Optically Interconnected Phased Arrays

Total Page:16

File Type:pdf, Size:1020Kb

Optically Interconnected Phased Arrays NASA Technical Memorandum 100855 Optically Interconnected Phased Arrays [NASA-Ta- 10085 5) OPTICALLY I: NTESCOL~Y~CTL~~ N 8 8 - 2 '1 4 00 PHASED ARRAYS (NASA) 9 p CSCL d3A Uriclas G3/33 0 136320 Kul B. Bhasin and &chard R. Ku~th Lewis Research Center Cleveland, Ohio Prepared for 1 Advances in Semiconductors and Superconductors: Physics and Device Applications sponsored by the Society of Photo-Optical Instmmentation Engineers Newport, California, March 13-18, 1988 5 Optically interconnected phased arrays Kul B. Bhasin and Richard R. Kunath National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 ABSTRACT Phased-array antennas are required for many of NASA's future missions. They will pro- vide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic microwave integrated circuits (MMIC's) as transmitting and receiving elements. However, the inter- LnCO connections of these elements by conventional coaxial cables and waveguides add weight, 0 0. reduce flexibility, and increase electrical interference. Alternative interconnections I w based on optical fibers, optical processing, and holography are under evaluation as possi- ble solutions. In this paper, current status of these techniques will be described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed. 1. INTRODUCTION Phased-array antennas based on GaAs monolithic microwave integrated circuits (MMIC's) are of interest as the next-generation antenna systems for communications and tracking applications in space missions. These missions include Mars Rover (Mars-to-Earth data relay), Mission Planet Earth (Earth radiometry with active array communication), and the Experimental Antenna System in advanced communication satellites. Phased arrays having hundreds of elements are becoming a reality with the maturity of GaAs MMIC technology. However, the current signal distribution methods (such as waveguides and coaxial cables) for phase and amplitude control signals and radiofrequency (RF) carrier signals to GaAs MMIC radiating elements suffer from high weight, mechanical inflexibility, and high loss. Optical techniques have the potential to overcome these 1imitations.l For example, opti- cal fiber as a transmission medium is lightweight, small in physical size, mechanically flexible, highly resistant to electromagnetic interference (EM11 and electromagnetic pulses (EMP), and virtually without loss. Its loss is compared with microwave transmission media in Figure 1. There are several approaches to optically controlled phased-array antennas, but most of them fall into two categories: one is based on the use of fiber optics and high- frequency optical components for signal distribution in phased arrays, and the other is based on the use of advanced optical processing techniques to achieve phase and amplitude changes in the microwave beam in phased-array antennas. Both of these approaches are dis- cussed in detail in this paper. From the components point of view, in the past several years, GaAs substrates have pro- vided the basis for the development of monolithic microwave integrated circuit technology. Low-loss microstrip lines can be fabricated on this semi-insulating substrate. The high electron saturation velocity provides the essential microwave device technology. At the same time optical waveguides, lasers, and detectors can be fabricated on a GaAs substrate with convenient control of the composition and thickness of GaAlAs layers. The feasibil- ity of fabricating a microwave and an optical integrated circuit on the same substrate pro- vides an opportunity for monolithic integration of both optical and microwave functions in optically controlled phased-array antenna applications in space communications to provide low weight and reduced complexity in systems. The status of these components is discussed in the following section. 2. ARCHITECTURES FOR OPTICALLY INTERCONNECTED PHASED ARRAYS The integration of MMIC's into microwave phased-array communications systems has .iden- tified optical interconnects as an enabling technology (Fig. 2). Two areas of development that are critical to the successful implementation of fiber are optical fiber architectures and integratable high-frequency optical components and devices on GaAs substrates. An analysis of potential architectures reveals that, at present, all of the possible architec- tures can be represented by following basic types for phase shifting from 0" to 360". Other architectures are possible where 360' phase shift is not required. 2.1 Fiber-optic-based architecture Control signal distribution is the least demanding architecture in terms of device technology development .2 The typical configurations assume a central control unit from which element assignments are determined and transmitted (Fig. 3). Addressing schemes of this type result in element-by-element control signal distribution, which requires high serial bit rates to address large numbers of elements in demanding communications traffic scenarios.3 An alternative design concept is to provide each element in the array with a minimal amount of processing capability, thereby distributing the system intelligence and easing addressing hardware constraints. The lower frequency requirements of control signal architectures (<1 GHz) allow for a more timely development. However, many technology issues are common to all fiber architec- tures. These features include the integration of optical electronic integrated circuits with GaAs MMIC designs, fiber device interconnection, and device efficiency. The RF signal distribution architectures are generally characterized by the point at which the communications data and the RF carrier are combined. In CPU-level designs, the communications data are impressed on the RF carrier before conversion to light. This type of architecture is the simplest conceptually, but is the most demanding on the optical requirements of the link, such as bandwidth, dynamic range, and noise figure. A more realizable architecture at present is that of combining the communications data with the RF carrier at the transmit or receive MMIC module. The greatly reduced high- frequency RF bandwidths required lead to relaxed system specifications, but two fibers are needed instead of one, and components for mixing RF and data must be incorporated in the MMIC design. 