INFLUENZA D VIRUS Technical Paper Cambridge Technologies

Total Page:16

File Type:pdf, Size:1020Kb

INFLUENZA D VIRUS Technical Paper Cambridge Technologies INFLUENZA D VIRUS Technical Paper Cambridge Technologies Key Points: 1 IDV is a newly identified virus that is in the same family as other influenza viruses. 2 Widespread in the cattle population and commonly found in BRD diagnostic cases. 3 Diagnosis can be made by PCR and virus isolation on nasal swabs. 4 A good candidate for autogenous vaccine, due to a lack of availability of commercial vaccines. Introduction First identified in 2011, Influenza D Development, and Diagnostics at Cam- virus (IDV) has been found in swine, bridge Technologies) was the first to cattle, sheep and goats from multiple isolate this novel virus from an Oklaho- geographic locations worldwide1. A ma hog in 2011. Originally designated member of the Orthomyxoviridae, IDV as C/swine/Oklahoma/1334/2011 (C/ is a single-strand, negative-sense RNA OK), the strain was found to be wide- virus with seven genomic segments. In- spread in cattle throughout the United fluenza C Virus (ICV) is genetically the States6. closest member of the influenza virus AN ONGOING THREAT family, although the two share less than 50% protein sequence identity4. TO CATTLE BRDC is one of the most common, yet most complex, health issues facing today’s cattlemen and veterinarians. Affecting an estimated 97 percent of United States feedlots and 21.2 percent of cattle10, the disease carries an average treatment cost of $23.60 per case15. Often referred to as Shipping Using a combination of diagnostic tests, Fever or Pneumonia, BRDC involves a a research team led by Dr. Ben Hause number of factors such as the age, en- (now the Vice President of Research, vironment, and immunity of the animal as well as numerous bacterial and viral parts of the country for a number of years pathogens. prior. In 2014, Luo, et. al., retrospectively tested sera originally collected from 40 randomly selected Nebraska beef herds in 2003-2004, and found that all 40 contained seropositive adult animals. In addition, approximately 98% of calves born in 2014 had high levels of maternal antibodies against IDV. These results indicated that IDV was present in Nebraska beef cattle Collin, et. al., demonstrated that IDV is since at commonly found in clinical diagnostic least 2003, samples of bovine respiratory disease eight years complex (BRDC), with prevalence simi- prior to the lar to other established BRDC etiological official dis- agents. In addition, they discovered that covery of there are at least two co-circulating lineag- the virus11. es of the strain in U.S. cattle herds, which would indicate that it is endemic in cattle A separate 3 Pictured Above: Positive intense cytoplasmic and that the virus re-assorts frequently . study of staining in trachea respiratory epithelium archived from a calf in T2. One study identified 21 distinct viruses in sera suggested that IDV has been circu- samples taken from a population of feed- lating among cattle in Mississippi since at lot cattle with acute BRDC. Interestingly, least 20045. a statistical analysis of the association between virus detection in asymptomatic DIAGNOSIS and acutely-ill animals found that of those As BRDC often involves a number of 21 viruses, only IDV was a risk factor of bacterial and viral agents, diagnosis can moderate significance (P < 0.15)13. In an- become a multi-step process. Both clinical other study, calves experimentally infected specimens and sera samples can be used in with IDV (via internasal challenge) were an attempt to identify the specific viru- shown to shed virus and seroconvert. The lent strains involved. Nasal swabs can be infected calves transmitted the virus to screened via reverse transcription quanti- IDV-seronegative animals through contact, tative PCR as well as viral isolation, with and they showed mild disease signs (dry further classification conducted with viral coughing, nasal and ocular discharge, de- isolation and sequencing2. pression) as well as tracheal inflammation3. Cambridge Technologies and other select While IDV was first identified in 2011, laboratories have the ability to take the recent studies have indicated that the virus diagnostic process even further, using has been circulating in cattle in different metagenomic sequencing. This process can 2 generate massive amounts of diagnostic technology and inno- veterinarians and their clients sequencing information, utiliz- vative autogenous vaccine formu- a flexible management tool to ing random priming approaches lation, Dr. Hause and Cambridge counter emerging and