<<

physics with the KASCADE-Grande observatory

Juan Carlos Arteaga-Velázquez* for the KASCADE-Grande Collaboration *Universidad Michoacana, México

Overview 1) Introduction 2) The KASCADE experiment 3) The KASCADE-Grande detector 4) Recent results 5) Summary

1/23 Introduction

Acceleration/propagation? What is the origin of the knee?

What is the source?

Data

-Spectrum -Composition Composition? -Arrival direction Galactic-extragalactic transition?

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 2 Introduction

EAS components Energy > 1015 eV Indirect detection

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 3 The KASCADE-Grande experiment

December 2003 - November 2012

1. Location: KIT-Campus North, Karlsruhe,

Karlsruhe, Germany 110 m a.s.l., 49o N, 8o E

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 4 The KASCADE experiment E= 100 TeV - 80 PeV Karlsruhe Shower Core and Array Detector

Ground array (200 x 200 m2)

252 scintillator detectors

13 m 2/23 The KASCADE experiment E= 100 TeV - 80 PeV Karlsruhe Shower Core and Array Detector Ground array

Scintillator detectors

e/γ detector liquid scintillator

µ detector • Ne (> 5 MeV) and T. Antoni, et al., NIMA 513 plastic scint. Pb/Fe shielding Ntrµ (> 230 MeV, r = 40 - 200 m) (2003) 490

2/23 KASCADE: Unfolding elemental spectra

Problem: To find E and A for primary KASCADE data tr θ < 18o CR’s from Ne and N µ.

tr tr n(lgNe, lgN µ) = ΣA⎰PA(lgNe, lgN µ⎟ E) fA(E)dE E A Flux

CORSIKA

EAS fluctuations Efficiency Reconstruction uncertainties

M. Finger PhD Thesis, KIT, (2011) KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 6 KASCADE: Unfolding elemental spectra

- Unfolding methods capable of reconstructing all-particle and elemental spectra

KASCADE Coll., Astrop. Phys. 24 (2005) 1, Astrop. Phys. 47 (2013) 54

- Confirmation of the Knee feature at around 4-5 PeV

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 7 KASCADE: Unfolding elemental spectra

- Knee due to a break in the spectrum of light components

QGSJet-II-02

KASCADE Coll., Astrop. Phys. 24 (2005) 1, Astrop. Phys. 47 (2013) 54

- Result is independent of the high-energy hadronic interaction model - Relative abundances are model dependent

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 8 KASCADE: rigidity dependence of individual knees?

A. Haungs, ISVHECRI 2016, Moscow

Medium Heavy

Light 17 EkneeFe = Z x EkneeH ~ 10 eV?

?

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 9 The KASCADE-Grande detector E= 1 PeV - 1018 eV A = 0.5 km2

Grande array KASCADE array

137 m

37 plastic scintillator detectors

W.D. Apel et al., NIMA 620 (2010) 490

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 10 The KASCADE-Grande detector E= 1 PeV - 1018 eV

LOPES antennas

•Radio (43-73 MHz) Grande array KASCADE array

Scintillator detectors

Piccolo array •Charged particles

• Charged particles (> 3 MeV)

H. Falcke et al., Nature 435 (2005) 313 W.D. Apel et al., NIMA 620 (2010) 490

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 10 The KASCADE-Grande detector E= 1 PeV - 1018 eV

1. Grande provides 2. KASCADE provides Nch: Number of charged particles Nµ : Number of

KASCADE-Grande - J.C. Arteaga 11 The KASCADE-Grande detector E= 1 PeV - 1018 eV

1. Grande provides 2. KASCADE provides Nch: Number of charged particles Nµ : Number of muons

Fit to data: NKG ρch(r) = Nch ⋅ fch (s, r)

Fit to data: Lagutin ρµ(r) = Nµ ⋅ fµ (r)

KASCADE-Grande - J.C. Arteaga 11 KASCADE-Grande: all-particle spectrum

Energy calibration with MC simulations

log10 E = a(k)⋅log10 Nch + b(k)

where: ______log10 (Nch/Nµ) - log10 (Nch/Nµ)H k(Nch, Nµ) = log10 (Nch/Nµ)Fe - log10 (Nch/Nµ)H

with: k = 0 (H) k = 1 (Fe)

QGSJet-II-02 QGSJet-II-02

log10 (Nch/Nµ)H

log10 (Nch/Nµ)Fe

W.D. Apel et al., Astrop. Phys. log10 E = a(k)⋅log10 Nch + b(k) 36 (2012) 183

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 12 KASCADE-Grande: all-particle spectrum

- Spectrum does not follow a simple power-law

W.D. Apel et al., Astrop. Phys. 36 (2012) 183

LHC(pp)

Corrected for migration effects

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 13 KASCADE-Grande: all-particle spectrum

- Observation of two new structures

γ ~ -3.1

γ ~ -2.9 W.D. Apel et al., Astrop. Phys. 36 (2012) 183 Knee F(E) = E- γ γ ~ -3.4 Hardening: 1016 eV New knee: 1017 eV

LHC(pp)

Corrected for migration effects

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 13 KASCADE-Grande: light/heavy mass groups

- Separation into a light and a heavy components

QGSJet-II-02

No correction for migration effects

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 14 KASCADE-Grande: light/heavy mass groups

Heavy Knee: 8 x 1016 eV Light Ankle: 1017 eV

Heavy QGSJet-II-02 Heavy

Light

Light

No correction for migration effects

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 14 KASCADE-Grande: Unfolding elemental spectra

KASCADE-Grande data QGSJet-II-02 θ < 18o

- Separation into three different mass groups.