2.2 Optical-processor-based architecture A second type of architecture does not use controllable MMIC's as the devices necessary to create the appropriate phase and amplitude excitations for antenna beam formation.4n5 Rather, this function is implemented in the optical domain (Fig. 4). Optical beam forming network (OBFN) architectures use holographic techniques to coinbine spatial and temporal information for antenna beam formation. By optically creating the desired antenna beam characteristics, the difficulty in producing nearly identical MMIC phase shifters and variable gain amplifiers is overcome. The OBFN architectures have temporal device requirements similar to other fiber architectures, but have unique spatial device requirements. Temporal modulation, photode- tection, and high-power light generation are common to all RF signal distribution architec- tures. Additionally, spatial modulation, spatial sampling, and optical signal combining devices are needed to completely develop OBFN architectures. 2.3 Holoqraphy-based architecture Free space optical interconnections usin? a holographic optical element have been proposed for high-speed electronic circuits. The feasibility of free space optical inter- connection technique has not been fully assessed as applied to optically interconnected phased arrays. 3. OPTICAL MODULATION TECHNIQUES While spatial modulation is unique to OBFN architectures, temporal modulation is common to all fiber architectures. Temporal modulation can be characterized by direct, indirect, and injection-locking techniques (Fig. 5). Injection locking differs from the other two techniques in that it does not directly support the RF carrier, but is used as a reference to synchronize free-running microwave oscillators at the desired frequency. Conceptually, direct modulation is a straightforward technique.7 The RF communications signal is used to directly modulate a laser diode. However, the optical link demands for a directly modulated link are significant. As with other microwave/millimeter transmis- sion systems, direct links require large dynamic ranges, high center frequencies, wide bandwidths, and low noise levels. At present, modulation frequencies are limited to 30 to 40 GHz, largely because of the relaxation oscillation effects of laser diodes. Relative intensity noise (RIN) effects, the primary noise source in optical links, result in modest bandwidths at reduced dynamic ranges. At frequencies above 8 GHz, direct modulation technique specifications such as threshold current and depth of modulation are usually traded off to achieve very reasonable link performance. 2 Indirect modulation techniques use external devices such as Mach-Zehnder interferome- ters together with laser sources to modulate optical carriers. The interferometric-type devices use phase modulation between the legs of the interferometer to generate an intensity-modulated optical signal. Most indirect modulation techniques use devices that operate
Recommended publications
  • Fiber Optic Cable for VOICE and DATA TRANSMISSION Delivering Solutions Fiber Optic THAT KEEP YOU CONNECTED Cable Products QUALITY
    Fiber Optic Cable FOR VOICE AND DATA TRANSMISSION Delivering Solutions Fiber Optic THAT KEEP YOU CONNECTED Cable Products QUALITY General Cable is committed to developing, producing, This catalog contains in-depth and marketing products that exceed performance, information on the General Cable quality, value and safety requirements of our line of fiber optic cable for voice, customers. General Cable’s goal and objectives video and data transmission. reflect this commitment, whether it’s through our focus on customer service, continuous improvement The product and technical and manufacturing excellence demonstrated by our sections feature the latest TL9000-registered business management system, information on fiber optic cable the independent third-party certification of our products, from applications and products, or the development of new and innovative construction to detailed technical products. Our aim is to deliver superior performance from all of General Cable’s processes and to strive for and specific data. world-class quality throughout our operations. Our products are readily available through our network of authorized stocking distributors and distribution centers. ® We are dedicated to customer TIA 568 C.3 service and satisfaction – so call our team of professionally trained sales personnel to meet your application needs. Fiber Optic Cable for the 21st Century CUSTOMER SERVICE All information in this catalog is presented solely as a guide to product selection and is believed to be reliable. All printing errors are subject to General Cable is dedicated to customer service correction in subsequent releases of this catalog. and satisfaction. Call our team of professionally Although General Cable has taken precautions to ensure the accuracy of the product specifications trained sales associates at at the time of publication, the specifications of all products contained herein are subject to change without notice.
