Final Geotechnical Structures Report Smokehouse Bay Bridge Replacement Collier County, Florida Psi Project No

Total Page:16

File Type:pdf, Size:1020Kb

Final Geotechnical Structures Report Smokehouse Bay Bridge Replacement Collier County, Florida Psi Project No FINAL GEOTECHNICAL STRUCTURES REPORT SMOKEHOUSE BAY BRIDGE REPLACEMENT COLLIER COUNTY, FLORIDA PSI PROJECT NO. 775-833 March 22, 2013 T.Y. Lin International 2400 First Street, Suite 200 Ft. Myers, Florida 33901 Attention: Mr. James Molnar, P.E. Vice President RE: Final Geotechnical Structures Report Smokehouse Bay Bridge Replacement City of Marco Island, Florida PSI Project No. 775-833 Dear Mr. Molnar: Professional Service Industries, Inc. (PSI) is pleased to submit this Geotechnical Engineering Services Report for the Smokehouse Bay Bridge Replacement in Collier County, Florida. This study was authorized by Mr. James Molnar through written acceptance to PSI’s Proposal No. 0775-19719 (rev5) on November 1, 2010. A 60% Geotechnical Structures Report was issued on December 5, 2011. That report presented evaluations of various foundation alternatives for the proposed bridge structures at Collier Boulevard over Smokehouse Bay. As reported by the Structures Engineer of T.Y. Lin, 24-inch precast prestressed concrete piles have been selected as the final foundation system to support the proposed bridges. This report presents the results of the geotechnical investigation including the field and laboratory testing program, and our geotechnical recommendations for design and construction of the proposed bridge structures, associated retaining walls and existing seawall evaluation. The Load and Resistance Factor Design (LRFD) method was used for the foundation and MSE Wall external stability analysis. Field and laboratory services were provided by PSI. This report has been prepared based on the provided field and laboratory test results which were done at the 60% plan stage. Professional Service Industries, Inc. •5801 Benjamin Center Drive, Suite 112•Tampa, FL 33634•Phone 813/886-1075• Fax 813/888-6514 Engineering Certificate of Authorization 3684 We have very much appreciated the opportunity to provide our services for this project. If you have any questions concerning the contents of this report or need additional information, please do not hesitate to contact our office. Sincerely, Professional Service Industries, Inc. Certificate of Authorization No. 3684 Kirk M. Eastman, P.E. Martin E. Millburg, P.E. Senior Project Engineer Senior Geotechnical Engineer Florida License No. 50733 Florida License No. 36584 Ching L. Kuo, P.E. Chief Engineer Florida License No. 36115 KME/MEM/CLK: 0775833_Final Structures Report T.Y. Lin International PSI Project No. 775-833 – Final Design Report Page i of ii TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................................................................................... 1 1.1 PROJECT DESCRIPTION ............................................................................................................... 1 1.2 SITE DESCRIPTION ...................................................................................................................... 1 2.0 PROJECT APPROACH ................................................................................................................ 1 3.0 FIELD INVESTIGATION ............................................................................................................ 3 4.0 LABORATORY TESTING .......................................................................................................... 3 4.1 SOIL CLASSIFICATION TESTING .................................................................................................. 3 4.2 SUMMARY OF LABORATORY TEST DATA .................................................................................. 4 5.0 GENERAL SITE CONDITIONS ................................................................................................. 4 5.1 COLLIER COUNTY USDA SOIL SURVEY .................................................................................... 4 5.2 USGS TOPOGRAPHICAL SURVEY .............................................................................................. 4 5.3 SOIL BORING RESULTS ............................................................................................................... 4 5.4 GROUNDWATER .......................................................................................................................... 5 5.5 POTENTIOMETRIC SURFACE CONDITIONS .................................................................................. 5 6.0 FOUNDATION DESIGN RECOMMENDATIONS ................................................................ 6 6.1 RECOMMENDED FOUNDATION AND DESIGN CRITERIA ............................................................. 