Cosmic Ray Physics with the KASCADE-Grande Observatory
Total Page:16
File Type:pdf, Size:1020Kb
Cosmic ray physics with the KASCADE-Grande observatory Juan Carlos Arteaga-Velázquez* for the KASCADE-Grande Collaboration *Universidad Michoacana, México Overview 1) Introduction 2) The KASCADE experiment 3) The KASCADE-Grande detector 4) Recent results 5) Summary 1/23 Introduction Acceleration/propagation? What is the origin of the knee? What is the source? Data -Spectrum -Composition Composition? -Arrival direction Galactic-extragalactic transition? KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 2 Introduction EAS components Energy > 1015 eV Indirect detection KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 3 The KASCADE-Grande experiment December 2003 - November 2012 1. Location: KIT-Campus North, Karlsruhe, Germany Karlsruhe, Germany 110 m a.s.l., 49o N, 8o E KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 4 The KASCADE experiment E= 100 TeV - 80 PeV Karlsruhe Shower Core and Array Detector Ground array (200 x 200 m2) 252 scintillator detectors 13 m 2/23 The KASCADE experiment E= 100 TeV - 80 PeV Karlsruhe Shower Core and Array Detector Ground array Scintillator detectors e/γ detector liquid scintillator µ detector • Ne (> 5 MeV) and T. Antoni, et al., NIMA 513 plastic scint. Pb/Fe shielding Ntrµ (> 230 MeV, r = 40 - 200 m) (2003) 490 2/23 KASCADE: Unfolding elemental spectra Problem: To find E and A for primary KASCADE data tr θ < 18o CR’s from Ne and N µ. tr tr n(lgNe, lgN µ) = ΣA⎰PA(lgNe, lgN µ⎟ E) fA(E)dE E A Flux CORSIKA EAS fluctuations Efficiency Reconstruction uncertainties M. Finger PhD Thesis, KIT, (2011) KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 6 KASCADE: Unfolding elemental spectra - Unfolding methods capable of reconstructing all-particle and elemental spectra KASCADE Coll., Astrop. Phys. 24 (2005) 1, Astrop. Phys. 47 (2013) 54 - Confirmation of the Knee feature at around 4-5 PeV KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 7 KASCADE: Unfolding elemental spectra - Knee due to a break in the spectrum of light components QGSJet-II-02 KASCADE Coll., Astrop. Phys. 24 (2005) 1, Astrop. Phys. 47 (2013) 54 - Result is independent of the high-energy hadronic interaction model - Relative abundances are model dependent KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 8 KASCADE: rigidity dependence of individual knees? A. Haungs, ISVHECRI 2016, Moscow Medium Heavy Light 17 EkneeFe = Z x EkneeH ~ 10 eV? ? KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 9 The KASCADE-Grande detector E= 1 PeV - 1018 eV A = 0.5 km2 Grande array KASCADE array 137 m 37 plastic scintillator detectors W.D. Apel et al., NIMA 620 (2010) 490 KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 10 The KASCADE-Grande detector E= 1 PeV - 1018 eV LOPES antennas •Radio (43-73 MHz) Grande array KASCADE array Scintillator detectors Piccolo array •Charged particles • Charged particles (> 3 MeV) H. Falcke et al., Nature 435 (2005) 313 W.D. Apel et al., NIMA 620 (2010) 490 KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 10 The KASCADE-Grande detector E= 1 PeV - 1018 eV 1. Grande provides 2. KASCADE provides Nch: Number of charged particles Nµ : Number of muons KASCADE-Grande - J.C. Arteaga 11 The KASCADE-Grande detector E= 1 PeV - 1018 eV 1. Grande provides 2. KASCADE provides Nch: Number of charged particles Nµ : Number of muons Fit to data: NKG ρch(r) = Nch ⋅ fch (s, r) Fit to data: Lagutin ρµ(r) = Nµ ⋅ fµ (r) KASCADE-Grande - J.C. Arteaga 11 KASCADE-Grande: all-particle spectrum Energy calibration with MC simulations log10 E = a(k)⋅log10 Nch + b(k) where: ___________________________log10 (Nch/Nµ) - log10 (Nch/Nµ)H k(Nch, Nµ) = log10 (Nch/Nµ)Fe - log10 (Nch/Nµ)H with: k = 0 (H) k = 1 (Fe) QGSJet-II-02 QGSJet-II-02 log10 (Nch/Nµ)H log10 (Nch/Nµ)Fe W.D. Apel et al., Astrop. Phys. log10 E = a(k)⋅log10 Nch + b(k) 36 (2012) 183 KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 12 KASCADE-Grande: all-particle spectrum - Spectrum does not follow a simple power-law W.D. Apel et al., Astrop. Phys. 36 (2012) 183 LHC(pp) Corrected for migration effects KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 13 KASCADE-Grande: all-particle spectrum - Observation of two new structures γ ~ -3.1 γ ~ -2.9 W.D. Apel et al., Astrop. Phys. 36 (2012) 183 Knee F(E) = E- γ γ ~ -3.4 Hardening: 1016 eV New knee: 1017 eV LHC(pp) Corrected for migration effects KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 13 KASCADE-Grande: light/heavy mass groups - Separation into a light and a heavy components QGSJet-II-02 No correction for migration effects KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 14 KASCADE-Grande: light/heavy mass groups Heavy Knee: 8 x 1016 eV Light Ankle: 1017 eV Heavy QGSJet-II-02 Heavy Light Light No correction for migration