Palaeoseismology of the North Anatolian Fault Near the Marmara Sea: Implications for Fault Segmentation and Seismic Hazard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paleoseismology of the North Anatolian Fault at Güzelköy
Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara Mustapha Meghraoui, M. Ersen Aksoy, H Serdar Akyüz, Matthieu Ferry, Aynur Dikbaş, Erhan Altunel To cite this version: Mustapha Meghraoui, M. Ersen Aksoy, H Serdar Akyüz, Matthieu Ferry, Aynur Dikbaş, et al.. Pale- oseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara. Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2012, 10.1029/2011GC003960. hal-01264190 HAL Id: hal-01264190 https://hal.archives-ouvertes.fr/hal-01264190 Submitted on 1 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article Volume 13, Number 4 12 April 2012 Q04005, doi:10.1029/2011GC003960 ISSN: 1525-2027 Paleoseismology of the North Anatolian Fault at Güzelköy (Ganos segment, Turkey): Size and recurrence time of earthquake ruptures west of the Sea of Marmara Mustapha Meghraoui Institut de Physique du Globe de Strasbourg (UMR 7516), F-67084 Strasbourg, France ([email protected]) M. Ersen Aksoy Institut de Physique du Globe de Strasbourg (UMR 7516), F-67084 Strasbourg, France Eurasia Institute of Earth Sciences, Istanbul Technical University, 34469 Istanbul, Turkey Now at Instituto Dom Luiz, Universidade de Lisboa, P-1750-129 Lisbon, Portugal H. -
Special Issue “The Next Marmara Earthquake: Disaster Mitigation
Hori et al. Earth, Planets and Space (2017) 69:65 DOI 10.1186/s40623-017-0648-9 PREFACE Open Access Special issue “The next Marmara earthquake: disaster mitigation, recovery, and early warning” Takane Hori1*, Ali Pinar2, Ocal Necmioglu2, Muneo Hori3 and Azusa Nishizawa4 Te Marmara Sea, accommodating the fault segments of with Mw = 7.25 on the Main Marmara Fault is expected a major transform fault, is well known as a seismic gap to heavily damage or destroy 2–4% of the near 1,000,000 along the North Anatolian Fault (NAF), running through buildings in Istanbul, which has a population of around the northern part of Turkey and connecting the East 13 million, with 9–15% of the buildings receiving Anatolian convergent area with the Hellenic subduction medium damage and 20–34% of the buildings lightly zone (e.g., Pınar 1943; Toksöz et al. 1979; Pondard et al. damaged (Erdik 2013). 2007; Şengör et al. 2014). It is obvious from historical Te aim of this special issue is to gather information records spanning more than 2000 years that the region about the risk of another Marmara earthquake from the is subject to frequent strong shaking that is likely associ- latest geophysical, geological, geotechnical, computa- ated with tsunami waves, threatening heavily populated tional, and building science research results to discuss and industrialized locations (Ambraseys 2002; Erdik et al. ways of mitigating disaster in advance. Te collection 2004; Hébert et al. 2005). In the twentieth century, mag- of 12 papers constituting this special issue is based on nitude (M) 7-class earthquakes sequentially occurred recent research on imaging the crustal structure, the from east to west along the NAF zone, as shown in Fig. -
Major Earthquake in Turkey--Aug 17 at 3:02 AM Local Time in Turkey
Major Earthquake in Turkey 99/08/17 00:01:38 40.64N 29.83E 10.0 7.4Ms Warning--Provisional report, subject to revision The following is a News Release by the United States Geological Survey, National Earthquake Information Center: Update on the 17 August 1999 Izmit, Turkey, Earthquake. USGS ADJUSTS THE MAGNITUDE OF TURKEY EARTHQUAKE On the basis of additional data, the U.S. Geological Survey (USGS) has updated the magnitude of the destructive earthquake that struck western Turkey early Tuesday, to 7.4. The initial preliminary magnitude, of 7.8, was based on recordings of seismic waves from a limited number of global stations that rapidly transmit data to the U.S. Geological Survey’s National Earthquake Information Center (NEIC) in Golden, Colo. Scientists at the NEIC have since received additional data that permit a more accurate determination of the earthquake’s location, magnitude, and depth. The Izmit earthquake occurred at 00:01:39.80 UTC (3:01 a.m. local time), and was centered at at 40.702 N., 29.987 E., which places the epicenter about 11 kilometers, or seven miles, southeast of the city of Izmit. This location indicates that the earthquake occurred on the northernmost strand of the North Anatolian fault system. The earthquake originated at a depth of 17 kilometers, or about 10.5 miles, and caused right-lateral strike-slip movement on the fault. Preliminary field reports confirm this type of motion on the fault, and initial field observations indicate that the earthquake produced at least 60 kilometers (37 miles) of surface rupture and right-lateral offsets as large as 2.7 meters, or almost nine feet. -