6 6.2 AXIAL CAPACITY ........................................................................................................................ 6 6.3 DRIVEN PILE GROUP ACTION ..................................................................................................... 7 6.4 SETTLEMENT ............................................................................................................................... 7 6.5 LATERAL LOAD ANALYSIS ......................................................................................................... 7 6.6 DOWNDRAG ................................................................................................................................ 7 6.7 TEST PILE PROGRAM AND VIBRATION CONSIDERATIONS ......................................................... 7 7.0 MSE WALL RECOMMENDATIONS ....................................................................................... 8 7.1 GENERAL .................................................................................................................................... 8 7.2 EXTERNAL STABILITY ANALYSES .............................................................................................. 9 7.3 SETTLEMENT ............................................................................................................................. 10 7.4 GENERAL RECOMMENDATIONS ............................................................................................... 11 7.5 LATERAL EARTH PRESSURES ................................................................................................... 11 8.0 SEA WALLS (BULKHEAD WALL) AND TEMPORARY WALLS ................................. 12 8.1 SEA WALLS ............................................................................................................................... 12 8.2 TEMPORARY WALLS ................................................................................................................ 13 8.3 EXISTING SEA WALL ................................................................................................................ 13 9.0 ENVIRONMENTAL CLASSIFICATION ............................................................................... 14 10.0 REPORT LIMITATIONS ......................................................................................................... 14 T.Y. Lin International PSI Project No. 775-833 – Final Design Report Page ii of ii LIST OF TABLES & SHEETS APPENDIX A SUMMARY OF LABORATORY TEST RESULTS .............................................................. TABLE 1 SUMMARY OF ENVIRONMENTAL CLASSIFICATION TESTING ................................ TABLE 2 PERMANENT RETAINING WALL DESIGN DATA ........................................................... TABLE 3 SHEET PILE WALL SOIL PARAMETERS ........................................................................... TABLE 4 PILE DATA TABLE .................................................................................................................. TABLE 5 APPENDIX B USDA & USGS SOIL SURVEY MAPS ................................................................................. SHEET 1 BORING LOCATION PLAN ................................................................................................... SHEET 2 REPORT OF CORE BORINGS (BRIDGES) .......................................................................... SHEET 3 REPORT OF CORE BORINGS (WALLS) ............................................................................. SHEET 4 CONCEPTUAL DESIGN OF RIPRAP PROTECTION ........................................................ SHEET 5 APPENDIX C PRESTRESSED CONCRETE PILE AXIAL CAPACITY CURVES .......................... PLATES 1 - 2 APPENDIX D SAMPLE COMPUTER OUTPUTS AND SAMPLE CALCULATIONS APPENDIX E FB-MULTIPIER SOIL PARAMETER INPUT DATA APPENDIX F FHWA CHECKLIST T.Y. Lin International Final Design Report PSI Project No. 775-833 Page 1 of 14 1.0 INTRODUCTION 1.1 PROJECT DESCRIPTION This study is to support the design of the Smokehouse Bay Bridge Replacement on Marco Island, Collier County, Florida. The project also includes associated roadway improvements, a new seawall, and associated retaining walls. The project limits extend from Station 173+75 to Station 184+39. The total project length is about 1,064 feet. The bridge replacement will be built to provide two travel lanes in each direction. The existing Smokehouse Bay bridges will be demolished and replaced by a new single span bridge structure. The bridge deck will be about 105 feet wide by 114 feet long. The project superstructure includes dual arches which serve as the supports for the suspended bridge deck. At the ends of both arches, approximately 800 kips vertical load, 920 kips horizontal load, and 1,250 ft kips of moment are anticipated. Permanent Mechanically Stabilized Earth (MSE) retaining walls are planned on both sides of the bridge approaches. These retaining walls will run parallel to the bridge
