Prevention of Blindness in Leprosy and the Role of the Vision 2020 Programme
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taking the Mystery out of Abnormal Pupils
Taking the mystery out of abnormal pupils No financial disclosures Course Title: Taking the mystery out [email protected] of abnormal pupils Lecturer: Brad Sutton, OD, FAAO Clinical Professor IU School of Optometry . •Review of Anatomy Iris anatomy Iris sphincter Iris dilator Parasympathetic pathway Sympathetic pathway Parasympathetic Pathway Parasympathetic Pathway Light stimulates the retina then impulse Four neuron arc travels with the ganglion cells through the Retina to the pretectal nucleus in the chiasm into the optic tracts. 80% go to the midbrain (1) LGN , 20% to the pretectal nuclei.They Pretectal nucleus to the EW nucleus (2) then hemidecussate and terminate at the EW nucleus EW nucleus to the ciliary ganglion (3) Ciliary ganglion to the iris sphincter with short ciliary nerves (4) 1 Points of Interest Sympathetic Pathway Within the second order neuron there are Three neuron arc 30 near response fibers for every light Posterior hypothalamus to ciliospinal response fiber. This allows for light - near center of Budge ( C8 - T2 ). (1) dissociation. Center of Budge to the superior cervical The third order neuron runs with cranial ganglion in the neck (2) nerve III from the brain stem to the ciliary Superior cervical ganglion to the dilator ganglion. Superficially located prior to the muscle (3) cavernous sinus. Points of Interest Second order neuron runs along the surface of the lung, can be affected by a Pancoast tumor Third order neuron runs with the carotid artery then with the ophthalmic division of cranial nerve V 2 APD Testing testing……………….AKA……… … APD / reverse APD Direct and consensual response Which is the abnormal pupil ? Very simple rule. -
Special Considerations in Cataract Surgery: Five Cornea Challenges
Clinical Update EXTRA CONTENT AVAILABLE CATARACT Special Considerations in Cataract Surgery: Five Cornea Challenges by linda roach, contributing writer interviewing preston h. blomquist, md, rosa a. braga-mele, md, kimberly a. drenser, md, phd, herbert e. kaufman, md, marguerite mcdonald, md, and roger f. steinert, md s the most common surgical choices, said Marguerite McDonald, IOL Selection procedure in ophthalmol- MD, of Lynbrook, N.Y. The device en- ogy, replacement of a cloudy ables the surgeon to directly measure 1 crystalline lens with an the eye’s aphakic refractive power in intraocular lens (IOL) usu- the operating room. Aally presents the ophthalmologist with Using intraoperative aberrometry is familiar sets of surgical routines. But becoming more commonplace, as “it what about those cases that involve may help in achieving more accuracy comorbidities or other complicating with IOL power selection,” Dr. Mc- factors? Donald said. Several experts shared their per- Tips on IOL selection. The chosen spectives on approaching out-of-the- IOL should be shaped to neutralize After an off-center LASIK procedure ordinary cataract surgeries in ways spherical aberrations, said Rosa A. such as this, the irregularity of the that offer the best chance at optimiz- Braga-Mele, MD, at the University of corneal topography indicates that a ing patient outcomes. This month, Toronto. “In anybody who has had multifocal IOL should be avoided. here’s a look at five challenges involv- myopic LASIK or PRK, I think it’s very ing the cornea. important to use a negatively aspheric prior to cataract surgery. 2) A dysfunc- IOL, because these patients have more tional, unstable tear film will affect the Challenge: Prior Refractive Surgery positively aberrant corneas. -
Changes in Ocular Rigidityin Endocrine Exophthalmos