evolving to non-specifically amplify the Technologies can assist veterinar- diseases, such as the threat nucleic acids present in a sample1. ians and producers in developing of IDV. Metagenomic sequencing brings a targeted, flexible approach CONCLUSION the advantage of not needing against BRDC. proper knowledge of virome Influenza D Virus (IDV) has composition for DNA sequenc- Our industry-leading molecular been shown to be one of numer- ing8, and protocols are available diagnostics, including metag- ous agents in the Bovine Respira- that are capable of detecting both enomics and next-generation tory Disease Complex (BRDC). single-and double-stranded DNA sequencing, identify the specific It is believed to be endemic in U. and RNA viruses9. threats and antigens that need to S. cattle, and is unique among the be included in the product. Then, four known species of A dual approach of real-time the experienced Production team influenza virus. PCR and metagenomics, in care- can formulate and manufacture a fully matched cases and controls, vaccine customized to the needs Cambridge Technologies uti- can provide a rapid means to of each individual customer, lizes cutting-edge diagnostic identify viruses associated com- including antigen concentration, technology to precisely identify plex diseases such as BRDC, multiple adjuvant choices, dose the pathogens contributing to including both close relatives of sizes, and the option of SoliDose BRDC – including IDV. Once the known viruses and “new” highly implants. Should a new strain pathogens have been identified, divergent viruses14. or agent emerge in the future, an autogenous vaccine can be upcoming manufacturing runs of formulated to target those specif- THE CAMBRIDGE the autogenous product can be ADVANTAGE ic bacteria and/or viruses. On- altered to include the new threat. going diagnostic monitoring and Research has shown that an inac- the flexible nature of autogenous tivated IDV vaccine can be pro- Clinical cases of BRD are usually products enable veterinarians and tective against disease caused by treated with antibiotics. However, producers to modify the prod- homologous challenge7. Current- the recent implementation of uct as needed should the disease ly, IDV vaccine is only available in FDA guidance 209 and 213 threats change. autogenous formulation. along with the expansion of the Veterinary Feed Directive has Cambridge Technologies is at the created a need for an forefront of the battle against alternative to man- IDV and BRDC. Our Research aging animal health. and Diagnostic teams are led by Autogenous vaccines Dr. Ben Hause, who first identi- from Cambridge fied IDV. Using industry-leading Technologies offer 3 SOURCES 1. Allander, T, Tammi MT, Eriksson M, Bjerkner A, 9. Hause, BM, Collin EA, Anderson J, Hesse RA, Tiveljung-Lindell A, Andersson B. Cloning of a hu- Anderson G. Bovine rhinitis viruses are common in man parvovirus by molecular screening of respiratory U.S. cattle with bovine respiratory disease. PLaS ONE. tract samples. Proc. Natl Acad Sci. 2005; 102:12891- 2015; 10:e0121998. 12896. 10. Johnson K, Pendell D. Economic Impact of 2. Chipponi C, Faccini S, De Mattia A, Baioni L, Reducing Bovine Respiratory Disease in United States Barbieri I, Rosignoli C, Nigrelli A, Foni E. Detection Beef Cattle Feedlots. https://ageconsearch.umn.edu/ of Influenza D Virus among Swine and Cattle, Italy. record/206872/files/BRD%20poster%20AAEA%20 Emerging Infectious Diseases. 2016; 22(2):352-354. final%20to%20upload%20with%20cover%20page. pdf. Presented July, 2015. Accessed July 22, 2017. 3. Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li, F. Cocirculation of Two Distinct Genetic and Anti- 11. Luo J, Ferguson L, Smith DR, Woolums AR, genetic Lineages of Proposed Influenza D Virus in Epperson WB, Wan XF. Serological evidence for high Cattle. Journal of Virology. 2015; 89(2):1036-1042. prevalence of Influenza D Viruses in Cattle, Nebras- ka, United States, 2003-2004. Virology. 2017; 501:88- 4. Ferguson, L, Olivier AK, Genova S, Epperson WB, 91. Smith DR, Schneider L, Barton K, McCuan K, Webby RJ, Wan, XF. Pathogenesis of Influenza D Virus in 12. Meat & Livestock Australia. Bovine Respiratory Cattle. Journal of Virology. 2016; 90(12): 5636-5642. Disease. https://www.mla.com.au/research-and-de- velopment/animal-health-welfare-and-biosecurity/dis- 5. Ferguson L, Eckard L, Epperson WB, Long LP, eases/infectious/bovine-respiratory-disease/. Updat- Smith D, Huston C, Genova S, Webby R, Wan XF. ed 2016. Accessed July 23, 2017. Influenza D virus infection in Mississippi beef cattle. Virology. 2015; 486:28-34. 