    [Show full text]
  • Under Water Optical Wireless Communication
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 02 | Feb -2017 www.irjet.net p-ISSN: 2395-0072 Under Water Optical Wireless Communication Smruti Goswami1, Ravi Patel2 1ME Student, Dept of EC Engineering, SVBIT, Gujarat, India 2 Assistant Professor, Dept of EC Engineering, SVBIT, Gujarat, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract-Underwater absorption, scattering and turbulence can be used to carry images, thus allowing viewing in tight processes will introduce attenuation and fading to light spaces. Specially designed fibers are used for a variety of propagation and then degrade the performance of underwater other applications, including sensors and fiber lasers wireless optical communications (UWOC). As power In fibers, there are two significant sections – the core and the cladding. The core is part where the light rays travel and the consumption is an important issue in under- water missions, it cladding is a similar material of slightly lower refractive index to is fundamental to minimize the intensity loss by reducing the cause total internal reflection. Usually both sections are fabricated beam divergence , data transmission in relatively high from silica (glass). The light within the fiber is then continuously turbidity waters appeals for the use of energy-efficient totally internally reflected along the waveguide. modulations and powerful channel codes at the
    [Show full text]
  • Unit – 1 Overview of Optical Fiber Communication
    www.getmyuni.com Optical Fiber Communication 10EC72 Unit – 1 Overview of Optical Fiber communication 1. Historical Development Fiber optics deals with study of propagation of light through transparent dielectric waveguides. The fiber optics are used for transmission of data from point to point location. Fiber optic systems currently used most extensively as the transmission line between terrestrial hardwired systems. The carrier frequencies used in conventional systems had the limitations in handling the volume and rate of the data transmission. The greater the carrier frequency larger the available bandwidth and information carrying capacity. First generation The first generation of light wave systems uses GaAs semiconductor laser and operating region was near 0.8 μm. Other specifications of this generation are as under: i) Bit rate : 45 Mb/s ii) Repeater spacing : 10 km Second generation i) Bit rate: 100 Mb/s to 1.7 Gb/s ii) Repeater spacing: 50 km iii) Operation wavelength: 1.3 μm iv) Semiconductor: In GaAsP Third generation i) Bit rate : 10 Gb/s ii) Repeater spacing: 100 km iii) Operating wavelength: 1.55 μm Fourth generation Fourth generation uses WDM technique. i) Bit rate: 10 Tb/s ii) Repeater spacing: > 10,000 km Iii) Operating wavelength: 1.45 to 1.62 μm Page 5 www.getmyuni.com Optical Fiber Communication 10EC72 Fifth generation Fifth generation uses Roman amplification technique and optical solitiors. i) Bit rate: 40 - 160 Gb/s ii) Repeater spacing: 24000 km - 35000 km iii) Operating wavelength: 1.53 to 1.57 μm Need of fiber optic communication Fiber optic communication system has emerged as most important communication system.