Recommended publications
  • A Qljarter Century of Geotechnical Researcll
    A QlJarter Century of Geotechnical Researcll PUBLICATION NO. FHWA-RD-98-139 FEBRUARY 1999 1111111111111111111111111111111 PB99-147365 \c-c.J/t).:.. L~.i' . u.s. D~~~~~~~Co~~~~~erce~ Natronal_Tec~nical Information Service u.s. DepartillCi"li of Transportation Spnngfleld, Virginia 22161 Research, Development & Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD This report summarizes Federal Highway Administration (FHW!\) geotechnical research and development activities during the past 25 years. The report incl!Jde~: significant accomplishments in the areas of bridge foundations, ground improvenl::::nt, and soil and rock behavior. A fourth category included important miscellaneous efrorts tl'12t did not fit the areas mentioned. The report vlill be useful to re~earchers and praGtitior,c:;rs in geotechnology. --------:"--; /~ /1 I~t(./l- /-~~:r\ .. T. Paul Teng (j Director, Office of Infrastructure Research, Development. and Technologv NOTiCE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States G~)\fernm8nt assumes no liahillty for its contt?!nts or use thereof. Thir. report dor~s not constiil)tl":: a standard, specification, or regu!p,tion. The; United States Government does not endorse products or n18;1ufaGturers, Traderrlc,rks or nianufacturers' narl1es appear in thi;-, report only bec:8'I)Se they arc considered essential to tile object of the document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-RD-98-139 4. Title and Subtitle 5. Report Date A Quarter Century of Geotechnical Research February 1999 6. Performing Organization Code ).
    [Show full text]
  • LOADTEST Dynamic Load Testing (DLT)
    LOADTEST Dynamic Load Testing (DLT) INTRODUCTION RESULTS Dynamic load testing can be an attractive cost The measured pile head signals are analysed in effective alternative to traditional full scale static real time to provide: load testing. Instead of costly, time consuming • an estimate of the soil resistance proof loading using kentledge or anchor piles, mobilised during the test. the technique uses a heavy falling weight such • determination of maximum stresses in as a piling hammer to impart a short duration the pile and shaft integrity. impact to the pile head, whilst monitoring the • measurement of the overall operating pile response using attached transducers. The efficiency of the hammer and its test generates data required by the foundation coupling to the pile head. designer to provide assurance on the relative Additional analysis of each set of dynamic test capacity of the foundation and can usually data can be performed using the CAPWAP or provide additional information that can be DLTWAVE pile driving simulation computer difficult to obtain via static load testing. programs. These programs uses an iterative solution technique to optimise the parameters DESCRIPTION defining the soil resistance supporting the pile. The test is performed by striking the pile head This is done by matching forces at the pile head with a piling hammer or other suitable drop computed using stress wave theory with those weight whilst monitoring pile soil response in actually measured during the test. The terms of pile head force and velocity using programs output many parameters valuable to specially developed bolt-on reusable the experienced piling engineer.
    [Show full text]
  • Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Reliability of statnamic load testing of rock socketed end bearing bored piles Fiabilité d’un essai de charge Statnamic sur un pieu résistant à la pointe foré dans de la roche H. S. Thilakasiri Department of Civil Engineering, University of Moratuwa, Sri Lanka. ABSTRACT The pile load testing methods could be broadly classified into three categories: static, rapid and dynamic depending on the rate of loading. In this paper, the rapid load testing method referred to as the Statnamic test is discussed. The commonly used analysis method of the statnamic testing referred to as the Unloading Point (UP) method is used successfully for the floating piles but validity of some of the assumptions of the unloading point method to end bearing bored piles is questionable. Due to this problem, other analytical methods such as: Modified Unloading Point (MUP) method, Segmental Unloading Point (SUP) method and other signal matching techniques are introduced by some researches. Therefore, the validity of the unloading point method to rock socketed end bearing bored piles in Sri Lanka is investigated in this paper. This investigation is carried out using the commonly used wave number. Furthermore, the wave equation method, commonly used numerical procedure to model dynamic behavior of piles, is used by the author to investigate the validity of the assumptions associated with the unloading point method to rock socketed end bearing bored piles.
