Articles Trajectories and Biophysical Models

Total Page:16

File Type:pdf, Size:1020Kb

Articles Trajectories and Biophysical Models Ocean Sci., 14, 1461–1482, 2018 https://doi.org/10.5194/os-14-1461-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Linking sardine recruitment in coastal areas to ocean currents using surface drifters and HF radar: a case study in the Gulf of Manfredonia, Adriatic Sea Roberta Sciascia1, Maristella Berta1, Daniel F. Carlson1,6,7, Annalisa Griffa1, Monica Panfili8, Mario La Mesa8, Lorenzo Corgnati1, Carlo Mantovani1, Elisa Domenella8, Erick Fredj3, Marcello G. Magaldi1,2, Raffaele D’Adamo9, Gianfranco Pazienza9, Enrico Zambianchi1,4, and Pierre-Marie Poulain5 1Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), La Spezia, Italy 2Johns Hopkins University, Department of Earth and Planetary Science, Baltimore, MD, USA 3Department of Computer Sciences, Jerusalem College of Technology, Jerusalem, Israel 4DiST, Università degli Studi di Napoli ”Parthenope” and CoNISMa, Naples, Italy 5Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Trieste, Italy 6Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA 7Arctic Research Centre, Department of Bioscience, Aarhus University, Aarhus, Denmark 8Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Ancona, Italy 9Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), Lesina, Italy Correspondence: Roberta Sciascia ([email protected]) Received: 21 May 2018 – Discussion started: 6 June 2018 Revised: 24 October 2018 – Accepted: 15 November 2018 – Published: 27 November 2018 Abstract. Understanding the role of ocean currents in the work. Transport to the Gulf of Manfredonia from remote SAs recruitment of commercially and ecologically important fish seems more likely than local spawning and retention given a is an important step toward developing sustainable resource mismatch between observed PPLDs of 30–50 days and rel- management guidelines. To this end, we attempt to elucidate atively short ( < 10-day) average residence times. The num- the role of surface ocean transport in supplying recruits of ber and strength of connections between the gulf and remote European sardine (Sardina pilchardus) to the Gulf of Man- SAs exhibit a strong dependence on PPLD. For PPLDs of fredonia, a known recruitment area in the Adriatic Sea. Sar- 20 days or less, the gulf is connected to SAs on the west- dine early life history stages (ELHSs) were collected dur- ern Adriatic coast through transport in the Western Adriatic ing two cruises to provide observational estimates of their Current (WAC). SAs on the east coast are more important at age–size relationship and their passive pelagic larval dura- longer PPLDs. SAs in the northern and central Adriatic ex- tion (PPLD). We combine these PPLDs with observations hibit weak connections at all PPLD ranges considered. These of surface ocean currents to test two hypotheses: (1) ELHSs results agree with otolith microstructure analysis, suggesting are transported from remote spawning areas (SAs) by ocean that the arrival of larvae in the gulf is characterized by re- currents to the Gulf of Manfredonia; (2) sardines spawn lo- peated pulses from remote SAs. This is the first attempt to de- cally and ELHSs are retained by eddies. A historical surface scribe the processes related to Lagrangian connection to, and drifter database is used to test hypothesis 1. Hypothesis 2 is retention in, the Gulf of Manfredonia that will be comple- tested by estimating residence times in the Gulf of Manfre- mented in the future using validated numerical ocean models donia using surface drifters and virtual particles trajectories and biophysical models. that were computed from high-resolution observations of sur- face currents measured by a high-frequency (HF) radar net- Published by Copernicus Publications on behalf of the European Geosciences Union. 