13. Mitra, N, Cernicchiaro N, Torres S, Li F, Hause BM. Metagenomic characterization of the virome 6. Hause BM, Collin EA, Liu R, Huang B, Sheng Z, association with bovine respiratory disease in feedlot Lu W, Wang D, Nelson EA, Li F. Characterization of cattle identified novel viruses and suggests an etiologic a Novel Influenza Virus in Cattle and Swine: Proposal role for influenza D virus. Journal of General Virolo- for a New Genus in the Orthomyxoviridae Family. gy. 2016 Aug; 97(8):1771-1784. mBio 5(2):e00031-14. 14. Ng TFF, Kondov NO, Deng X, Van Eenennaam 7. Hause BM, Huntimer L, Falkenberg S, Henningson A, Neibergs H, Delwart E. A Metagenomics and J, Lechtenberg K, Halbur T. An inactivated influenza Case-Control Study to Identify Viruses Associated D virus vaccine partially protects cattle from respira- with Bovine Respiratory Diseases. Journal of Virolo- tory disease caused by homologous challenge.
Recommended publications
  • Epidemiology and Clinical Characteristics of Influenza C Virus
    viruses Review Epidemiology and Clinical Characteristics of Influenza C Virus Bethany K. Sederdahl 1 and John V. Williams 1,2,* 1 Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; [email protected] 2 Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA * Correspondence: [email protected] Received: 30 December 2019; Accepted: 7 January 2020; Published: 13 January 2020 Abstract: Influenza C virus (ICV) is a common yet under-recognized cause of acute respiratory illness. ICV seropositivity has been found to be as high as 90% by 7–10 years of age, suggesting that most people are exposed to ICV at least once during childhood. Due to difficulty detecting ICV by cell culture, epidemiologic studies of ICV likely have underestimated the burden of ICV infection and disease. Recent development of highly sensitive RT-PCR has facilitated epidemiologic studies that provide further insights into the prevalence, seasonality, and course of ICV infection. In this review, we summarize the epidemiology and clinical characteristics of ICV. Keywords: orthomyxoviruses; influenza C; epidemiology 1. Introduction Influenza C virus (ICV) is lesser known type of influenza virus that commonly causes cold-like symptoms and sometimes causes lower respiratory infection, especially in children <2 years of age [1]. ICV is mainly a human pathogen; however, the virus has been detected in pigs, dogs, and cattle, and rare swine–human transmission has been reported [2–6]. ICV seropositivity has been found to be as high as 90% by 7–10 years of age, suggesting that most people are exposed to influenza C virus at least once during childhood [7,8].
    [Show full text]
  • Influenza D Virus of New Phylogenetic Lineage, Japan
    RESEARCH LETTERS of death were higher for patients with multiple and Influenza D Virus of New more severe underlying conditions. Further studies are necessary to better clarify the mechanisms that Phylogenetic Lineage, Japan lead to severe outcomes among these patients. For case-patients infected with MERS-CoV, the Shin Murakami, Ryota Sato, Hiroho Ishida, presence and compounding of underlying condi- Misa Katayama, Akiko Takenaka-Uema, tions, including DM, hypertension, and, ultimately, Taisuke Horimoto COD, corresponded with an increasingly complicated clinical course and death. These findings indicate that Author affiliations: University of Tokyo, Tokyo, Japan increased clinical vigilance is warranted for patients (S. Murakami, H. Ishida, M. Katayama, A. Takenaka-Uema, with multiple and severe underlying conditions who T. Horimoto); Yamagata Livestock Hygiene Service Center, are suspected of being infected with MERS-CoV. Yamagata, Japan (R. Sato) DOI: https://doi.org/10.3201/eid2601.191092 About the Author Influenza D virus (IDV) can potentially cause respiratory Dr. Alanazi is director general of infection prevention and diseases in livestock. We isolated a new IDV strain from control at the Ministry of Health, Riyadh, Saudi Arabia. diseased cattle in Japan; this strain is phylogenetically His research interests include prevention and control of and antigenically distinguished from the previously de- infectious diseases in the healthcare setting. scribed IDVs. nfluenza D virus (IDV; family Orthomyxoviridae) is References 1. World Health Organization. Regional office for the Eastern Ione of the possible bovine respiratory disease com- Mediterranean. MERS situation update; October 2018 [cited plex (BRDC) causative agents. IDVs are detected in and 2019 Oct 30]. http://www.emro.who.int/pandemic- isolated from cattle in many countries in North Amer- epidemic-diseases/mers-cov/mers-situation-update- ica, Asia, Europe, and Africa (1–4).