Br J Ophthalmol: first published as 10.1136/bjo.42.11.680 on 1 November 1958. Downloaded from Brit. J. Ophthal. (1958) 42, 680. CHANGES IN OCULAR RIGIDITY IN ENDOCRINE EXOPHTHALMOS* BY R. WEEKERS AND G. LAVERGNE From the Ophthalmological Clinic, Lie'ge University Two types of endocrine exophthalmos are frequently distinguished, being referred to thyrotoxic or hyperthyroid exophthalmos, and thyrotropic, ophthahnoplegic, or oedematous exophthalmos. (a) Hyperthyroid or Thyrotoxic Exophthalmos.-This accompanies Graves's disease and is, therefore, much more frequently seen in females than in males. In the majority of cases the exophthalmos is quite unobtrusive or there is merely an appearance of exophthalmos due to retraction of the upper lid. It is associated with a decreased frequency of blinking and a fixed stare. The majority of authors agree that these symptoms should be attributed to an increase in tone of the sym- pathetic system. The importance of the pituitary thyrotropic hormone in thiscopyright. clinical picture is not clear. Hyperthyroid exophthalmos is not complicated either by chemosis or by diplopia, but heterophoria and lack of convergence are often seen. (b) Thyrotropic, Ophthalmoplegic, or Oedematous Exophthalmos.-This may occur either in a subject suffering from verified and treated hyperthyroidism, when the signs of thyrotoxicosis are about to disappear, or in an apparently normal subject free from any thyroid symptom or history of symptoms. The second type http://bjo.bmj.com/ is more frequently seen in males than in females. Thyrotropic exophthalmos is often very marked'and may even lead to irreducible lagophthalmos; it is invariably associated with a disturbance of ocular movements, particularly with elevation of the gaze. -
Eyelid Conjunctival Tumors
EYELID &CONJUNCTIVAL TUMORS PHOTOGRAPHIC ATLAS Dr. Olivier Galatoire Dr. Christine Levy-Gabriel Dr. Mathieu Zmuda EYELID & CONJUNCTIVAL TUMORS 4 EYELID & CONJUNCTIVAL TUMORS Dear readers, All rights of translation, adaptation, or reproduction by any means are reserved in all countries. The reproduction or representation, in whole or in part and by any means, of any of the pages published in the present book without the prior written consent of the publisher, is prohibited and illegal and would constitute an infringement. Only reproductions strictly reserved for the private use of the copier and not intended for collective use, and short analyses and quotations justified by the illustrative or scientific nature of the work in which they are incorporated, are authorized (Law of March 11, 1957 art. 40 and 41 and Criminal Code art. 425). EYELID & CONJUNCTIVAL TUMORS EYELID & CONJUNCTIVAL TUMORS 5 6 EYELID & CONJUNCTIVAL TUMORS Foreword Dr. Serge Morax I am honored to introduce this Photographic Atlas of palpebral and conjunctival tumors,which is the culmination of the close collaboration between Drs. Olivier Galatoire and Mathieu Zmuda of the A. de Rothschild Ophthalmological Foundation and Dr. Christine Levy-Gabriel of the Curie Institute. The subject is now of unquestionable importance and evidently of great interest to Ophthalmologists, whether they are orbital- palpebral specialists or not. Indeed, errors or delays in the diagnosis of tumor pathologies are relatively common and the consequences can be serious in the case of malignant tumors, especially carcinomas. Swift diagnosis and anatomopathological confirmation will lead to a treatment, discussed in multidisciplinary team meetings, ranging from surgery to radiotherapy. -
Miotics in Closed-Angle Glaucoma
Brit. J. Ophthal. (I975) 59, 205 Br J Ophthalmol: first published as 10.1136/bjo.59.4.205 on 1 April 1975. Downloaded from Miotics in closed-angle glaucoma F. GANIAS AND R. MAPSTONE St. Paul's Eye Hospital, Liverpool The initial treatment of acute primary closed-angle Table i Dosage in Groups I, 2, and 3 glaucoma (CAG) is directed towards lowering intraocular pressure (IOP) to normal levels as Group Case no. Duration IOP Time rapidly as possible. To this end, aqueous inflow is (days) (mm. Hg) (hrs) reduced by a drug such as acetazolamide (Diamox), and aqueous outflow is increased via the trabecular I I 2 8 5 meshwork by opening the closed angle with miotics. 3 7 21 3 The use of miotics is of respectable lineage and hal- 5 '4 48 7 lowed by usage, but regimes vary from "intensive" 7 8 I4 5 9 I0 I8 6 (i.e. frequent) to "occasional" (i.e. infrequent) instilla- I I 2 12 6 tions. Finally, osmotic agents are used after a variable '3 5 20 6 interval of time if the IOP remains raised. Tlle pur- I5 '4 I8 6 pose of this paper is to investigate the value of '7 '4 i6 6 miotics in the initial treatment of CAG. I9 6 02 2 2 2 8 2I 5 Material and methods 4 20t 20 6 Twenty patients with acute primary closed-angle glau- 6 I i8 5 http://bjo.bmj.com/ coma were treated, alternately, in one of two ways 8 4 i8 5 detailed below: I0 6 I8 6 I2 I0 20 6 (I) Intravenous Diamox 500 mg. -