    [Show full text]
  • Optically Controlled Microwave Devices and Circuits: Emerging Applications in Space Communications Systems
    NASA Technical Memorandum 89869 1 ,' Optically Controlled Microwave Devices and Circuits: Emerging Applications in Space Communications Systems (EASA-T?l-E986S) CEIXCALLP CC h16CLLED N87-2 3900 EXBCISIVE DEVXES 1I&C ClECCIlS: EE1EEGI:IG AEELICATXOIS XI SFACE CCUIUEICIIICIS SPSlZLlS (bASA) 11 p AZLvail: 611s HC AO;/BF A01 Uoclas CSCL 09A H1/33 0079452 Kul B. Bhasin and Rainee N. Simons Lewis Research Center Cleveland, Ohio Prepared for the 1987 International Microwave Symposium cosponsored by the Brazilian Microwave Society and IEEE-MTT Rio de Janeiro, Brazil, July 27-30, 1987 OPTICALLY CONTROLLED MICROWAVE DEVICES AND CIRCUITS: EMERGING APPLICATIONS IN SPACE COMMUNICATIONS SYSTEMS Kul 6. Bhasin and Rainee N. Simons" National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY Optically controlled microwave devices and circuits, either directly illu- minated or interfaced by an optical fiber, have the potential to simplify signal distribution ne.tworks in high frequency space communications systems. In this paper the optical response of GaAs/GaAlAs HEMT and GaAs MESFET micro- wave devices is presented when directly illuminated by an optical beam. Mono- M e- lithic integration of optical and microwave functions on a single gallium Lo M arsenide substrate is considered to provide low power, low loss and reliable wI digital and analog optical links for control and signal distribution. The use of optically controlled microwave devices as photodetectors, to provide gain control of an amplifier, and to injection lock an oscillator in phased array antenna applications is shown. INTRODUCTION As the operating frequency and speed of solid state devices and circuits increase, their applications in advanced space communications systems will require innovative solutions to control and interconnect these devices and circuits.
    [Show full text]
  • Fiber Optic Communications
    FIBER OPTIC COMMUNICATIONS EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and used to transmit signals over long distances. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optic Data Transmission Systems Fiber optic data transmission systems send information over fiber by turning electronic signals into light. Light refers to more than the portion of the electromagnetic spectrum that is near to what is visible to the human eye. The electromagnetic spectrum is composed of visible and near -infrared light like that transmitted by fiber, and all other wavelengths used to transmit signals such as AM and FM radio and television. The electromagnetic spectrum. Only a very small part of it is perceived by the human eye as light. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optics Transmission Low Attenuation Very High Bandwidth (THz) Small Size and Low Weight No Electromagnetic Interference Low Security Risk Elements of Optical Transmission Electrical-to-optical Transducers Optical Media Optical-to-electrical Transducers Digital Signal Processing, repeaters and clock recovery. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Types of Optical Fiber Multi Mode : (a) Step-index – Core and Cladding material has uniform but different refractive index. (b) Graded Index – Core material has variable index as a function of the radial distance from the center. Single Mode – The core diameter is almost equal to the wave length of the emitted light so that it propagates along a single path.
    [Show full text]
  • An Overview to Free Space Optics and Its Advantage Over Fiber Optics
    International Journal of Electronics and Communication Engineering (IJECE) Vol.1, Issue 1 Aug 2012 13-22 © IASET AN OVERVIEW TO FREE SPACE OPTICS AND ITS ADVANTAGE OVER FIBER OPTICS SAMEER ASIF 1 & PRASHANT KR. YADAV 2 1, 2 B.Tech 4 th year, E&C Engg. Department, M.I.T. Moradabad (U.P.), India ABSTRACT Free-Space Optical communication (FSO) has become more and more interesting as an alternative to Radio Frequency (RF) communication over the last two decades. It is an emerging technology that has found application in several areas of the short and long-haul communications. The strengths of this technology’s inherent are its lack of use of in-ground cable (which makes it much quicker and often cheaper to install), the fact that it operates in an unlicensed spectrum (making it easier from a political/ bureaucratic perspective to install), the fact that it can be removed and installed elsewhere (allowing recycling of equipment), and its relatively high bandwidth (up to 1 Gigabyte per second (Gb/s) and beyond). In this review paper we are going to describe modulation scheme, atmospheric effects, data security, last mile bottle neck and its future perspective. KEYWORDS: Free Space Optics, Transmission Technology, Amplitude Modulation INTRODUCTION Free Space Optics (FSO) is a laser driven technology which uses light sources and detectors to send and receive information, through the atmosphere somehow same as Fiber Optic Communication (FOC) link, which uses light sources and detectors to send and receive information but through a fiber optic cable. The motivation for FSO is to eliminate the cost, time, and effort of installing fiber optic cable, yet to retain the benefit of high data rates (up to 1 GB/s and beyond) for transmission of voice, data, images, and video.
