Effects of Microstructure on the Spall Behavior of Aluminum-Magnesium Alloys Byrickyl.Whelchel
Total Page:16
File Type:pdf, Size:1020Kb
EFFECTS OF MICROSTRUCTURE ON THE SPALL BEHAVIOR OF ALUMINUM-MAGNESIUM ALLOYS BYRICKYL.WHELCHEL A Thesis Presented to The Academic Faculty by Ricky L. Whelchel In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Materials Science and Engineering Georgia Institute of Technology March 2014 Copyright c 2014 by Ricky L. Whelchel EFFECTS OF MICROSTRUCTURE ON THE SPALL BEHAVIOR OF ALUMINUM-MAGNESIUM ALLOYS BYRICKYL.WHELCHEL Approved by: Dr. Naresh Thadhani, Advisor Dr. Sunil Dwivedi School of Materials Science and School of Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Thomas Sanders Jr., Co-Advisor Dr. Suveen Mathaudhu School of Materials Science and Synthesis and Processing Engineering Army Research Office Georgia Institute of Technology Dr. Arun M. Gokhale Victor Dangerfield School of Materials Science and Research and Development Engineering Universal Alloys Corporation Georgia Institute of Technology Date Approved: 24 February 2014 ACKNOWLEDGEMENTS I would like to gratefully acknowledge the funding provided for this research provided by the United States Army Research Office under grant number W911NF-09-1-0403. I wish to express my gratitude to my two thesis advisors, Dr. Naresh Thadhani and Dr. Thomas Sanders, for providing me with a project for my PhD thesis and for their advice and assistance throughout my time in the School of Materials Science and Engineering at the Georgia Institute of Technology. Their guidance throughout the years has been critical in my success as a graduate student. I also wish to thank my committee members Dr. Arun Gokhale, Dr. Sunil Dwivedi, Dr. Suveen Mathaudhu, and Victor Dangerfield for agreeing to serve on my committee and providing helpful advice towards the completion of my thesis. Dr. Gregory Kennedy deserves special thanks for his constant help, support, and ex- perimental expertise. His contributions towards my individual learning of high strain-rate and plate impact testing were invaluable to me as a researcher. Finally, I wish to thank both of my research groups under Dr. Thadhani and Dr. Sanders for providing guidance and teamwork during my graduate studies. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS .............................. iii LIST OF TABLES ................................... viii LIST OF FIGURES .................................. ix SUMMARY ........................................ xiv 1 INTRODUCTION ................................. 1 2 BACKGROUND .................................. 4 2.1Al-MgAlloyMicrostructure.......................... 4 2.1.1 Grain Structure and Recrystallization ................. 6 2.1.2 SecondaryPhases............................ 9 2.2 Novel Processing Techniques for Al-Mg Alloys ................ 10 2.2.1 Equi-Channel Angular Pressing (ECAP) ............... 11 2.2.2 PrecipitationHardening........................ 18 2.3ShockCompressionandDynamicDeformation................ 19 2.4 Spalling ..................................... 24 2.4.1 Shock Wave Propagation ........................ 24 2.4.2 CalculationofHELandSpallStrength................ 28 2.5 Spalling of Polycrystalline Metals ....................... 29 2.6SpallDamageModels.............................. 32 2.6.1 DavisonandStevensModels...................... 33 2.6.2 Stanford Research Institute Model .................. 36 2.6.3 CochranandBannerModel...................... 39 2.7 Effects of Peak Stress, Strain Rate, and Duration on the Spall Strength and HugoniotElasticLimitofDuctileMaterials................. 40 2.7.1 EffectsofPeakStressonSpallStrength............... 42 2.7.2 Effects of Decompression Strain Rate on Spall Strength ....... 42 2.7.3 EffectsofShockDurationonSpallStrength............. 46 2.7.4 Elastic Precursor Decay and Strain Rate Dependence of the Hugo- niotElasticLimit............................ 48 iv 3 EXPERIMENTAL PROCEDURE ....................... 53 3.1Materials..................................... 53 3.2MicrostructureCharacterization........................ 55 3.3UltrasonicTesting................................ 56 3.4PlateImpactGasGunExperiments...................... 57 3.5Post-ImpactRecovery.............................. 59 3.6NumericalModeling............................... 59 3.7 Presentation of the Results ........................... 61 4 EFFECT OF PULSE DURATION AND DECOMPRESSION RATE ON THE SPALL STRENGTH OF AL 5083-H116 ............... 63 4.1ExperimentalProcedure............................ 64 4.1.1 Materials................................. 64 4.1.2 PlateImpactGasGunExperiments.................. 64 4.2Results...................................... 66 4.2.1 FreeSurfaceVelocity.......................... 66 4.2.2 SpallStrengthandHEL........................ 