The Impact Ofw. Hennig's “Phylogenetic Systematics”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Trees and Cladograms Are Graphical Representations (Models) of Evolutionary History That Can Be Tested
AP Biology Lab/Cladograms and Phylogenetic Trees Name _______________________________ Relationship to the AP Biology Curriculum Framework Big Idea 1: The process of evolution drives the diversity and unity of life. Essential knowledge 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested. Learning Objectives: LO 1.17 The student is able to pose scientific questions about a group of organisms whose relatedness is described by a phylogenetic tree or cladogram in order to (1) identify shared characteristics, (2) make inferences about the evolutionary history of the group, and (3) identify character data that could extend or improve the phylogenetic tree. LO 1.18 The student is able to evaluate evidence provided by a data set in conjunction with a phylogenetic tree or a simple cladogram to determine evolutionary history and speciation. LO 1.19 The student is able create a phylogenetic tree or simple cladogram that correctly represents evolutionary history and speciation from a provided data set. [Introduction] Cladistics is the study of evolutionary classification. Cladograms show evolutionary relationships among organisms. Comparative morphology investigates characteristics for homology and analogy to determine which organisms share a recent common ancestor. A cladogram will begin by grouping organisms based on a characteristics displayed by ALL the members of the group. Subsequently, the larger group will contain increasingly smaller groups that share the traits of the groups before them. However, they also exhibit distinct changes as the new species evolve. Further, molecular evidence from genes which rarely mutate can provide molecular clocks that tell us how long ago organisms diverged, unlocking the secrets of organisms that may have similar convergent morphology but do not share a recent common ancestor. -
An Introduction to Phylogenetic Analysis
This article reprinted from: Kosinski, R.J. 2006. An introduction to phylogenetic analysis. Pages 57-106, in Tested Studies for Laboratory Teaching, Volume 27 (M.A. O'Donnell, Editor). Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 383 pages. Compilation copyright © 2006 by the Association for Biology Laboratory Education (ABLE) ISBN 1-890444-09-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Use solely at one’s own institution with no intent for profit is excluded from the preceding copyright restriction, unless otherwise noted on the copyright notice of the individual chapter in this volume. Proper credit to this publication must be included in your laboratory outline for each use; a sample citation is given above. Upon obtaining permission or with the “sole use at one’s own institution” exclusion, ABLE strongly encourages individuals to use the exercises in this proceedings volume in their teaching program. Although the laboratory exercises in this proceedings volume have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibilities for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in this volume. The focus of ABLE is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. -
Understanding Cladistics
Understanding Cladistics Activity for Grades 5–8 Introduction Objective At the American Museum of Natural History, In this activity, students will explore cladistics and scientists use a method called cladistics to group create a cladogram of their own. animals. They look for unique features, such as a hole in the hip socket, that the animals share. Materials Animals with like features are grouped together. A • Understanding Cladistics chart, called a cladogram, shows these relationships. • A penny, nickel, dime, and quarter for each pair Using cladistics, scientists can reconstruct genealogi- of students cal relationships and can show how animals are • 6-8 dinosaurs pictures duplicated for each group, linked to one another through a long and complex downloadable from history of evolutionary changes. amnh.org/resources/rfl/pdf/dino_16_illustrations.pdf Procedure 1. Write lion, elephant, zebra, kangaroo, koala, buffalo, raccoon, and alligator. Ask students how the animals are related and what might be a good way of grouping them into sets and subsets. Discuss students responses. Tyrannosaurus rex Apatosaurus excelsus 2. Explain to students that scientists use a method extinct extinct called cladistics to determine evolutionary relation- ships among animals. They look for features that animals share, such as four limbs, hooves, or a hole in the hip socket. Animals with like features are grouped together. Scientists make a chart called a cladogram to show these relationships. 3. Tell students that they will examine the features of various coins to determine how they are related. Remind students that cladistics is used to determine relationships among organisms, and Theropoda Sauropoda Foot with three main At least 11 or more not necessarily objects. -
