bioRxiv preprint doi: https://doi.org/10.1101/2021.04.27.441647; this version posted May 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A synthetic protein as efficient multitarget regulator against complement over-activation Natalia Ruiz-Molina1, Juliana Parsons1, Madeleine Müller1, Sebastian N.W Hoernstein1, Lennard L. Bohlender1, Steffen Pumple1, Peter F. Zipfel2,3, Karsten Häffner4 Ralf Reski1,5, Eva L. Decker1* 1Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany. 2Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany. 3Institute of Microbiology, Friedrich Schiller University, Jena, Germany. 4Faculty of Medicine, Department of Internal Medicine IV, Medical Center - University Freiburg, University of Freiburg, Freiburg, Germany. 5Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany. *Correspondence: Eva L. Decker,
[email protected] †ORCID: 0000-0002-0170-6000 (NRM), 0000-0001-6261-2342 (JP), orcid.org/0000-0002-4599- 7807 (LLB), 0000-0002-2095-689X (SNWH), 0000-0002-6149-2411(PFZ), 0000-0002-5496-6711 (RR), 0000-0002-9151-1361 (ELD) Author contributions: NRM performed most of the experiments, MM performed some of the binding tests, SP improved the purification process of the moss-made regulators, SNWH and LLB performed the MS data analysis, NRM, JP, RR and ELD designed the study and wrote the manuscript. PFZ and KH discussed data and provided comments on the manuscript. Competing interest Statement: The authors are inventors of patents and patent applications related to the production of recombinant proteins in moss.