66 4.3Conclusions................................... 72 5 SPALL BEHAVIOR OF ROLLED AL 5083-H116 PLATE ........ 73 5.1ExperimentalProcedure............................ 74 5.1.1 Materials................................. 74 5.1.2 PlateImpactExperiments....................... 76 5.2Results...................................... 77 5.2.1 FreeSurfaceVelocity.......................... 77 5.2.2 SpallStrengthandHEL........................ 81 5.3Post-ImpactRecoveredMicrostructureCharacterization.......... 84 5.4Conclusions................................... 86 6 SPALL BEHAVIOR OF AL 5083 PLATE FABRICATED USING EQUI- CHANNEL ANGULAR PRESSING (ECAP) AND ROLLING .... 89 6.1ExperimentalProcedure............................ 89 6.1.1 Materials................................. 89 6.1.2 PlateImpactExperiments....................... 92 v 6.2Results...................................... 92 6.2.1 Microstructure.............................. 93 6.2.2 PlateImpactExperimentResults................... 96 6.3Conclusions................................... 101 7 SPALL BEHAVIOR OF AL 5083 WITH AN EQUIAXED GRAIN STRUC- TURE ......................................... 107 7.1ExperimentalProcedure............................ 107 7.1.1 Materials................................. 107 7.1.2 PlateImpactExperiments....................... 108 7.2Results...................................... 110 7.2.1 FreeSurfaceVelocity.......................... 110 7.2.2 SpallStrengthandHEL........................ 111 7.3Conclusions................................... 113 8 SPALL BEHAVIOR OF PRECIPITATION HARDENED ALUMINUM- 9WT.% MAGNESIUM .............................. 114 8.1ExperimentalProcedure............................ 114 8.1.1 Materials................................. 114 8.1.2 HeatTreatments............................ 115 8.1.3 PlateImpactExperiments....................... 116 8.2Results...................................... 117 8.2.1 SolutionTreatment........................... 117 8.2.2 AgeHardening............................. 119 8.2.3 ResultsofPlateImpactExperiments................. 128 8.3Conclusions................................... 134 9 ONE-DIMENSIONAL NUMERICAL MODELING OF THE SPALL RE- SPONSE OF AL 5083 ............................... 136 9.1Procedure.................................... 136 9.1.1 PlateImpactExperiments....................... 136 9.1.2 One-DimensionalSimulations..................... 137 9.2Results...................................... 138 9.2.1 PeakStressandEquationofState................... 138 vi 9.2.2 ModelingofSpallResponse...................... 144 9.3ComparisonofMicrostructuretoSimulation................. 149 9.3.1 GrainSize................................ 149 9.3.2 InclusionandDispersoidSize..................... 151 9.4Conclusions................................... 157 10 INFLUENCE OF MICROSTRUCTURE ON SPALL STRENGTH AND HUGONIOT ELASTIC LIMIT IN AL-MG ALLOYS .......... 160 10.1PeakStressDependenceoftheHELandSpallStrength........... 160 10.1.1HugoniotElasticLimit(HEL)..................... 160 10.1.2SpallStrength.............................. 162 10.2GrainSizeDependenceoftheHELandSpallStrength........... 164 10.2.1HugoniotElasticLimit(HEL)..................... 164 10.2.2SpallStrength.............................. 165 10.3 Decompression Rate Dependence of the Spall Strength ........... 165 10.3.1 Effects of Al 5083 Microstructure ................... 168 10.3.2EffectsofImpactOrientation..................... 170 10.3.3TrendsinPowerLawFits....................... 170 10.4Conclusion....................................175 11 SUMMARY AND CONCLUSIONS ...................... 176 11.1SummaryofResults............................... 176 11.2Conclusions................................... 182 11.3SuggestionsforFutureWork.......................... 183 APPENDIX A — EQUATION OF STATE .................. 185 APPENDIX B — VOID SIZE DISTRIBUTIONS .............. 187 BIBLIOGRAPHY .................................... 191 VITA ............................................ 201 vii LIST OF TABLES 1 Measured sound speed and elastic constants for Al 5083-H116 samples mea- suredthroughtheplatethickness........................ 65 2 Calculated and measured free surface velocity data for Al 5083-H116 samples with different flyer plate and sample thicknesses ................ 68 3 Material properties of Al 5083-H116 along the three principal directions of a rolledplate.................................... 76 4 Calculated and measured free surface velocity data for Al 5083-H116 .... 82 5 Measured sound speed, density, and elastic constants for Al 5083 samples processed using ECAP and post-ECAP rolling ................ 91 6 Calculated and measured free surface velocity data for Al 5083 samples pro- cessed using ECAP and rolling ......................... 100 7 Measured sound speed and elastic