Interpreting Cladograms Notes
Interpreting Cladograms Notes INTERPRETING CLADOGRAMS BIG IDEA: PHYLOGENIES DEPICT ANCESTOR AND DESCENDENT RELATIONSHIPS AMONG ORGANISMS BASED ON HOMOLOGY THESE EVOLUTIONARY RELATIONSHIPS ARE REPRESENTED BY DIAGRAMS CALLED CLADOGRAMS (BRANCHING DIAGRAMS THAT ORGANIZE RELATIONSHIPS) What is a Cladogram ● A diagram which shows ● Is not an evolutionary ___________ among tree, ___________show organisms. how ancestors are related ● Lines branching off other to descendants or how lines. The lines can be much they have changed traced back to where they branch off. These branching off points represent a hypothetical ancestor. Parts of a Cladogram Reading Cladograms ● Read like a family tree: show ________of shared ancestry between lineages. • When an ancestral lineage______: speciation is indicated due to the “arrival” of some new trait. Each lineage has unique ____to itself alone and traits that are shared with other lineages. each lineage has _______that are unique to that lineage and ancestors that are shared with other lineages — common ancestors. Quick Question #1 ●What is a_________? ● A group that includes a common ancestor and all the descendants (living and extinct) of that ancestor. Reading Cladogram: Identifying Clades ● Using a cladogram, it is easy to tell if a group of lineages forms a clade. ● Imagine clipping a single branch off the phylogeny ● all of the organisms on that pruned branch make up a clade Quick Question #2 ● Looking at the image to the right: ● Is the green box a clade? ● The blue? ● The pink? ● The orange? Reading Cladograms: Clades ● Clades are nested within one another ● they form a nested hierarchy. ● A clade may include many thousands of species or just a few. -
Heteroptera: Gerromorpha) in Central Europe
Shortened web version University of South Bohemia in České Budějovice Faculty of Science Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe RNDr. Tomáš Ditrich Ph.D. Thesis Supervisor: Prof. RNDr. Miroslav Papáček, CSc. University of South Bohemia, Faculty of Education České Budějovice 2010 Shortened web version Ditrich, T., 2010: Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe. Ph.D. Thesis, in English. – 85 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Annotation Ecology of Veliidae and Mesoveliidae (Hemiptera: Heteroptera: Gerromorpha) was studied in selected European species. The research of these non-gerrid semiaquatic bugs was especially focused on voltinism, overwintering with physiological consequences and wing polymorphism with dispersal pattern. Hypotheses based on data from field surveys were tested by laboratory, mesocosm and field experiments. New data on life history traits and their ecophysiological consequences are discussed in seven original research papers (four papers published in peer-reviewed journals, one paper accepted to publication, one submitted paper and one communication in a conference proceedings), creating core of this thesis. Keywords Insects, semiaquatic bugs, life history, overwintering, voltinism, dispersion, wing polymorphism. Financial support This thesis was mainly supported by grant of The Ministry of Education, Youth and Sports of the Czech Republic No. MSM 6007665801, partially by grant of the Grant Agency of the University of South Bohemia No. GAJU 6/2007/P-PřF, by The Research Council of Norway: The YGGDRASIL mobility program No. 195759/V11 and by Czech Science Foundation grant No. 206/07/0269. Shortened web version Declaration I hereby declare that I worked out this Ph.D. -
Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity
Acta Biotheor (2009) 57:129–162 DOI 10.1007/s10441-008-9064-7 REGULAR ARTICLE Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity Rasmus Grønfeldt Winther Received: 10 October 2008 / Accepted: 17 October 2008 / Published online: 7 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract The dangers of character reification for cladistic inference are explored. The identification and analysis of characters always involves theory-laden abstraction—there is no theory-free ‘‘view from nowhere.’’ Given theory-ladenness, and given a real world with actual objects and processes, how can we separate robustly real biological characters from uncritically reified characters? One way to avoid reification is through the employment of objectivity criteria that give us good methods for identifying robust primary homology statements. I identify six such criteria and explore each with examples. Ultimately, it is important to minimize character reification, because poor character analysis leads to dismal cladograms, even when proper phylogenetic analysis is employed. Given the deep and systemic problems associated with character reification, it is ironic that philosophers have focused almost entirely on phylogenetic analysis and neglected character analysis. Keywords Characters Á Cladistics Á Phylogenetics Á Morphology Á Abstraction Á Reification Á Biological theory Á Epistemology Á Causation How are we to recognize the ‘‘true’’ characters of organisms rather than imposing upon them arbitrary divisions that obscure the very processes that we seek to understand? …No issue is of greater importance in the study of biology. –Lewontin 2001, p. xvii Are characters natural units or artifacts of observation and description? In both systematics and ecology, there is often a considerable gulf between observables and the units that play causal roles in our models. -