    [Show full text]
  • A Mini Review of the Zoonotic Threat Potential of Influenza Viruses, Coronaviruses, Adenoviruses, and Enteroviruses
    MINI REVIEW published: 09 April 2018 doi: 10.3389/fpubh.2018.00104 A Mini Review of the Zoonotic Threat Potential of influenza viruses, Coronaviruses, Adenoviruses, and Enteroviruses Emily S. Bailey1,2*, Jane K. Fieldhouse1,2, Jessica Y. Choi 1,2 and Gregory C. Gray1,2,3,4 1 Duke Global Health Institute, Duke University, Durham, NC, United States, 2 Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States, 3 Global Health Research Center, Duke-Kunshan University, Kunshan, China, 4 Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore During the last two decades, scientists have grown increasingly aware that viruses are emerging from the human–animal interface. In particular, respiratory infections are problematic; in early 2003, World Health Organization issued a worldwide alert for a previously unrecognized illness that was subsequently found to be caused by a novel Edited by: Margaret Ip, coronavirus [severe acute respiratory syndrome (SARS) virus]. In addition to SARS, The Chinese University other respiratory pathogens have also emerged recently, contributing to the high bur- of Hong Kong, China den of respiratory tract infection-related morbidity and mortality. Among the recently Reviewed by: Peng Yang, emerged respiratory pathogens are influenza viruses, coronaviruses, enteroviruses, Beijing Center for Disease and adenoviruses. As the genesis of these emerging viruses is not well understood Prevention and Control, China and their detection normally occurs after they have crossed over and adapted to man, Sergey Eremin, World Health Organization ideally, strategies for such novel virus detection should include intensive surveillance at (Switzerland), Switzerland the human–animal interface, particularly if one believes the paradigm that many novel *Correspondence: emerging zoonotic viruses first circulate in animal populations and occasionally infect Emily S.
    [Show full text]
  • Current and Novel Approaches in Influenza Management
    Review Current and Novel Approaches in Influenza Management Erasmus Kotey 1,2,3 , Deimante Lukosaityte 4,5, Osbourne Quaye 1,2 , William Ampofo 3 , Gordon Awandare 1,2 and Munir Iqbal 4,* 1 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra P.O. Box LG 54, Ghana; [email protected] (E.K.); [email protected] (O.Q.); [email protected] (G.A.) 2 Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana 3 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; [email protected] 4 The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK; [email protected] 5 The University of Edinburgh, Edinburgh, Scotland EH25 9RG, UK * Correspondence: [email protected] Received: 20 May 2019; Accepted: 17 June 2019; Published: 18 June 2019 Abstract: Influenza is a disease that poses a significant health burden worldwide. Vaccination is the best way to prevent influenza virus infections. However, conventional vaccines are only effective for a short period of time due to the propensity of influenza viruses to undergo antigenic drift and antigenic shift. The efficacy of these vaccines is uncertain from year-to-year due to potential mismatch between the circulating viruses and vaccine strains, and mutations arising due to egg adaptation. Subsequently, the inability to store these vaccines long-term and vaccine shortages are challenges that need to be overcome. Conventional vaccines also have variable efficacies for certain populations, including the young, old, and immunocompromised.