    [Show full text]
  • Analysis of the Pile Load Tests at the Us 68/Ky 80 Bridge Over Kentucky Lake
    University of Kentucky UKnowledge Theses and Dissertations--Civil Engineering Civil Engineering 2019 ANALYSIS OF THE PILE LOAD TESTS AT THE US 68/KY 80 BRIDGE OVER KENTUCKY LAKE Edward Lawson University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.248 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Lawson, Edward, "ANALYSIS OF THE PILE LOAD TESTS AT THE US 68/KY 80 BRIDGE OVER KENTUCKY LAKE" (2019). Theses and Dissertations--Civil Engineering. 86. https://uknowledge.uky.edu/ce_etds/86 This Master's Thesis is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Dynamic and Static Tests of Prestressed Concrete Girder Bridges in Florida
    DYNAMIC AND STATIC TESTS OF PRESTRESSED CONCRETE GIRDER BRIDGES IN FLORIDA BY MOUSSA A. ISSA MOHSEN A. SHAHAWY STRUCTURAL ANALYST CHIEF STRUCTURAL ANALYST STRUCTURAL RESEARCH CENTER, MS 80 FLORIDA DEPARTMENT OF TRANSPORTATION TALLAHASSEE, FLORIDA 32310 MAY 1993 DYNAMIC AND STATIC TESTS OF PRESTRESSED CONCRETE GIRDER BRIDGES IN FLORIDA by Moussa A. Issa, Ph.D., P.E. Mohsen A. Shahawy, Ph.D., P.E. Structural Analyst Chief Structural Analyst Structural Research Center, MS 80 Florida Department of Transportation, Tallahassee SYNOPSIS The paper presents the results of full scale static and dynamic tests on two prestressed concrete bridges. Both bridges contain a variety of AASHTO type girders and were designed to carry two lanes of HS20 loading. The critical spans were instrumented at quarter span (L/4) and midspan (L/2) with accelerometers, strain gages and deflection transducers. The bridge load testing apparatus consists of a mobile data acquisition system and two load testing vehicles, designed to deliver the ultimate live l o a d specified by the AASHTO Code. For static testing, the bridge w a s incrementally loaded u p to the full ultimate design live load. The test vehicles were loaded to be equivalent to HS-20 truck loads. At each load step the instruments were monitored and the results were compared to the analytical model before proceeding w i t h the next load step. The dynamic load tests were performed with the two testing vehicles traveling at 55 MPH, 45 MPH, and 35 MPH. The results indicated an increase in the strain and deflection amplitudes, with an increase of vehicle speed.
    [Show full text]
  • BUILDING CONSTRUCTION 1 ARCH 205 | a Foundation Is a Structure That Transfers Loads to the Ground
    BUILDING CONSTRUCTION 1 ARCH 205 | A foundation is a structure that transfers loads to the ground. Foundations are generally broken into two categories: 1. shallow foundations and 2. deep foundations. 2 3 Shallow foundations of a house versus the deep foundations of a Skyscraper 1- SHALLOW FOUNDATIONS Shallow foundations are usually dug a meter or so into suitable soils. One common type is the spread footing which consists of strips or pads of concrete (or other materials) which extend below the frost line and transfer the weight from walls and columns to the soil or bedrock. Another common type is the slab- on-grade foundation where the weight of the building is transferred to the soil through a concrete slab placed at the surface. 4 SHALLOW FOUNDATION 1. A shallow foundation is a type of foundation which transfers building loads to the earth very near the surface, rather than to a subsurface layer or a range of depths as does a deep foundation. 2. Shallow foundations include: 1. spread footing foundations, 2. mat-slab foundations, and 3. slab-on-grade foundations 5 1- SHALLOW FOUNDATIONS SPREAD FOOTING FOUNDATION | Spread footing foundations consists of strips or pads of concrete (or other materials) which transfer the loads from walls and columns to the soil or bedrock. Embedment of spread footings is controlled by several factors, including development of lateral capacity, penetration of soft near-surface layers, and penetration through near-surface layers likely to change volume due to frost heave or expansion and contraction. | These foundations are common in residential construction that includes a basement, and in many small commercial structures.