- Iron Knee ~ 80 PeV In agreement with a Z dependence of the knees. D. Fuhrmann et al., Astrop. Phys. 47 (2013) 54

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 15 - KASCADE-Grande has terminated data acquisiton - Collaboration still continues detailed data analysis

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 16 KASCADE-Grande: Gamma ray searches

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 17 KASCADE-Grande: Gamma ray searches

- Limits on the ratio of diffuse gamma-ray flux to cosmic ray flux

ICRC2015 #811

MC cut

D. Kang et al., PoS(ICRC2015) 810; Paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 17 KASCADE-Grande: Gamma ray searches

- Limits on the diffuse gamma-ray flux

Constrain origin of ICECUBE neutrinos.

Reject model of ICECUBE excess

coming from < 20 kpc in the galaxy. Ahlers & Murase, arxiv 1309.4077

20 kpc

30 kpc

Sun

D. Kang et al., PoS(ICRC2015) 810; Paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 18 KASCADE and KASCADE-Grande mass group spectra - Based on different EAS reconstruction procedures

He+C+Si Fe H

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 19 Combined KASCADE- -Grande analysis

- Use data from both arrays in the same EAS reconstruction procedure.

- Advantages: • Eliminates systematic differences due to distinct reconstruction procedures.

• Increases effective area

θ < 30o • Improves accuracy.

• Provides spectra and composition over the combined energy range.

Sven Schoo et al., paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 20 Combined KASCADE-Grande analysis: all-particle spectrum

- Result extended over three energy decades - Shape is retained

Not corrected for uncertainties Sven Scho et al., o PoS(ICRC2015) 263; paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 21 Combined KASCADE-Grande analysis: all-particle spectrum

- Result extended over three energy decades

- Shape is retained - Post-LHC models: Lower flux at LE’s

Not corrected for uncertainties Sven Scho et al., o PoS(ICRC2015) 263; paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 21 Combined KASCADE-Grande analysis: mass group spectra

- Result extended over three energy decades - Main structures are still observed

Light

Heavy

Not corrected for uncertainties

Sven Scho et al., o PoS(ICRC2015) 263; paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 21 Combined KASCADE-Grande analysis: mass group spectra Post-LHC models Events located in KASCADE

- Main structures confirmed

- Relative abundances are model dependent

Sven Schoo et al., paper in progess

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 22 Test of models: radial dependence Events located in KASCADE vs events in Grande

QGSJet-II-04 Heavy KASCADE Heavy K-Grande

Light KASCADE Light K-Grande

Sven Schoo et al., paper in progess

- Respective spectra show strong differences

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 23 Test of models: radial dependence Events located in KASCADE vs events in Grande

HE KASCADE event HE Grande event Standard NKG fit Standard NKG fit Steeper LDF Steeper LDF

Slope of LDF used Muon detectors cover in standard EAS fit is a limited portion of fixed and too flat. EAS front.

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 24 Test of models: radial dependence Events located in KASCADE vs events in Grande

HE KASCADE event HE Grande event Standard NKG fit Standard NKG fit Steeper LDF Steeper LDF

If core within KASCADE → too many If core within Grande → too few muons muons

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 24 Test of models: radial dependence

Sven Schoo et al., paper in progess

Cross checks using Constant At high energies Nμ corresponding Intensity Cuts to the same intensity drops with radial distance.

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 25 Test of models: zenith angle dependence

J.C. Arteaga-Velázquez Nµ attenuation length: Nµ = Nµ,o exp[-Xo sec(θ)/Λµ ] et al., paper in progess

Less attenuation in experimental data than in MC - Problems with predicted Energy spectra of muons?

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 26 All-particle energy spectrum from S(500)

S(500) = ρch(r = 500 m) is independent Sensitive to primary energy of mass of primary particle

G. Toma et al., Astrop. Phys. 77 (2016) 21

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 27 All-particle energy spectrum from S(500)

S(500) = ρch(r = 500 m) is independent Sensitive to primary energy of mass of primary particle

G. Toma et al., Astrop. Phys. 77 (2016) 21 Shift in energy

- Bad description of LDF in simulations

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 27 KASCADE Cosmic Ray Data Center

A. Haungs et al., J. of Phys. Conf. S. 632 (2015) 012011

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 28 Summary Limits on the diffuse flux of VHE γ rays have been established.

All-particle, light and heavy spectra were obtained for 3 energy decades.

Combined analysis confirms structures of spectra.

Post-LHC models do not describe the measured data.

Some problems might be due to predicted muons.

KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 29 Thank you!