    [Show full text]
  • OPTIONS X Programme
    Options X for the Control of Influenza | WELCOME MESSAGES BREAKTHROUGH INFLUENZA VACCINES TAKE LARGE DOSES OF INNOVATION Protecting people from the ever-changing threat of influenza takes unwavering commitment. That’s why we’re dedicated to developing advanced technologies and vaccines that can fight influenza as it evolves. We’re with you. ON THE FRONT LINETM BREAKTHROUGH INFLUENZA VACCINES TAKE LARGE DOSES OF INNOVATION CONTENT OPTIONS X SUPPORTERS ------------------- 4 OPTIONS X EXHIBITORS & COMMITTEES ------------------- 5 AWARD INFORMATION ------------------- 6 WELCOME MESSAGES ------------------- 7 SCHEDULE AT A GLANCE ------------------- 10 CONFERENCE INFORMATION ------------------- 11 SOCIAL PROGRAMME ------------------- 14 ABOUT SINGAPORE ------------------- 15 SUNTEC FLOORPLAN ------------------- 16 SCIENTIFIC COMMUNICATIONS ------------------- 17 PROGRAMME ------------------- 19 SPEAKERS ------------------- 31 SPONSORED SYMPOSIA ------------------- 39 ORAL PRESENTATION LISTINGS ------------------- 42 POSTER PRESENTATION LISTINGS ------------------- 51 ABSTRACTS POSTER DISPLAY LISTINGS ------------------- 54 SPONSOR AND EXHIBITOR LISTINGS ------------------- 80 EXHIBITION FLOORPLAN ------------------- 83 Protecting people from the ever-changing threat of NOTE ------------------- 84 influenza takes unwavering commitment. That’s why we’re dedicated to developing advanced technologies and vaccines that can fight influenza as it evolves. We’re with you. ON THE FRONT LINETM Options X for the Control of Influenza | OPTIONS X SUPPORTERS
    [Show full text]
  • Detection of Common Respiratory Viruses in Patients with Acute Respiratory Infections Using Multiplex Real-Time RT-PCR
    Uncorrected Proof Jundishapur J Microbiol. 2019 November; 12(11):e96513. doi: 10.5812/jjm.96513. Published online 2019 December 31. Research Article Detection of Common Respiratory Viruses in Patients with Acute Respiratory Infections Using Multiplex Real-Time RT-PCR Niloofar Neisi 1, 2, Samaneh Abbasi 3, Manoochehr Makvandi 1, 2, *, Shokrollah Salmanzadeh 4, Somayeh Biparva 5, Rahil Nahidsamiei 1, 2, Mehran Varnaseri Ghandali 4, Mojtaba Rasti 1, 2 and Kambiz Ahmadi Angali 6 1Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 2Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 3Abadan Faculty of Medical Sciences, Abadan, Iran 4Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 5Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 6Biostatistics Department, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran *Corresponding author: Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Email: [email protected] Received 2019 July 21; Revised 2019 December 07; Accepted 2019 December 19. Abstract Background: Acute respiratory infection (ARI) is caused by human metapneumovirus (HMPV), respiratory syncytial virus type A and B (RSV-A, RSV-B), human parainfluenza viruses 1, 2, and 3 (HPIV-1, HPIV-2, and HPIV-3), influenza viruses A and B (IfV-A, IfV-B), and human coronaviruses (OC43/HKU1, NL63, 229E) worldwide. Objectives: This study was conducted to assess the causative agents of viral ARI among hospitalized adults by real-time PCR. Methods: Clinical nasopharyngeal swabs of 112 patients including 55 (49.1%) males and 57 (50.89%) females with ARI were analyzed using multiplex real-time RT-PCR.
    [Show full text]
  • Influenza D Virus Infection in Herd of Cattle, Japan
    LETTERS 2. Hennessey M, Fischer M, Staples JE. Zika virus spreads to new virus from pigs with respiratory illness in Oklahoma in areas—region of the Americas, May 2015–January 2016. MMWR 2011 (1,2), epidemiologic analyses suggested that cattle Morb Mortal Wkly Rep. 2016;65:55–8. http://dx.doi.org/10.15585/ mmwr.mm6503e1 are major reservoirs of this virus (3) and the virus is poten- 3. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. tially involved in the bovine respiratory disease complex. Rapid detection and typing of dengue viruses from clinical samples The high rates of illness and death related to this disease by using reverse transcriptase-polymerase chain reaction. in feedlot cattle are caused by multiple factors, includ- J Clin Microbiol. 1992;30:545–51. 4. Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, ing several viral and bacterial co-infections. Influenza D Lambert AJ, et al. Chikungunya virus in US travelers returning viruses were detected in cattle and pigs with respiratory from India, 2006. Emerg Infect Dis. 2007;13:764–7. diseases (and in some healthy cattle) in China (4), France http://dx.doi.org/10.3201/eid1305.070015 (5), Italy (6), among other countries, indicating their wide 5. Ayers M, Adachi D, Johnson G, Andonova M, Drebot M, Tellier R. A single tube RT-PCR assay for the detection of mosquito-borne global geographic distribution. Although the influenza D flaviviruses. J Virol Methods. 2006;135:235–9. virus, like the human influenza C virus, is known to use http://dx.doi.org/10.1016/j.jviromet.2006.03.009 9-O-acetylated sialic acids as the cell receptor (2,7), its 6.