    [Show full text]
  • Machine Learning Techniques in Radio-Over-Fiber Systems and Networks
    hv photonics Review Machine Learning Techniques in Radio-over-Fiber Systems and Networks Jiayuan He 1,2, Jeonghun Lee 2, Sithamparanathan Kandeepan 2 and Ke Wang 2,* 1 School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC 3010, Australia; [email protected] 2 School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; [email protected] (J.L.); [email protected] (S.K.) * Correspondence: [email protected] Received: 30 September 2020; Accepted: 30 October 2020; Published: 7 November 2020 Abstract: The radio-over-fiber (RoF) technology has been widely studied during the past decades to extend the wireless communication coverage by leveraging the low-loss and broad bandwidth advantages of the optical fiber. With the increasing need for wireless communications, using millimeter-waves (mm-wave) in wireless communications has become the recent trend and many attempts have been made to build high-throughput and robust mm-wave RoF systems during the past a few years. Whilst the RoF technology provides many benefits, it suffers from several fundamental limitations due to the analog optical link, including the fiber chromatic dispersion and nonlinear impairments. Various approaches have been proposed to address these limitations. In particular, machine learning (ML) algorithms have attracted intensive research attention as a promising candidate for handling the complicated physical layer impairments in RoF systems, especially the nonlinearity during signal modulation, transmission and detection. In this paper, we review recent advancements in ML techniques for RoF systems, especially those which utilize ML models as physical layer signal processors to mitigate various types of impairments and to improve the system performance.
    [Show full text]
  • Optical Wireless Communications System for Secure
    OPTICAL WIRELESS COMMUNICATIONS SYSTEM FOR SECURE INFORMATION EXCHANGE An Undergraduate Research Scholars Thesis by CHAANCE T. GRAVES Submitted to the Undergraduate Research Scholars program at Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. Christi Madsen May 2017 Major: Electrical Engineering TABLE OF CONTENTS Page ABSTRACT .................................................................................................................................. 1 LIST OF KEY ABBREVIATIONS........................................................................................... 2-3 SECTION(S) I. INTRODUCTION ...................................................................................................... 4 II. RF VS OPTICAL COMMUNICATION ................................................................. 5-7 2.1. Electromagnetic Spectrum ............................................................................. 6 2.2. Security Comparison ...................................................................................... 7 III. OPTICAL COMPONENT CHARACTERISTICS ............................................... 8-12 3.1. Optical Light source .................................................................................... 8-9 3.2. Optical Detector ........................................................................................... 10 3.3. Plastic Optical Fiber ...............................................................................
    [Show full text]
  • Designing a Free Space Optical/Wireless Link
    Session: 2247 Designing A Free-Space Optical/Wireless Link Jai P. Agrawal, Omer Farook and C.R. Sekhar Department of Electrical and Computer Engineering Technology Purdue University Calumet Abstract This paper presents the design of a very high-speed data link between two buildings in a University campus that will operate at gigabit rates. The project uses a cutting edge technology of eye-safe laser communication through free space. This is an all-optical design is future-proof in regards to technological advancement in the rate of data transmission and introduction of newer protocols. The two buildings are approximately 500 meters apart. The free-space optical link uses 1550 nm wavelength in normal usage but has a wireless link operating at 2.4 GHz as the back-up. The line of site alignment will be achieved using telescopes initially but will have automatic tracking alignment system. The wireless back-up link is used only in very dense fog conditions. This paper presents the design of only the free-space optical connection, some parts of which are implemented in laboratory setup. I. Introduction The technology of establishing a high-speed networking between two buildings or campuses is one of the three: 1) copper wire, 2) wireless and 2) optical fiber technology. The copper technology is low-speed, labor-intensive and requires a regime of permissions. The advantages are high reliability and full availability. The wireless technology uses a few GHz carrier, is medium speed (up to few Gigabits per second), has small link span and requires a regime of licenses. Advantage is the ease of deployment.