1462 R. Sciascia et al.: Sardine recruitment in coastal areas 1 Introduction cific ecosystem knowledge, but despite the economic and ecological importance of the gulf, many processes are still Globally, pelagic forage fish, like sardines, provide important only partially understood (Specchiulli et al., 2016). For ex- ecosystem services through their transfer of energy between ample, the mechanisms of sardine recruitment in the gulf trophic levels (Essington et al., 2015) and by supporting a are not clear yet; i.e., there is no factual evidence that sug- commercial industry valued at approximately USD 17 billion gests that the nursery is supported by local spawning or by (Pikitch et al., 2014). European sardine (Sardina pilchardus) remote spawning areas. This is a relevant question, since dif- represents one of the most important pelagic fish resources in ferent scenarios could call for different management strate- the Mediterranean Sea. Sardines and anchovies are the pri- gies (Fogarty and Botsford, 2007). mary target species in purse-seine and mid-water pair trawl In this paper, we contribute to the understanding of the gulf fisheries in the Adriatic Sea, with annual catches that fluc- recruitment processes by investigating the role of ocean cur- tuated between ∼ 21000 t in 2005 and ∼ 79000 t in 2016 rent transport pathways. We focus on eggs and initial larval (SAC-GFCM, 2016). Intense fishing pressure on sardines in stages during which ELHSs can be assumed to be passively the Adriatic Sea resulted in large fluctuations in catches over advected by the currents, and we estimate the corresponding the last 40 years and culminated in a collapse of the fish- passive pelagic larval duration (PPLD; Shanks, 2009) based ery in the late 1980s (Morello and Arneri, 2009; Lotze et al., on the analysis of sardine ELHS specimens collected in the 2011). Catches have since increased but the stock remains Gulf of Manfredonia. Passive transport is then computed overexploited, with biomass values above the precautionary for different PPLDs using ocean current data, with the goal reference point (SAC-GFCM, 2016; Lotze et al., 2011). Ad- of testing the following two hypotheses: (1) ELHSs are re- ditionally, sardines constitute an important shared fishery re- motely spawned and transported from remote SAs by ocean source between countries along the Adriatic coast (Albania, currents to the Gulf of Manfredonia; (2) sardines spawn lo- Bosnia, Croatia, Italy, Montenegro, and Slovenia), making cally and ELHSs are retained by eddies and other small-scale marine spatial planning (e.g., Carpi et al., 2017; Depellegrin retentive circulation features. The historical surface drifter et al., 2017) particularly difficult. database in the Adriatic Sea (Poulain et al., 2013) that pro- In addition to fishing pressure, environmental conditions vides direct measurements of transport pathways is used to (e.g., temperature, salinity, and ocean currents) also influence test hypothesis 1. Hypothesis 2 is tested by estimating res- the stock variability of short-lived pelagic species by im- idence times of drifters and of virtual particles trajectories pacting the survival of early life history stages (ELHSs) and computed from high-frequency (HF) radar observations of therefore recruitment strength (Peterson and Wroblewski, surface currents in the Gulf of Manfredonia (Corgnati et al., 1984; Bradford, 1992; Bakun, 1996; Regner, 1996; Coombs 2018) during the sardine spawning and recruitment season et al., 2003; Santojanni et al., 2006; Garrido et al., 2017). (September–May). In general, oceanographic processes, and their modulation This is the first study that addresses the impact of ocean by high- and low-frequency variability, are fundamental in currents on recruitment in the gulf using information based driving dispersal and retention of ELHSs and can affect the on actual current measurement data. Recent studies made in- spawning habitat and behavior of adults, as well as the sur- ferences about circulation in the gulf from relatively coarse- vival of eggs and larvae, largely contributing to recruitment resolution (1=16◦) ocean models (Bray et al., 2017; Specchi- variability (Lasker, 1981; Boehlert and Mundy, 1994; Gov- ulli et al., 2016) but did not directly measure currents. High- oni and Pietrafesa, 1994; Sabatés and Olivar, 1996; Hare resolution numerical simulations in the vicinity of the gulf et al., 2002; Sanchez-Velasco et al., 2002; Santos et al., 2004, have largely focused on instabilities of the buoyant bound- 2018). In particular, ocean currents and their spatiotemporal ary current and not specifically on the dynamics within the variability can impact sardine recruitment during the disper- gulf (Burrage et al., 2009; Magaldi et al., 