    [Show full text]
  • Taxonomy and Comparative Virology of the Influenza Viruses
    2 Taxonomy and Comparative Virology of the Influenza Viruses INTRODUCTION Viral taxonomy has evolved slowly (and often contentiously) from a time when viruses were identified at the whim of the investigator by place names, names of persons (investigator or patient), sigla, Greco-Latin hybrid names, host of origin, or name of associated disease. Originally studied by pathologists and physicians, viruses were first named for the diseases they caused or the lesions they induced. Yellow fever virus turned its victims yellow with jaundice, and the virus now known as poliovirus destroyed the anterior horn cells or gray (polio) matter of the spinal cord. But the close kinship of polioviruses with coxsackievirus B1, the cause of the epidemic pleurodynia, is not apparent from names derived variously from site of pathogenic lesion and place of original virus isolation (Cox­ sackie, New York). In practice, many of the older names of viruses remain in common use, but the importance of a formal, more regularized approach to viral classification has been increasingly recognized by students and practitioners of virology as more basic information has become available about the nature of viruses. Accordingly, the International Committee on Taxonomy of Viruses has devised a generally ac­ cepted system for the classification and nomenclature of viruses that serves the needs of comparative virology in formulating regular guidelines for viral nomen­ clature. Although this nomenclature remains highly diversified and at times in­ consistent, retaining many older names, it affirms "an effort ... toward a latinized nomenclature" (Matthews, 1981) and places primary emphasis on virus structure and replication in viral classification.
    [Show full text]
  • Influenza Virus Effects and Its Preventive Measures
    General Medicine: Open Access Perspective Influenza Virus Effects and Its Preventive Measures Desmond Gul* Department of Public Health and Community Medicine, University of New South Wales, Sydney, Australia ABSTRACT Influenza is an acute communicable disease that spreads from one individual to another. Influenza virus is also known as Flu and it is responsible for affecting Upper Respiratory Tract Infections (URTI). Influenza virus is different from common cold and sometimes it may cause death. It spreads rapidly in seasonal epidemic conditions. It occurs every autumn and winter season. It affects all the age groups, but it is chronic in pregnant women, children under 5 months, aged persons, whose immunity is very low. This study focused on the types, signs and symptoms, complications, treatment and preventive measures of Influenza Virus. Keywords: Influenza; Respiratory tract; Medical condition; Anti-viral drugs TYPES of the people with fever and other symptoms will recover within a week without any medical treatment. But it can cause death in There are four categories of influenza viruses A, B, C and D. chronic condition. During epidemic season, human infections are caused by Influenza virus A and B. COMPLICATIONS • Influenza A viruses are divided into two sub-types based on the Influenza is a serious medical condition. Influenza virus may presence of protein on the surface of the virus, Hemagglutinin lead to death in individuals with immune hypersensitivity like (H) and Neuraminidase (N). There are about 18 different infants and aged people. People who are suffering with diabetes hemagglutinin subtypes and 11 different neuraminidase and lung infections are at high risk of this infection, it may lead subtypes.