effects KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 14 KASCADE-Grande: Unfolding elemental spectra KASCADE-Grande data QGSJet-II-02 θ < 18o - Separation into three different mass groups. - Iron Knee ~ 80 PeV In agreement with a Z dependence of the knees. D. Fuhrmann et al., Astrop. Phys. 47 (2013) 54 KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 15 - KASCADE-Grande has terminated data acquisiton - Collaboration still continues detailed data analysis KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 16 KASCADE-Grande: Gamma ray searches KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 17 KASCADE-Grande: Gamma ray searches - Limits on the ratio of diffuse gamma-ray flux to cosmic ray flux ICRC2015 #811 MC cut D. Kang et al., PoS(ICRC2015) 810; Paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 17 KASCADE-Grande: Gamma ray searches - Limits on the diffuse gamma-ray flux Constrain origin of ICECUBE neutrinos. Reject model of ICECUBE excess coming from < 20 kpc in the galaxy. Ahlers & Murase, arxiv 1309.4077 20 kpc 30 kpc Sun D. Kang et al., PoS(ICRC2015) 810; Paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 18 KASCADE and KASCADE-Grande mass group spectra - Based on different EAS reconstruction procedures He+C+Si Fe H KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 19 Combined KASCADE- -Grande analysis - Use data from both arrays in the same EAS reconstruction procedure. - Advantages: • Eliminates systematic differences due to distinct reconstruction procedures. • Increases effective area θ < 30o • Improves accuracy. • Provides spectra and composition over the combined energy range. Sven Schoo et al., paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 20 Combined KASCADE-Grande analysis: all-particle spectrum - Result extended over three energy decades - Shape is retained Not corrected for uncertainties Sven Scho et al., o PoS(ICRC2015) 263; paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 21 Combined KASCADE-Grande analysis: all-particle spectrum - Result extended over three energy decades - Shape is retained - Post-LHC models: Lower flux at LE’s Not corrected for uncertainties Sven Scho et al., o PoS(ICRC2015) 263; paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 21 Combined KASCADE-Grande analysis: mass group spectra - Result extended over three energy decades - Main structures are still observed Light Heavy Not corrected for uncertainties Sven Scho et al., o PoS(ICRC2015) 263; paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 21 Combined KASCADE-Grande analysis: mass group spectra Post-LHC models Events located in KASCADE - Main structures confirmed - Relative abundances are model dependent Sven Schoo et al., paper in progess KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 22 Test of models: radial dependence Events located in KASCADE vs events in Grande QGSJet-II-04 Heavy KASCADE Heavy K-Grande Light KASCADE Light K-Grande Sven Schoo et al., paper in progess - Respective spectra show strong differences KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 23 Test of models: radial dependence Events located in KASCADE vs events in Grande HE KASCADE event HE Grande event Standard NKG fit Standard NKG fit Steeper LDF Steeper LDF Slope of muon LDF used Muon detectors cover in standard EAS fit is a limited portion of fixed and too flat. EAS front. KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 24 Test of models: radial dependence Events located in KASCADE vs events in Grande HE KASCADE event HE Grande event Standard NKG fit Standard NKG fit Steeper LDF Steeper LDF If core within KASCADE → too many If core within Grande → too few muons muons KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 24 Test of models: radial dependence Sven Schoo et al., paper in progess Cross checks using Constant At high energies Nμ corresponding Intensity Cuts to the same intensity drops with radial distance. KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 25 Test of models: zenith angle dependence J.C. Arteaga-Velázquez Nµ attenuation length: Nµ = Nµ,o exp[-Xo sec(θ)/Λµ ] et al., paper in progess Less attenuation in experimental data than in MC - Problems with predicted Energy spectra of muons? KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 26 All-particle energy spectrum from S(500) S(500) = ρch(r = 500 m) is independent Sensitive to primary energy of mass of primary particle G. Toma et al., Astrop. Phys. 77 (2016) 21 KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 27 All-particle energy spectrum from S(500) S(500) = ρch(r = 500 m) is independent Sensitive to primary energy of mass of primary particle G. Toma et al., Astrop. Phys. 77 (2016) 21 Shift in energy - Bad description of LDF in simulations KASCADE-Grande - J.C. Arteaga UHECR 2016, Kyoto 27 KASCADE Cosmic Ray Data Center A.