Eye Disease 1 Eye Disease
Eye disease 1 Eye disease Eye disease Classification and external resources [1] MeSH D005128 This is a partial list of human eye diseases and disorders. The World Health Organisation publishes a classification of known diseases and injuries called the International Statistical Classification of Diseases and Related Health Problems or ICD-10. This list uses that classification. H00-H59 Diseases of the eye and adnexa H00-H06 Disorders of eyelid, lacrimal system and orbit • (H00.0) Hordeolum ("stye" or "sty") — a bacterial infection of sebaceous glands of eyelashes • (H00.1) Chalazion — a cyst in the eyelid (usually upper eyelid) • (H01.0) Blepharitis — inflammation of eyelids and eyelashes; characterized by white flaky skin near the eyelashes • (H02.0) Entropion and trichiasis • (H02.1) Ectropion • (H02.2) Lagophthalmos • (H02.3) Blepharochalasis • (H02.4) Ptosis • (H02.6) Xanthelasma of eyelid • (H03.0*) Parasitic infestation of eyelid in diseases classified elsewhere • Dermatitis of eyelid due to Demodex species ( B88.0+ ) • Parasitic infestation of eyelid in: • leishmaniasis ( B55.-+ ) • loiasis ( B74.3+ ) • onchocerciasis ( B73+ ) • phthiriasis ( B85.3+ ) • (H03.1*) Involvement of eyelid in other infectious diseases classified elsewhere • Involvement of eyelid in: • herpesviral (herpes simplex) infection ( B00.5+ ) • leprosy ( A30.-+ ) • molluscum contagiosum ( B08.1+ ) • tuberculosis ( A18.4+ ) • yaws ( A66.-+ ) • zoster ( B02.3+ ) • (H03.8*) Involvement of eyelid in other diseases classified elsewhere • Involvement of eyelid in impetigo -
A Rare Presentation of Lower Conjunctival Fornix Eyelashes Cyst Dr Mohammad Aldroos (MD)* *Department of Ophthalmology, Jordanian Royal Medical Services
Int J Biol Med Res.2018 ;9(1):6259-6260 Int J Biol Med Res www.biomedscidirect.com Volume 6, Issue 2, April 2015 Contents lists available at BioMedSciDirect Publications International Journal of Biological & Medical Research Journal homepage: www.biomedscidirect.com BioMedSciDirect International Journal of Publications BIOLOGICAL AND MEDICAL RESEARCH Case report A rare presentation of lower conjunctival fornix eyelashes cyst Dr Mohammad Aldroos (MD)* *Department of Ophthalmology, Jordanian Royal Medical Services A R T I C L E I N F O A B S T R A C T Keywords: Purpose: To describe a rare presentation of a right lower conjunctival fornix eyelashes cyst. Case Report: A 56 year-old lady presented to our clinic complaining of blackish mass in the lower conjunctival fornix of the right eye ( see fig.1), with mild conjunctival hyperemia around the mass. There was no history of discharge and difficulty in extraocular muscles movements also there was no history of trauma. A gradually enlarging mass over the past few years with recurrent conjunctivitis. Slit lamp examination of the mass showed normal appearing eyelashes surrounded by capsule only. The mass was surgically excised with good cosmetic appearance and without any complications c Copyright 2010 BioMedSciDirect Publications IJBMR - ISSN: 0976:6685. All rights reserved. Introduction Fig.2 Eyelashes grow on the edge of the eyelid. A normal eyelid has a single row of eyelashes located along its anterior margin. The posterior portion of the lid contains a row of Meibomian glands orifices, which secrete the oily component of the tear film (1). There are approximately 100 eye lashes on the upper lid and approximately 50-75 on the lower lid, they protect the eyeball. -
Ophthalmic and Adnexal Complications of Radiotherapy