    [Show full text]
  • Radio Over Fiber Technology Tahira Javed, Fatima Amin
    International Journal Of Scientific & Engineering Research, Volume 7, Issue 7, July-2016 377 ISSN 2229-5518 Radio over Fiber Technology Tahira Javed, Fatima Amin Abstract— Radio-over-fiber (RoF) is an integration of microwave and optical networks for wireless access. It is a promising technology competent to provide simple antenna front ends, greater wireless access coverage and capacity. RoF system has been dependant on well established technology for base band signals, based on direct detection and intensity modulated links, enable to provide implementation of very low cost. This baseband optical communication with digital signals processing allows advanced modulation formats to be used. The ample advantages of using an optical fiber such as its light weight, less loss, larger bandwidth, tiny size and low cost of cable makes it most suitable for transporting radio signals to antenna sites efficiently, situated remotely in a wireless network. Index Terms— Centralized station, Fiber optic links, IF-over-Fiber, Low-attenuation, Microwave signals, Optical frequency Multiplexing, RF-over-fiber, Radio Frequency amplification, Sub-carrier Multiplexing, Wavelength Division Multiplexing. —————————— —————————— 1 INTRODUCTION The network structure of RoF consists of a Centralized station The Lower power consumption, lower power radiated elec- (CS) which performs modulation, demodulation, medium tromagnetic wave, fibre low attenuation and less loss reduce access control (MAC) coding, routing and other processing’s. the maintenance cost. Due to the simple structure of BS, it is The Centralized Station is connected to several BSs through a highly reliable and system maintenance has become simple. fibre optic. Coverage can be provided by Radio over fibre systems in The most important task of BS is the transformation of optical those areas where direct reception is less effective, like huge signal into wireless signals and vice versa [2].
    [Show full text]
  • History of Fiber Optics
    History of Fiber Optics By James Buckner The Sage Group 1854 – John Tyndall First Guided transmission of light Used basin with hole in bottom to direct stream of water. Sunlight was refracted through the stream of water. 1880 – William Wheeling Used mirrored pipes to carry light from one source to many rooms. Did not take off because of Edison’s incandescent light bulb gained widespread popularity. 1880 – Alexander Graham Bell Invented the photophone, a device to carry voice signals through the air instead of wires. While the photophone did not materialize, it became the forerunner to a networking technology called Free Space Optics, or FSO. FSO uses lasers and detectors to transmit data between buildings without wires. 1920 – First attempt with optical transmissions John Logie Baird (England) and Clarence W. Hansell (U.S.) jointly file patent for a method to carry television images through transparent pipes. Images were transmitted in 1933. It was a very short distance, but the quality was very, very low. 1954 – Invention of modern optical fiber Abraham van Heel covered a bare glass fiber with a transparent coating. This coating, later called cladding, had a lower refractive index than the bare fiber. The result was that the light was contained in the fiber and did not leak out. 1960 – Medial Imaging & Invention of the Laser Fiberscope allowed for the inspection of boilers and medical imaging. Laser was invented this year. Optical Fibers had losses of 1 dB/meter. http://www.spectrum- instruments.com/products/optical/industrial.shtml Telephone company demands Telephone companies were interested in optical fiber.
    [Show full text]
  • The Nineteenth Century
    http://www.fiber-optics.info/ http://www.fiber-optics.info/history/P1/ History of fiber optics: The Nineteenth Century Figure 1 - John Tyndall's Experiment. In 1870, John Tyndall, using a jet of water that flowed from one container to another and a beam of light, demonstrated that light used internal reflection to follow a specific path. As water poured out through the spout of the first container, Tyndall directed a beam of sunlight at the path of the water. The light, as seen by the audience, followed a zigzag path inside the curved path of the water. This simple experiment, illustrated in Figure 1, marked the first research into the guided transmission of light. William Wheeling, in 1880, patented a method of light transfer called "piping light". Wheeling believed that by using mirrored pipes branching off from a single source of illumination, i.e. a bright electric arc, he could send the light to many different rooms in the same way that water, through plumbing, is carried throughout buildings today. Due to the ineffectiveness of Wheeling's idea and to the concurrent introduction of Edison's highly successful incandescent light bulb, the concept of piping light never took off. That same year, Alexander Graham Bell developed an optical voice transmission system he called the photophone. The photophone used free-space light to carry the human voice 200 meters. Specially placed mirrors reflected sunlight onto a diaphragm attached within the mouthpiece of the photophone. At the other end, mounted within a parabolic reflector, was a light-sensitive selenium resistor. This resistor was connected to a battery that was, in turn, wired to a telephone receiver.
    [Show full text]