    [Show full text]
  • High Strain Dynamic Load Testing of Drilled Shafts
    Supplemental Technical Specification for High Strain Dynamic Load Testing of Drilled Shafts SCDOT Designation: SC-M-712-2 (07/19) 1.0 GENERAL 1.1 This work shall consist of performing high-strain dynamic testing using a drop weight loading system on a test drilled shaft for the purpose of determining and/or verifying the nominal bearing resistance that may be used in the design of production drilled shafts. In addition, the structural integrity of the test drilled shaft, the load-deflection and soil-load transfer relationships shall also be determined. Production drilled shaft lengths may be adjusted after results of the test drilled shaft have been analyzed. No materials shall be ordered until drilled shaft lengths are approved by the Department. The test shaft depth, diameter, and location shall be as specified in the plans. The testing specified in the project documents shall be conducted in general accordance with ASTM D4945 – Standard Test Method for High-Strain Dynamic Testing of Deep Foundations and this Supplemental Technical Specification. 1.2 The drop weight load testing equipment shall have sufficient capacity to fully mobilize the test shafts’ nominal bearing resistance shown in the plans. 1.3 The location of the test drilled shaft (non-production) shall be as indicated in the plans. The test drilled shaft shall maintain a minimum distance of 25 feet from any foundation element of any future bent. The Contractor shall submit the proposed location to the Department for approval. 1.4 Load testing of the test drilled shaft shall not begin until the concrete has attained a compressive strength (f’c) as indicated in the plans and had a curing time of no less than 7 days.
    [Show full text]
  • Load Testing Handbook (Including Pile Testing Datasheets)
    this document downloaded from Terms and Conditions of Use: All of the information, data and computer software (“information”) presented on this web site is for general vulcanhammer.net information only. While every effort will be made to insure its accuracy, this information should not be used or relied on Since 1997, your complete for any specific application without independent, competent online resource for professional examination and verification of its accuracy, suitability and applicability by a licensed professional. Anyone information geotecnical making use of this information does so at his or her own risk and assumes any and all liability resulting from such use. engineering and deep The entire risk as to quality or usability of the information contained within is with the reader. In no event will this web foundations: page or webmaster be held liable, nor does this web page or its webmaster provide insurance against liability, for The Wave Equation Page for any damages including lost profits, lost savings or any other incidental or consequential damages arising from Piling the use or inability to use the information contained within. Online books on all aspects of This site is not an official site of Prentice-Hall, soil mechanics, foundations and Pile Buck, the University of Tennessee at marine construction Chattanooga, or Vulcan Foundation Equipment. All references to sources of software, equipment, parts, service Free general engineering and or repairs do not constitute an geotechnical software endorsement. And much more..
    [Show full text]
  • Geotechnical Resistance Factors
    Chapter 9 GEOTECHNICAL RESISTANCE FACTORS GEOTECHNICAL DESIGN MANUAL January 2019 SCDOT Geotechnical Design Manual GEOTECHNICAL RESISTANCE FACTORS Table of Contents Section Page 9.1 Introduction ...............................................................................................................9 -1 9.2 Soil Properties ...........................................................................................................9 -2 9.3 Resistance Factors for LRFD Geotechnical design ................................................... 9-2 9.4 Shallow Foundations ................................................................................................. 9-3 9.5 Deep Foundations .....................................................................................................9 -4 9.5.1 Driven Piles ....................................................................................................9 -5 9.5.2 Drilled Shafts ................................................................................................. 9-8 9.6 Embankments ...........................................................................................................9 -9 9.7 Earth Retaining Structures ....................................................................................... 9-10 9.8 Reinforced Soil (Internal Stability) ............................................................................ 9-12 9.9 SSL Induced Geotechnical Seismic Hazards ........................................................... 9-13 9.10 References .............................................................................................................