2010), while a sal stage, when eggs and developing larvae can be treated, first preliminary study on large-scale dispersal of eggs and at least to some degree, as passive (Largier, 2003). Thus, larvae has been performed using velocity fields from a high- identifying transport pathways from spawning areas (SAs) to resolution Regional Ocean Modeling System (ROMS) model recruitment areas is a necessary step towards understanding of the Adriatic Sea (Gramolini et al., 2010). complex physical–biological interactions. The rest of the paper is organized as follows. Section 2 The Gulf of Manfredonia is a well-known sardine nurs- summarizes the surface circulation of the Adriatic Sea, phys- ery area that is located in the southwestern Adriatic Sea ical setting of the Gulf of Manfredonia, and the sardine pop-
Recommended publications
  • Shrimp Fishing in Mexico
    235 Shrimp fishing in Mexico Based on the work of D. Aguilar and J. Grande-Vidal AN OVERVIEW Mexico has coastlines of 8 475 km along the Pacific and 3 294 km along the Atlantic Oceans. Shrimp fishing in Mexico takes place in the Pacific, Gulf of Mexico and Caribbean, both by artisanal and industrial fleets. A large number of small fishing vessels use many types of gear to catch shrimp. The larger offshore shrimp vessels, numbering about 2 212, trawl using either two nets (Pacific side) or four nets (Atlantic). In 2003, shrimp production in Mexico of 123 905 tonnes came from three sources: 21.26 percent from artisanal fisheries, 28.41 percent from industrial fisheries and 50.33 percent from aquaculture activities. Shrimp is the most important fishery commodity produced in Mexico in terms of value, exports and employment. Catches of Mexican Pacific shrimp appear to have reached their maximum. There is general recognition that overcapacity is a problem in the various shrimp fleets. DEVELOPMENT AND STRUCTURE Although trawling for shrimp started in the late 1920s, shrimp has been captured in inshore areas since pre-Columbian times. Magallón-Barajas (1987) describes the lagoon shrimp fishery, developed in the pre-Hispanic era by natives of the southeastern Gulf of California, which used barriers built with mangrove sticks across the channels and mouths of estuaries and lagoons. The National Fisheries Institute (INP, 2000) and Magallón-Barajas (1987) reviewed the history of shrimp fishing on the Pacific coast of Mexico. It began in 1921 at Guaymas with two United States boats.
    [Show full text]
  • Sediments and Pollution in the Northern Adriatic Seaa
    Sediments and Pollution in the Northern Adriatic Seaa F. FRASCARI, M. FRIGNANI, S. GUERZONI, AND M. RAVAIOLI Zstituto di Geologia Marina Consiglio Nazionale delle Ricerche 40127 Bologna, Italy INTRODUCTION Most pollutants are known to have a strong tendency to interact with sus- pended organic and inorganic matter. Under certain conditions, the sediments may form deposits, where the sub- stances are stored and/or mineralized and removed from the external environ- ment. Various phenomena may, however, promote a pollutant release from the sediment towards the overlying waters. Molecular diffusion, bioturbation, resus- pension of bottom sediment and pumping due to low-intensity wave motion are phenomena that cause the transport of chemical species through the water-sedi- ment interface. The constituents that are mostly involved in these fluxes are the ones dissolved in the interstitial waters and those weakly linked to the solid. The fine mineral or flocculated sediments, which rapidly settle in the riverine prodelta,24 are the richest ones in easily exchangeable pollutants. On the other hand, the solid matter which sediments after a long transport attains a more stable equilibrium with the pollutants which are dissolved in the waters. The study of the sedimentation and transport processes of the particulate matter and associated pollutants is of great importance to understand the evolu- tion of the marine environmental quality. THE ADRIATIC SEA: GENERALITIES Problems of the open and coastal water pollution of the Adriatic Sea have been the concern of scientists and administrators for some time. Many national research programs, both related to the whole basin or with a more local concern, were called to study the Adriatic Sea, among which the applied program called “P.F.