    [Show full text]
  • Influenza D Virus: Serological Evidence in the Italian Population
    viruses Article Influenza D Virus: Serological Evidence in the Italian Population from 2005 to 2017 1, 1, 1, 2 3 Claudia M. Trombetta * , Serena Marchi y , Ilaria Manini y , Otfried Kistner , Feng Li , Pietro Piu 2, Alessandro Manenti 4, Fabrizio Biuso 4, Chithra Sreenivasan 3, Julian Druce 5 and Emanuele Montomoli 1,2,4 1 Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy; [email protected] (S.M.); [email protected] (I.M.); [email protected] (E.M.) 2 VisMederi srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; [email protected] (O.K.); [email protected] (P.P.) 3 Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; [email protected] (F.L.); [email protected] (C.S.) 4 VisMederi Research srl, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; [email protected] (A.M.); [email protected] (F.B.) 5 Victorian Infectious Diseases Reference Laboratory, 792 Elizabeth Street, Melbourne, VIC 3000, Australia; [email protected] * Correspondence: [email protected]; Tel.: +39-0577-232100 These authors contributed equally to this article. y Received: 28 November 2019; Accepted: 24 December 2019; Published: 27 December 2019 Abstract: Influenza D virus is a novel influenza virus, which was first isolated from an ailing swine in 2011 and later detected in cattle, suggesting that these animals may be a primary natural reservoir. To date, few studies have been performed on human samples and there is no conclusive evidence on the ability of the virus to infect humans.
    [Show full text]
  • Influenza Sampler
    Influenza Sampler Presenting sample chapters on influenza from the Manual of Clinical Microbiology, 12th Edition, Chapter 86 “Influenza Viruses” by Robert L. Atmar This chapter discusses seasonal influenza strains as well as novel swine and avian influenza strains that can infect people and have pandemic potential. Chapter 83 “Algorithms for Detection and Identification of Viruses” by Marie Louise Landry, Angela M. Caliendo, Christine C. Ginocchio, Randall Hayden, and Yi-Wei Tang This chapter outlines technological advances for the diagnosis of viral infections. Chapter 113 “Antiviral Agents” by Carlos A.Q. Santos and Nell S. Lurian This chapter reviews antiviral agents approved by FDA and their mechanism(s) of action. Photo Credit: CDC/ Douglas Jordan, Dan Higgins Influenza Viruses* ROBERT L. ATMAR Send proofs to: Robert L. Atmar Email: [email protected] and to editors: [email protected] [email protected] [email protected] 86 TAXONOMY The segmented genome of influenza viruses allows the The influenza viruses are members of the family Orthomyxo- exchange of one or more gene segments between two viruses viridae. Antigenic differences in two major structural pro- when both infect a single cell. This exchange is called teins, the matrix protein (M) and the nucleoprotein (NP), genetic reassortment and results in the generation of new and phylogenetic analyses of the virus genome are used to strains containing a mix of genes from both parental viruses. separate the influenza viruses into four genera within the Genetic reassortment between human and avian influenza family: Influenzavirus A, Influenzavirus B, Influenzavirus C, virus strains led to the generation of the 1957 H2N2 and and Influenzavirus D.
    [Show full text]
  • Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider
    March 12, 2021 Supplemental Tables and Figures Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider Gregory C. Gray1,2,3,4*, Emily R. Robie1,2, Caleb J. Studstill1,2, and Charles L. Nunn2,5 1 Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, 27710 USA; [email protected] (E.R.R.); [email protected] (C.J.S.) 2 Duke Global Health Institute, Duke University, Durham, NC, 27710 USA; [email protected] 3 Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, 169856 4 Global Health Center, Duke Kunshan University, Kunshan, China 215316 5 Evolutionary Anthropology, Duke University, Durham, NC, 27710 USA * Correspondence: [email protected]; Tel.: +1-919-684-1032 1 Table S1. Published studies reporting human metapneumovirus (hMPV) related mortalities. Time Frame of Cases of hMPV Deaths attributed Source Sample Collection identified to hMPV Country Englund JA, Boeckh M, Kuypers J, et al. Brief communication: Fatal human metapneumovirus infection in stem-cell transplant 1995 – 1999 5 4 -- recipients. Ann Intern Med. 2006;144(5):344-349. Pelletier G, Déry P, Abed Y, Boivin G. Respiratory tract reinfections by the new human Metapneumovirus in an immunocompromised 1999 1 1 Canada child. Emerg Infect Dis. 2002;8(9):976-978. doi:10.3201/eid0809.020238 Falsey AR, Erdman D, Anderson LJ, Walsh EE. Human metapneumovirus infections in young and elderly adults. J Infect Dis. 1999 – 2001 44 1 US 2003;187(5):785-790. doi:10.1086/367901 Walsh EE, Peterson DR, Falsey AR. Human Metapneumovirus 1999 - 2003 Infections in Adults: Another Piece of the Puzzle.
    [Show full text]