness. No phylogeny using low-copy nuclear genes in Acereae has Acer macrophyllum Monspessulana Acer sp. Acer macrophyllum Acer saccharum subsp. floridatum Acer davidii Acer saccharum floridatum Kevin Nixon Rubra Acer glabrum Acer pensylvanicum been previously published. Our study is the first to explore low-copy nuclear genes to 93/100 Acer pensylvanicum Acer sachharum subsp. sku chii Indivisa Acer sp. - Tibet Acer sachharum sp. sku chii test the monophyly of polytypic taxonomic sections of Acereae. This work is AcerAcer (L.) L. Acer caesium subsp. gira di Acer monspessulanumAcer monspessulanum Glabra Acer sterculiaceum subsp. franchett 77/99Acer sterculiaceumAcer sterculiaceum subsp. franchetii subsp. franchetii Acer sterculiaceum subsp. franchetii 77 Acer sterculiaceum subsp. franchetii Acer sterculiaceum subsp. franchetii complementary to published phylogenies of Acereae using the nuclear ribosomal Acer davidii Acer diabolcium Kevin Nixon Acer davidii Acer diabolcium Acer tschonskii Acer cratagaegifolium Acer tschonskii Acer mono pessalanum 94/99 Acer t Internal Transcribed Spacer (ITS) and several chloroplast genes (Grimm, 2006, Renner, 94 Acer t DipteDipteronia (Oliv.) ronia Oliv. Acer macrophyllum Acer tataricum subsp. semenovii Acer tataricum subsp. semenovii Acer sp. - Tibet Acer campestre Acer sp. - Tibet 93/100Acer campestre 2008). These prior studies show that some traditionally recognized sections of 93 Acer plantanoides Acer sp. - Tibet 83/- Acer plantanoides Acer cissifolium 83 Acer cissifolium Tropicos 94/100Acer cissifolium subsp. takesimense 94 Acereae are monophyletic while others are not, and there are multiple geographically Acer sp. - Hybrid Acer henryi Acer maximowiczianum Acer wuyangense Acer maximowiczianum 80/99 Acer triflorum Acer nipponicum 80 Acer triflorum disjunct sections. Acer sieboldianum Acer griseum Figure 1. Phylogeny of Hippocastanodeae Acer griseum Acer oliveriana Acer caesium susbsp. gira di Dipteronia sinensis Acer caesium susbsp. gira di taxa showing morphological differences. Acer nipponicum Acer nipponicum Acer negundo Acer hycranum Acer hycranum Acer saccharum subsp. floridatum Acer saccharum subsp. floridatum 74/99Acer saccharum subsp. floridatum OBJECTIVES: -/100 79/10074 Acer pycnanthu Acer pycnanthu -/94 79 Acer rubrum Acer pubipalmatum Acer rubrum Acer cappadocicum subsp. sinicum Acer sp. - Tibet -/100 -/100 Acer sp. - Tibet Hippocastaneae Acer carpini olium To test the monophyly of the taxonomic sections of Acer. Acer carpini olium sp sculu glab speciosa sculu glab Keureulteria bipinnata Sapindus sp. To assess geographic disjunctions and endemism within clades of Acer. Sapindus sp. Figure 2: Phylogenetic trees. Numbers are support from Parsimony and Bayesian analysis in the form of Bootstrap/Posterior Probability values. (A) Nuclear phylogeny METHODS: using AT103 and SQD1 data. (B) Chloroplast phylogeny using psbM data. Colored-circles correspond to colored areas of endemism in Figure 3.

Sampled to represent geographic, Monophyly of Acereae sections compared among previous and Monophyly of sections of Acer: morphological, and taxonomic diversity current studies. Monophyly represented via *. • SectionsPalmata , Trifoliata, and Rubra were of Acer. Chloroplast monophyletic. Sections DNA Nuclear DNA • SectionsMacrantha , Lithocarpa, Ginnala, and Negundo formed clades in our chloroplast phylogeny and in Renner (2008) Our study Grimm (2006) Our study previous studies (Table 1). Palm. *12 *6 *13 *8 • SectionPlatanoidea was not monophyletic in either Macr. *7 6 12 5 data set, contrary to previous studies. Emma collecting. Reference text. Plat. *6 3 *12 4 Acer 8 6 16 7 • SectionAcer was paraphyletic, and this result is

Obtained DNA sequences of Lith. *2 *4 1 4 consistent with prior studies. Ginn. *2 *2 2 2 nuclear DNA (SQD1, AT103) and Neg. 3 *2 2 3 chloroplast DNA (psbM) using standard Trif. *7 *3 *6 *4 Geographic disjunctions and endemism: PCR and Sanger sequencing methods. Parv. N/A 1 N/A 1 • Our chloroplast data was more geographically Mons. N/A 1 N/A 1 centered and had fewer disjunct clades than our Rubr. *4 *2 *3 *3 Indiv. N/A 1 1 1 nuclear data. Glab. N/A 1 N/A 1 • Both data sets showed large, endemic Asian clades (Fig. 2). psbM alignment. SQD1 alignment. Figure 3: The map shows the continental Table 1. The number in each cell refers to the number of species sampled for that areas of endemism of species of Acereae. section.. Starred (*) cells were monophyletic in that study. Unstarred cells were not Colors of areas of endemism correspond to found to be monophyletic. colored circles in Figure 2. Performed phylogenetic reconstruction. FUTURE WORK: REFERENCES:

Grimm, Guido W., Susanne S. Renner, and Alexandros Ultimately we will utilize this phylogenetic framework of Hippocastanoideae to: Stamatakis. Evolutionary Bioinformatics Online 2 1. Evaluate the evolution of functional traits, such as specific area and weight, in the (2006): 7-22. Web. June 2016. Renner, SS, GW Grimm, GM Schneeweiss, TF Stuessy, and RE Rickleffs. subfamily (Fig. 4). Programs used for phylogenetic work. ACKNOWLEGEMENTS: Systematic Biology 57.5 (2008): 795-808. PubMed. 2. Better understand the disparity in species richness among genera in the subfamily through Web. June 2016. Mui’Kee Feng I would like to thank Sefan Lura and Alan Whittemore at the US National Arboretum, Chris Martine at Bucknell University, Photo Credits. Fig 1: Kevin Nixon at analysis of evolutionary rates across the . Stephanie Ickert-Bond and Kimberly Latter who sent us samples, Virginia Power, Liz Cottrell, and Gene Hunt at the Museum PlantSystematics.org, Tropicos.org, Fig. 4: Jieyao Feng, Figure 4. Acer samaras of Natural History for their support of the NHRE Interns, Gabe Johnson for lab assistance, and the National Science Darien Florez, and background image from 3. Evaluate biogeography in the subfamily, specifically concentrating on continental disjunctions Foundation (NSF) 2016 Research Experience for Undergraduate for their funding of this program. ItsNature.org. (historical biogeography) and colonization success (ecology). being measured for specific leaf area.