Acta Ophthalmologica Scandinavica 2007 Review Article Ophthalmic and adnexal complications of radiotherapy Shane R. Durkin,1 Daniel Roos,2 Braden Higgs,2 Robert J. Casson1,3 and Dinesh Selva1,3 1Department of Ophthalmology and Visual Sciences, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia 2Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia 3Department of Medicine and Surgery, University of Adelaide, Royal Adelaide Hospital, Adelaide South Australia, Australia ABSTRACT. The efficacy of radiotherapy is The role of radiotherapy in ophthalmic practice continues to grow. This determined by aspects of radiation growth has seen an expansion of indications for radiotherapy, a refinement of delivery and the biological conse- the modalities that can be used and a reduction in the ocular and adnexal com- quences to the tumour and normal tis- plications that result from this form of therapy. The compendium of indica- sues. By giving radiation doses over a tions for radiotherapy in ophthalmology continues to grow and now includes number of fractions, damage to nor- many conditions such as the treatment of lid and adnexal disease, ocular sur- mal tissues can be reduced due to the repair of sublethal damage between face disorders and both benign and malignant disease of the posterior segment fractions and repopulation of cells and optic pathways. The radiotherapeutic modalities employed to manage during the course of treatment. these conditions are numerous and include -
Drug Class Review Ophthalmic Cholinergic Agonists
Drug Class Review Ophthalmic Cholinergic Agonists 52:40.20 Miotics Acetylcholine (Miochol-E) Carbachol (Isopto Carbachol; Miostat) Pilocarpine (Isopto Carpine; Pilopine HS) Final Report November 2015 Review prepared by: Melissa Archer, PharmD, Clinical Pharmacist Carin Steinvoort, PharmD, Clinical Pharmacist Gary Oderda, PharmD, MPH, Professor University of Utah College of Pharmacy Copyright © 2015 by University of Utah College of Pharmacy Salt Lake City, Utah. All rights reserved. Table of Contents Executive Summary ......................................................................................................................... 3 Introduction .................................................................................................................................... 4 Table 1. Glaucoma Therapies ................................................................................................. 5 Table 2. Summary of Agents .................................................................................................. 6 Disease Overview ........................................................................................................................ 8 Table 3. Summary of Current Glaucoma Clinical Practice Guidelines ................................... 9 Pharmacology ............................................................................................................................... 10 Methods ....................................................................................................................................... -
Canine Red Eye Elizabeth Barfield Laminack, DVM; Kathern Myrna, DVM, MS; and Phillip Anthony Moore, DVM, Diplomate ACVO
PEER REVIEWED Clinical Approach to the CANINE RED EYE Elizabeth Barfield Laminack, DVM; Kathern Myrna, DVM, MS; and Phillip Anthony Moore, DVM, Diplomate ACVO he acute red eye is a common clinical challenge for tion of the deep episcleral vessels, and is characterized general practitioners. Redness is the hallmark of by straight and immobile episcleral vessels, which run Tocular inflammation; it is a nonspecific sign related 90° to the limbus. Episcleral injection is an external to a number of underlying diseases and degree of redness sign of intraocular disease, such as anterior uveitis and may not reflect the severity of the ocular problem. glaucoma (Figures 3 and 4). Occasionally, episcleral Proper evaluation of the red eye depends on effective injection may occur in diseases of the sclera, such as and efficient diagnosis of the underlying ocular disease in episcleritis or scleritis.1 order to save the eye’s vision and the eye itself.1,2 • Corneal Neovascularization » Superficial: Long, branching corneal vessels; may be SOURCE OF REDNESS seen with superficial ulcerative (Figure 5) or nonul- The conjunctiva has small, fine, tortuous and movable vessels cerative keratitis (Figure 6) that help distinguish conjunctival inflammation from deeper » Focal deep: Straight, nonbranching corneal vessels; inflammation (see Ocular Redness algorithm, page 16). indicates a deep corneal keratitis • Conjunctival hyperemia presents with redness and » 360° deep: Corneal vessels in a 360° pattern around congestion of the conjunctival blood vessels, making the limbus; should arouse concern that glaucoma or them appear more prominent, and is associated with uveitis (Figure 4) is present1,2 extraocular disease, such as conjunctivitis (Figure 1). -