    [Show full text]
  • Chemistry and Ecology Biogeochemistry, Grain Size
    This article was downloaded by: On: 7 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Chemistry and Ecology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455114 Biogeochemistry, grain size and mineralogy of the central and southern Adriatic Sea sediments: a review Federico Spagnolia; Antonio Dell'Annob; Antonio De Marcoc; Enrico Dinellid; Mauro Fabianoe; Marta Velia Gadaletaf; Carmela Iannig; Francesco Loiaconoc; Elena Maninia; Mauro Marinia; Giovanni Mongellih; Giancarlo Rampazzoi; Paola Rivarog; Luigi Vezzullij a Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche, Ancona, Italy b Dipartimento Science del Mare, Università Politecnica delle Marche, Ancona, Italy c Dipartimento di Geologia & Geofisica, Università degli Studi di Bari, Bari, Italy d Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Università degli Studi di Bologna, Ravenna, Italy e Dipartimento per lo Studio del Territorio e delle sue Risorse, Università degli Studi di Genova, Genoa, Italy f Dipartimento Geomineralogico, Università degli Studi di Bari, Bari, Italy g Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Genoa, Italy h Dipartimento di Chimica, Università degli Studi della Basilicata, Campus di Macchia Romana, Potenza, Italy i Dipartimento
    [Show full text]
  • Latin American Biogems: the Baker River Snakes Through Chilean Patagonia from the Glacial Lakes of the Andes to Fjords on the Pacific Coast
    Facts Foott, 2009, The Patagonian Foundation and iLCP and Foundation Patagonian The 2009, Foott, The Baker River snakes through Chilean Patagonia from the glacial lakes of the Andes to fjords on the Pacific coast. Latin American BioGems: Saving Special Wild Places and Wildlife NRDC’s BioGems Initiative protects endangered wild regions and species throughout the Americas. In Latin America, NRDC has worked to preserve BioGems unspoiled ecosystems and threatened wildlife from Mexico’s Baja Peninsula to Chile’s Patagonia, working in partnership with communities and organizations to eliminate threats and to find environmentally sustainable alternatives. For more information, please contact: Baja California, n Cabo Pulmo: Cabo Pulmo National Marine Amanda Maxwell Mexico Park is home to the healthiest and most [email protected] To the east of the important coral reef of the Baja Peninsula, (202) 289-2368 Baja Peninsula, the home to humpback whales, dolphins, whale Gulf of California, sharks, Pacific manta rays and five species of sea Carolina Herrera which Jacques turtles, as well as more than 200 species of fish. [email protected] Cousteau called Hopkins Lee Ralph Now a Spanish real estate company is proposing (202) 289-2381 Humpback whale “the aquarium of a massive 9,500 acre resort complex next to the world,” provides shelter for hundreds of species the park. Since October 2010, NRDC has of fish, sea turtles and marine mammals. NRDC been working with a local coalition to stop this is working with Mexican partners to protect Baja’s industrial tourism development and to promote fragile marine life from a variety sustainable tourism alternatives.
    [Show full text]
  • Why Did the Southern Gulf of California Rupture So Rapidly?—Oblique Divergence Across Hot, Weak Lithosphere Along a Tectonically Active Margin
    Why did the Southern Gulf of California rupture so rapidly?—Oblique divergence across hot, weak lithosphere along a tectonically active margin breakup, is mainly dependent on the thermal structure, crust- Paul J. Umhoefer, Geology Program, School of Earth Sciences & Environmental Sustainability, Northern Arizona University, al thickness, and crustal strength of the lithosphere when Flagstaff, Arizona 86011, USA; [email protected] rifting begins (e.g., Buck, 2007), as well as forces at the base of the lithosphere and far-field plate interactions (Ziegler and Cloetingh, 2004). ABSTRACT Continental rupture at its two extremes creates either large Rifts in the interior of continents that evolve to form large ocean basins or small and narrow marginal seas depending oceans typically last for 30 to 80 m.y. and longer before com- largely on the tectonic setting of the rift. Rupture of a conti- plete rupture of the continent and onset of sea-floor spreading. nent that creates large oceans most commonly initiates as A distinct style of rifts form along the active tectonic margins of rifts in old, cold continental lithosphere or within former continents, and these rifts more commonly form marginal seas large collisional belts in the interior of large continents, part and terranes or continental blocks or slivers that are ruptured of the process known as the Wilson Cycle (Wilson, 1966). away from their home continent. The Gulf of California and the Rupture to create narrow marginal seas commonly occurs in Baja California microplate make up one of the best examples active continental margins and results in the formation of of the latter setting and processes.