Conceptual Issues in Phylogeny, Taxonomy, and Nomenclature
Contributions to Zoology, 66 (1) 3-41 (1996) SPB Academic Publishing bv, Amsterdam Conceptual issues in phylogeny, taxonomy, and nomenclature Alexandr P. Rasnitsyn Paleontological Institute, Russian Academy ofSciences, Profsoyuznaya Street 123, J17647 Moscow, Russia Keywords: Phylogeny, taxonomy, phenetics, cladistics, phylistics, principles of nomenclature, type concept, paleoentomology, Xyelidae (Vespida) Abstract On compare les trois approches taxonomiques principales développées jusqu’à présent, à savoir la phénétique, la cladis- tique et la phylistique (= systématique évolutionnaire). Ce Phylogenetic hypotheses are designed and tested (usually in dernier terme s’applique à une approche qui essaie de manière implicit form) on the basis ofa set ofpresumptions, that is, of à les traits fondamentaux de la taxonomic statements explicite représenter describing a certain order of things in nature. These traditionnelle en de leur et particulier son usage preuves ayant statements are to be accepted as such, no matter whatever source en même temps dans la similitude et dans les relations de evidence for them exists, but only in the absence ofreasonably parenté des taxons en question. L’approche phylistique pré- sound evidence pleading against them. A set ofthe most current sente certains avantages dans la recherche de réponses aux phylogenetic presumptions is discussed, and a factual example problèmes fondamentaux de la taxonomie. ofa practical realization of the approach is presented. L’auteur considère la nomenclature A is made of the three -
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges tions; J. T. Polhemus, for advising on taxonomic prob lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only. -
Allozyme Survey and Relationships of Limnoporus St& Species
ALLOZYME SURVEY AND RELATIONSHIPS OF LIMNOPORUS ST& SPECIES (HETEROPTERA: GERRIDAE) F. A.H. SPERLING'and J.R. SPENCE Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3 Abstract Can. Ent. 122: 2942 (1990) Five species of Limnoporus Sdl (L. canalicuhtus [Say], L. dissortis [Drake and Harris], L. nearcticus [Kelton], L. notabilis [Drake and Hottes], and L. rufoscutellatus [Latreille]) were each sampled at 20 electrophoretic loci. Twofold differences among species in mean heterozygosity appear to be unrelated to presence of wing dimorphism. Low heterozygosity in some populations within species may reflect geographic isola- tion. There were substantial differences in allele frequency among, but not within, species. Limnoporus rufoscutellatus from western Europe and L. nearcticus from Alaska were the most similar pair of species, with a Nei's standard genetic identity that is generally found only between populations of the same species. Limnoporus canaliculatus was the most divergent species, and the relationship among L. dissortis, L. notabilis, and the L. rufoscutellatus - L. nearcticus pair is resolved as a trichotomy. Cinq espkces de Limnoporus Sdl (L. canaliculatus [Say], L. dissortis [Drake et Harris], L. nearcticus [Kelton], L. notabilis [Drake et Hottes] et L. rufoscutellatus [Latreille]) ont 6t6 tchantillonn&s B 20 loci. Des diffkrences interspkcifiques de l'ordre du double existant au niveau de l'hCt6ozygosit6 n'ont pas pu 6tre imput6es au dimorphisme alaire. Au niveau intraspikifique, I'isolation g6ographique de certaines populations pourrait expliquer leur faible degr6 d'h6t6rozygosit6. On a not6 des diffkrences substantielles concernant la fr6quence de certains alEles au niveau interspkifique, mais pas au niveau intrasp6cifique. -
(AMMODRAMUS NELSONI) SPARROWS by Jennifer Walsh University of New Hampshire, September 2015