    [Show full text]
  • Dynamic Load Testing of Drilled Shafts at National Geotechnical Experimentation Sites
    Dynamic Load Testing of Drilled Shafts at National Geotechnical Experimentation Sites Brent Robinson*, Frank Rausche**, Garland Likins***, Carl Ealy**** * Project Engineer, Goble Rausche Likins and Associates, Inc., 4535 Renaissance Pkwy, Cleveland OH 44128 ** President, PhD., Goble Rausche Likins and Associates, Inc. 4535 Renaissance Pkwy, Cleveland, OH 44128 *** President, Pile Dynamics, Inc., 4535 Renaissance Pkwy, Cleveland OH 44128 **** Office of Research, Federal Highway Association, 6300 Georgetown Avenue, McLean VA 22101 Abstract Due to their quick and simple execution, dynamic load testing is a preferred method of Quality Assurance in the United States and around the world for both driven piles and drilled shafts. The test is particularly simple for driven piles, where the loading apparatus, the pile driving hammer, is readily available. To perform the test, strain and acceleration are measured a short distance below the pile top. The strain multiplied by the pile material’s elastic modulus and the pile’s cross sectional area yields the pile top force. For prefabricated, driven piles the elastic modulus varies only slightly over the cross section, and two strain transducers mounted to opposite sides of the pile usually yield the true average strain. For drilled shafts, the effort is somewhat more involved because a ram must be brought to the construction site. A crane or free release system must then drop this ram from heights ranging from 0.3 to 3 m. The acceleration and strain measurements are typically acquired one or two pile diameters below the pile top. Since bored piles without permanent casing often have uncertain cross sectional and concrete material properties, it is generally best to add a pile top extension of a thin steel pipe, one to two pile diameters long and filled with good quality concrete.
    [Show full text]
  • Geotechnical Investigation
    GEOTECHNICAL INVESTIGATION Sacramento Entertainment and Sports Center Sacramento, California PREPARED FOR: SACRAMENTO BASKETBALL HOLDINGS, LLC C/O ICON VENUE GROUP 801 E. PRENTICE AVENUE, SUITE 400 GREENWOOD VILLAGE, COLORADO 80111 PREPARED BY: GEOCON CONSULTANTS, INC. 3160 GOLD VALLEY DRIVE, SUITE 800 RANCHO CORDOVA, CALIFORNIA 95742 GEOCON PROJECT NO. S9840-05-01 NOVEMBER 2013 CONTENTS GEOTECHNICAL INVESTIGATION PAGE 1.0 INTRODUCTION AND SCOPE OF SERVICES ........................................................................... 1 2.0 SITE AND PROJECT DESCRIPTION ........................................................................................... 2 3.0 SOIL AND GEOLOGIC CONDITIONS ........................................................................................ 4 3.1 Regional and Local Geology ................................................................................................. 4 3.2 Existing Pavement Sections ................................................................................................... 5 3.3 Fill .......................................................................................................................................... 5 3.4 Alluvium ................................................................................................................................ 6 4.0 GROUNDWATER .......................................................................................................................... 7 5.0 GEOLOGIC HAZARDS ................................................................................................................
    [Show full text]
  • Design and Construction of Driven Pile Foundations
    Design and Construction of Driven Pile Foundations—Lessons Learned on the Central Artery/Tunnel Project PUBLICATION NO. FHWA-HRT-05-159 JUNE 2006 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD The purpose of this report is to document the issues related to the design and construction of driven pile foundations at the Central Artery/Tunnel project. Construction issues that are presented include pile heave and the heave of an adjacent building during pile driving. Mitigation measures, including the installation of wick drains and the use of preaugering, proved to be ineffective. The results of 15 dynamic and static load tests are also presented and suggest that the piles have more capacity than what they were designed for. The information presented in this report will be of interest to geotechnical engineers working with driven pile foundation systems. Gary L. Henderson Director, Office of Infrastructure Research and Development NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. QUALITY ASSURANCE STATEMENT The Federal Highway Administration (FHWA) provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information.
    [Show full text]