Pediatric Pharmacology and Pathology
7/31/2017 In the next 2 hours……. Pediatric Pharmacology and Pathology . Ocular Medications and Children The content of th is COPE Accredited CE activity was prepared independently by Valerie M. Kattouf O.D. without input from members of the optometric community . Brief review of examination techniques/modifications for children The content and format of this course is presented without commercial bias and does not claim superiority of any commercial product or service . Common Presentations of Pediatric Pathology Valerie M. Kattouf O.D., F.A.A.O. Illinois College of Optometry Chief, Pediatric Binocular Vision Service Associate Professor Ocular Medications & Children Ocular Medications & Children . Pediatric systems differ in: . The rules: – drug excretion – birth 2 years old = 1/2 dose kidney is the main site of drug excretion – 2-3 years old = 2/3 dose diminished 2° renal immaturity – > 3 years old = adult dose – biotransformation liver is organ for drug metabolism Impaired 2° enzyme immaturity . If only 50 % is absorbed may be 10x maximum dosage Punctal Occlusion for 3-4 minutes ↓ systemic absorption by 40% Ocular Medications & Children Ocular Medications & Children . Systemic absorption occurs through….. Ocular Meds with strongest potential for pediatric SE : – Mucous membrane of Nasolacrimal Duct 80% of each gtt passing through NLD system is available for rapid systemic absorption by the nasal mucosa – 10 % Phenylephrine – Conjunctiva – Oropharynx – 2 % Epinephrine – Digestive system (if swallowed) Modified by variation in Gastric pH, delayed gastric emptying & intestinal mobility – 1 % Atropine – Skin (2° overflow from conjunctival sac) Greatest in infants – 2 % Cyclopentalate Blood volume of neonate 1/20 adult Therefore absorbed meds are more concentrated at this age – 1 % Prednisone 1 7/31/2017 Ocular Medications & Children Ocular Medications & Children . -
Mydriasis Associated with Local Dysfunction of Parasympathetic Nerves in Two Dogs
NOTE Internal Medicine Mydriasis Associated with Local Dysfunction of Parasympathetic Nerves in Two Dogs Teppei KANDA1), Kazuhiro TSUJI1), Keiko HIYAMA2), Takeshi TSUKA1), Saburo MINAMI1), Yoshiaki HIKASA1), Toshinori FURUKAWA3) and Yoshiharu OKAMOTO1)* 1)Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4–101, Koyama-minami, Tottori 680–8553, 2)Takamori Animal Hospital, 3706–2, Agarimichi, Sakaiminato, Tottori 684–0033 and 3)Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and the Arts, 2640, Tsurajima-nishinoura, Kurashiki, Okayama 712–8505, Japan. (Received 13 August 2009/Accepted 16 November 2009/Published online in J-STAGE 9 December 2009) ABSTRACT. In clinical practice, photophobia resulting from persistent mydriasis may be associated with dysfunction of ocular parasympa- thetic nerves or primary iris lesions. We encountered a 5-year-old Miniature Dachshund and a 7-year-old Shih Tzu with mydriasis, abnormal pupillary light reflexes, and photophobia. Except for sustained mydriasis and photophobia, no abnormalities were detected on general physical examination or ocular examination of either dog. We performed pharmacological examinations using 0.1% and 2% pilo- carpine to evaluate and diagnose parasympathetic denervation of the affected pupillary sphincter muscles. On the basis of the results, we diagnosed a pupillary abnormality due to parasympathetic dysfunction and not to overt primary iris lesions. The test revealed that neuroanatomic localization of the lesion was postciliary ganglionic in the first dog. KEY WORDS: autonomic nervous system, canine, mydriasis, ophthalmology, tonic pupil. J. Vet. Med. Sci. 72(3): 387–389, 2010 Mydriasis and miosis are normal physiological reactions and we report herein the clinical features, diagnosis, and that allow the eye to adjust to the level of incoming light.