    [Show full text]
  • Baja California Sur, Mexico)
    Journal of Marine Science and Engineering Article Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico) Markes E. Johnson 1,* , Rigoberto Guardado-France 2, Erlend M. Johnson 3 and Jorge Ledesma-Vázquez 2 1 Geosciences Department, Williams College, Williamstown, MA 01267, USA 2 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22800, Baja California, Mexico; [email protected] (R.G.-F.); [email protected] (J.L.-V.) 3 Anthropology Department, Tulane University, New Orleans, LA 70018, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-413-597-2329 Received: 22 May 2019; Accepted: 20 June 2019; Published: 22 June 2019 Abstract: This work advances research on the role of hurricanes in degrading the rocky coastline within Mexico’s Gulf of California, most commonly formed by widespread igneous rocks. Under evaluation is a distinct coastal boulder bed (CBB) derived from banded rhyolite with boulders arrayed in a partial-ring configuration against one side of the headland on Ensenada Almeja (Clam Bay) north of Loreto. Preconditions related to the thickness of rhyolite flows and vertical fissures that intersect the flows at right angles along with the specific gravity of banded rhyolite delimit the size, shape and weight of boulders in the Almeja CBB. Mathematical formulae are applied to calculate the wave height generated by storm surge impacting the headland. The average weight of the 25 largest boulders from a transect nearest the bedrock source amounts to 1200 kg but only 30% of the sample is estimated to exceed a full metric ton in weight.
    [Show full text]
  • Uplift of Quaternary Shorelines in Eastern Patagonia: Darwin Revisited
    Uplift of Quaternary shorelines in Eastern Patagonia: Darwin revisited Kevin Pedoja, Vincent Regard, Laurent Husson, Joseph Martinod, Benjamin Guillaume, Enrique Fucks, Maximiliano Iglesias, Pierre Weill To cite this version: Kevin Pedoja, Vincent Regard, Laurent Husson, Joseph Martinod, Benjamin Guillaume, et al.. Uplift of Quaternary shorelines in Eastern Patagonia: Darwin revisited. Geomorphology, Elsevier, 2011, 127 (3-4), pp.121-142. 10.1016/j.geomorph.2010.08.003. insu-00610899 HAL Id: insu-00610899 https://hal-insu.archives-ouvertes.fr/insu-00610899 Submitted on 6 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Uplift of quaternary shorelines in eastern Patagonia: Darwin revisited Kevin Pedoja a,⁎, Vincent Regard b,c,d, Laurent Husson e,f, Joseph Martinod b,c,d, Benjamin Guillaume g, Enrique Fucks h, Maximiliano Iglesias i, Pierre Weill a a Laboratoire de Morphodynamique Continentale et Côtière, CNRS, Université de Caen, 14000 Caen, France b Université de Toulouse ; UPS (OMP) ; LMTG ; 14 Av Edouard Belin, F-31400 Toulouse, France c IRD ; LMTG ; F-31400 Toulouse, France d CNRS ; LMTG ; F-31400 Toulouse, France e CNRS UMR 6118, Géosciences Rennes, 35042 Rennes, France f CNRS UMR 6112, Laboratoire de Planétologie et Géodynamique de Nantes, France g Dip.