HYBRID ZONE DYNAMICS BETWEEN SALTMARSH (AMMODRAMUS CAUDACUTUS) AND NELSON’S (AMMODRAMUS NELSONI) SPARROWS BY JENNIFER WALSH Baccalaureate Degree (BS), University of New Hampshire, 2007 Master’s Degree (MS), University of New Hampshire, 2009 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Natural Resources and Environmental Studies September, 2015 This dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Natural Resources and Environmental Studies in the Department of Natural Resources and Earth Systems Science by: Dissertation Director, Adrienne I. Kovach Research Associate Professor of Natural Resources Brian J. Olsen, Assistant Professor, School of Biology and Ecology, University of Maine W. Gregory Shriver, Associate Professor of Wildlife Ecology, University of Delaware Rebecca J. Rowe, Assistant Professor of Natural Resources Kimberly J. Babbitt, Professor of Natural Resources On July 9, 2015 Original approval signatures are on file with the University of New Hampshire Graduate School. ACKNOWLEDGEMENTS While pursuing my doctorate, a number of people have helped me along the way, and to each of them I am exceedingly grateful. First and foremost, I am grateful for my advisor, Adrienne Kovach, for her guidance, support, and mentorship. Without her, I would not be where I am, and I will be forever grateful for the invaluable role she has played in my academic development. Her unwavering enthusiasm for the project and dedication to its success has been a source of inspiration and I will never forget our countless road trips and long days out on the marsh. -
Crown Clades in Vertebrate Nomenclature
2008 POINTS OF VIEW 173 Wiens, J. J. 2001. Character analysis in morphological phylogenetics: Wilkins, A. S. 2002. The evolution of developmental pathways. Sinauer Problems and solutions. Syst. Biol. 50:689–699. Associates, Sunderland, Massachusetts. Wiens, J. J., and R. E. Etheridge. 2003. Phylogenetic relationships of Wright, S. 1934a. An analysis of variability in the number of digits in hoplocercid lizards: Coding and combining meristic, morphometric, an inbred strain of guinea pigs. Genetics 19:506–536. and polymorphic data using step matrices. Herpetologica 59:375– Wright, S. 1934b. The results of crosses between inbred strains 398. of guinea pigs differing in number of digits. Genetics 19:537– Wiens, J. J., and M. R. Servedio. 1997. Accuracy of phylogenetic analysis 551. including and excluding polymorphic characters. Syst. Biol. 46:332– 345. Wiens, J. J., and M. R. Servedio. 1998. Phylogenetic analysis and in- First submitted 28 June 2007; reviews returned 10 September 2007; traspecific variation: Performance of parsimony, likelihood, and dis- final acceptance 18 October 2007 tance methods. Syst. Biol. 47:228–253. Associate Editor: Norman MacLeod Syst. Biol. 57(1):173–181, 2008 Copyright c Society of Systematic Biologists ISSN: 1063-5157 print / 1076-836X online DOI: 10.1080/10635150801910469 Crown Clades in Vertebrate Nomenclature: Correcting the Definition of Crocodylia JEREMY E. MARTIN1 AND MICHAEL J. BENTON2 1UniversiteL´ yon 1, UMR 5125 PEPS CNRS, 2, rue Dubois 69622 Villeurbanne, France; E-mail: [email protected] 2Department of Earth Sciences, University of Bristol, Bristol, BS9 1RJ, UK; E-mail: [email protected] Downloaded By: [Martin, Jeremy E.] At: 19:32 25 February 2008 Acrown group is defined as the most recent common Dyke, 2002; Forey, 2002; Monsch, 2005; Rieppel, 2006) ancestor of at least two extant groups and all its descen- but rather expresses dissatisfaction with the increasingly dants (Gauthier, 1986). -
Systematics, Historical Biogeography and Ecological Phylogenetics in A
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2006 Band/Volume: 0019 Autor(en)/Author(s): Damgaard Jakob Artikel/Article: Systematics, Historical Biogeography and Ecological Phylogenetics in a clade of water striders 813-822 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Systematics, Historical Biogeography and Ecological Phylogenetics in a clade of water striders1 J. DAMGAARD Abstract: I hereby review the current knowledge about systematics, historical biogeography and ecolo- gical phylogenetics in the three principal northern temperate genera of water striders Limnoporus STÅL 1868, Aquarius SCHELLENBERG 1800 and Gerris FABRICIUS 1794. Most of the discussion is based on com- parison of a recently published combined analysis tree involving four genetic markers and a morpholo- gical data set with older phylogenetic trees primarily based on manual cladistic optimization of mor- phological characters. Key words: DNA-barcodes, Gerrinae, phylogeography, simultaneous analyses. Introduction nally, water striders show great variation in mating strategies, and morphological and Water striders (Hemiptera-Heteroptera, behavioral adaptations to accomplish or Gerromorpha, Gerridae) are familiar inhab- avoid multiple mating (ANDERSEN 1994, itants of aquatic habitats throughout the 1996; ARNQVIST 1997). The striking diver- Worlds temperate, subtropical, and tropical sity in habitat selection, wing polymorphism regions comprising approximately 640 de- and mating strategies – along with the prac- scribed species in 72 genera (ANDERSEN & tically two dimensional habitat, has made WEIR 2004). Most water striders are found water striders popular objects in studies of in freshwater habitats, such as rivers, behavior, ecology and evolution (SPENCE & streams, lakes and ponds, but a few genera ANDERSEN 1994; ROWE et al.