    [Show full text]
  • Gulf of California - Sea of Cortez Modern Sailing Expeditions
    Gulf of California - Sea of Cortez Modern Sailing Expeditions November 24 to December 4, 2019 Modern Sailing School & Club Cpt Blaine McClish (415) 331 – 8250 Trip Leader THE BOAT — Coho II, 44’ Spencer 1330 Coho II is MSC’s legendary offshore racer/cruiser. She has carried hundreds of MSC students and sailors under the Golden Gate Bridge and onto the Pacific Ocean. At 44.4 feet overall length and 24,000 pounds of displacement, Coho II is built for crossing oceans with speed, seakindly motion, and good performance in both big winds and light airs. • Fast and able bluewater cruiser • Fully equipped for the offshore sailing and cruising experience TRAVEL ARRANGEMENTS You are responsible for booking your own airfare. Direct flights from SFO to La Paz, and Los Cabos to SFO are available but are limited. Flights with layovers in San Diego or Los Angeles will cost less than direct flights. If you would like to use a travel agent to book your flights, we suggest Bob Entwisle at E&E Travel at (415) 819-5665. WHAT TO BRING Luggage Travel light. Your gear should fit in a medium duffel bag and small carry-on bag. Your carry-on should be less than 15 pounds. We recommend using a dry bag or backpack. Both bags should be collapsible for easy storage on the boat in small space. Do not bring bags with hard frames as they are difficult to stow. Gear We have found that people often only use about half of what they bring. A great way to bring only what you use is to lay all your items out and reduce it by 50%.
    [Show full text]
  • April 2021 Serving the Mountain Empire Communities of Canelo, Elgin, Patagonia and Sonoita Vol
    PATAGONIA REGIONAL TIMES APRIL 2021 SERVING THE MOUNTAIN EMPIRE COMMUNITIES OF CANELO, ELGIN, PATAGONIA AND SONOITA VOL. 11 ISSUE 4 housed a number of them, but Increase in these were overflow primarily from the Three Points Station, Town Marshall Resigns he explained. Border Activity Another difference between those years and this year is that Discussed the Border Patrol no longer By Marion Vendituoli houses migrants in detention centers for more than 72 hours. It is now a Approximately 150 people attend- violation of the law, he said, and it is ed a community meeting, held at the not the mission of the Border Patrol Canelo Cowboy Church on March 11. to be a detention facility. According The meeting was a response to con- to a statement provided to the PRT by cerns raised by reports that the Border Robert Bushell, Tucson sector Special Patrol Station was releasing undocu- Operations Supervisor, “CBP has seen mented migrants in Sonoita. a steady increase in border encounters Community Liaison Officer Justin since April 2020, which, aggravated Bartine, from the Sonoita Border Patrol by COVID-19 restrictions and social Station, opened his remarks by saying distancing guidelines, has caused some he was unable to “put out an official facilities to reach maximum safe hold- statement.” He did say that they were ing capacity. Per longstanding practice, expecting to see a “big increase” in when long-term holding solutions asylum seeking immigrants along the aren’t possible, some migrants will Photo by Robert Gay southern border of the U.S. Marshall Joe Patterson informs the Patagonia Town Council Meeting that he be processed for removal, provided a plans to resign effective August 1, 2021 He did not anticipate a large Notice to Appear, and released into number of asylum seekers to come the U.S.
    [Show full text]
  • UC San Diego UC San Diego Previously Published Works
    UC San Diego UC San Diego Previously Published Works Title When land breezes collide: Converging diurnal winds over small bodies of water Permalink https://escholarship.org/uc/item/9dt4w30b Journal Quarterly Journal of the Royal Meteorological Society, 140(685) ISSN 0035-9009 Authors Gille, ST Llewellyn Smith, SG Publication Date 2014 DOI 10.1002/qj.2322 Peer reviewed eScholarship.org Powered by the California Digital Library University of California When land breezes collide: Converging diurnal winds over small bodies of water Sarah T. Gille,a∗ and Stefan G. Llewellyn Smithb,a aScripps Institution of Oceanography, University of California San Diego bDepartment of Mechanical and Aerospace Engineering, University of California San Diego ∗Correspondence to: Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0230. E-mail: [email protected] Over enclosed and semi-enclosed bodies of waters, the land-breeze/sea-breeze circulation is expected to be modified by the presence of opposing coastlines. These effects are studied using satellite scatterometer surface wind observations from the QuikSCAT and ADEOS-2 tandem mission from April to October 2003. Winds are studied for six bodies of water: the Red Sea, the Gulf of California, the Mediterranean, the Adriatic Sea, the Black Sea, and the Caspian Sea. These bodies of water are large enough for the geographic orientation of the diurnal winds relative to the coastline to match the expected orientation for a straight coastline. Land breezes from opposite coastlines converge in the middle of these bodies of water, and in some cases the convergence line is shifted substantially away from the mid-point between opposite coastlines.
    [Show full text]
  • Fisheries and Biodiversity
    First section Fisheries and biodiversity Photo from MiPAAF archive Chapter 2 Ecological aspects Italian seas and the subdivision of the Mediterranean Sea in GSA Considerations on data collection for the evaluation of living resources and the monitoring of fisheries on the fleets that operate in the Mediterranean Sea determined the subdivision of the latter in a series of reference areas for both management activities and scientific surveys. Such areas represent a compromise among legislative, geographic and environmental aspects. The Mediterranean Sea was subdivided in 30 sub-areas, named GSA (Geographic Sub Areas). The term “sub” refers to the fact that the Mediterranean Sea is one of the 60 Large Marine Ecosystems on the planet. Geographical Sub-Areas in the GFCM area were established amending the Resolution GFCM/31/2007/2, on the advise of the GFCM Scientific Advisory Committee (SAC). The 30 areas largely differ in size and characteristics. The geographic division of fisheries areas in the Mediterranean Sea is still evolving and is subject to periodical improvement by SAC. 1 Northern Alboran Sea 11.2 Sardinia (east) 22 Aegean Sea 2 Alboran Island 12 Northern Tunisia 23 Crete Island 3 Southern Alboran Sea 13 Gulf of Hammamet 24 North Levant 4 Algeria 14 Gulf of Gabes 25 Cyprus Island 5 Balearic Island 15 Malta Island 26 South Levant 6 Northern Spain 16 South of Sicily 27 Levant 7 Gulf of Lions 17 Northern Adriatic 28 Marmara Sea 8 Corsica Island 18 Southern Adriatic Sea 29 Black Sea 9 Ligurian and North Tyrrhenian Sea 19 Western Ionian Sea 30 Azov Sea 10 South Tyrrhenian Sea 20 Eastern Ionian Sea 11.1 Sardinia (west) 21 Southern Ionian Sea 17 2.1 Environmental characterisation of fishing areas 2.1.1 GSA 9 - Ligurian and Northern Tyrrhenian Seas Relini G., Sartor P., Reale B., Orsi Relini L., Mannini A., De Ranieri S., Ardizzone G.D., Belluscio A., Serena F.
    [Show full text]
  • Changes in the Benthic Algae Along the Adriatic Sea in the Last Three Decades
    Chemistry and Ecology Vol. 26, Supplement, June 2010, 77–90 Changes in the benthic algae along the Adriatic Sea in the last three decades A. Falacea*, G. Alongib, M. Cormacib, G. Furnarib, D. Curielc, E. Cecered and A. Petrocellid aDepartment of Life Sciences, University of Trieste, Trieste, Italy; bDepartment of Botany, University of Catania, Catania, Italy; cSELC – Venezia-Marghera, Italy; d IAMC-CNR Talassografico ‘A. Cerruti’, Taranto, Italy (Received 25 May 2009; final version received 22 January 2010) This article gives an up-to-date review of the status of and main changes in benthic algal flora that have occurred in recent decades along the Italian Adriatic coastline. Common traits among the main structural/functional changes observed and their causes are discussed. A synthesis of the challenges to and prospects of filling gaps in the data, ecological knowledge and protection measures are also given. Keywords: biodiversity; flora; macrophytobenthos; Adriatic Sea; ecosystem functioning 1. Introduction Over the past three decades, it has been recognised worldwide that spatial and temporal distribution patterns of organisms, species diversity and physical and biological habitat structure have changed as a result of anthropogenic disturbances, defined as any potential source of stress caused by Downloaded By: [Falace, Annalisa] At: 10:44 20 May 2010 human activities. However, change is a main feature of evolution [1], and the number of species in a region is set by a balance between speciation, extinction and the migration of species between regions, all of which can operate over long natural or short man-made time scales. Besides, on a small scale, species composition can be naturally highly variable and rare species may become abundant and vice versa.
    [Show full text]