A Trip Between Two Seas – from the BLACK to the WHITE SEA THROUGH the CENTURIES and HISTORY of THRACIANS, BYZANTINES, ROMANS, BULGARIANS and TURKS
A trip between two seas – from THE BLACK TO THE WHITE SEA THROUGH THE CENTURIES AND HISTORY OF THRACIANS, BYZANTINES, ROMANS, BULGARIANS AND TURKS 3 DAYS - 2 NIGHTS Burgas – Keşan - Erikli - Enez - Gala – Lozengrad – Burgas 1st day Departure from Burgas, Democracy Blvd., in front of Domino restaurant at 06.00 a.m. Travelling to Malko Tarnovo. Crossing the Bulgarian-Turkish border through Malko Tarnovo – Derekyoy Border Control Point. The road passes through Strandzha mountain, situated in the territory of the two neighbouring countries Republic of Bulgaria and Republic of Turkey. Strandzha mountain is relatively low. Its terrain is characterized by stretched hills, limited by river valleys, deeply incised in them. Two main hills, oriented generally to west - east direction, are formed on our territory: southern border one with the highest point on Bulgarian territory peak Gradishte - 709 m altitude, while on Turkish territory the highest peak is Great Mahiada or Mahiada – 1031 m high. In Turkish the mountain is called Yildiz, which means star or stellar mountain in translation and the legend tells that one could observe the stars here during most nights. A section of the main watershed of the Balkan Peninsula between the catchment of the Black and the Aegean Sea passes along the entire ridge of the mountain from south - west to south - east. While travelling through the mountains, one can see unique plant species, such as Strandzha periwinkle (Rhododendron Ponticum). The woods are of the south - euxinian type, formed by eastern durmast, eastern beech and Quercus frainetto with а zone of laurel - like shrubs (Strandzha periwinkle and others) and sub-euxinian forests of Quercus frainetto, cerris and eastern durmast . -
The 1509 Istanbul Earthquake and Subsequent Recovery
The 1509 Istanbul Earthquake and Subsequent Recovery Kazuaki SAWAI Le Tremblement de terre d’Istanbul de 1509 et les efforts de reconstruction de l’après-séisme L’Anatolie (connue aussi sous le nom d’Asie Mineure) comprend 97% du territoire de la République de Turquie actuelle. Cette région a été de longue date une zone exposée aux tremblements de terre, ayant des magnitudes sismiques comparables à celles du Japon, pays réputé pour ses séismes. L’Anatolie repose sur la plaque tectonique Anatolienne, entourée par l’énorme plaque eurasienne au nord, la plaque arabique à l’est, la plaque de la mer Égée à l’ouest, et la plaque africaine au sud. Les lignes de failles qui en résultent, comme la faille nord anatolienne allant de l’est vers l’ouest, ont causé de nombreux tremblements de terre. En Août 1999, par exemple, un séisme de magnitude 7.5 a secoué une grande partie du nord-ouest de l’Anatolie, y compris Istanbul, tuant 17,000 personnes et causant d’énormes dégâts. Les tremblements de terre ne sont pas un phénomène nouveau en Anatolie. Les nombreux documents historiques disponibles décrivant des catastrophes naturelles à Istanbul montrent à eux seuls que des séismes majeurs y étaient récurrents. Un tremblement de terre particulièrement dévastateur a eu lieu en Septembre 1509. Cet événement était localement connu sous le nom de “Kıyamet-i Suğra” (le Jour du Jugement mineur) en raison des nombreuses victimes et graves dégâts qu’il avait occasionnés à Istanbul. Ce tremblement de terre a également été la première grande catastrophe naturelle après la conquête de Constantinople par l’Empire ottoman en 1453. -
USGS Circular 1193
FOLD BLEED BLEED BLEED BLEED U.S. Geological Survey Implications for Earthquake Risk Reduction in the United States from the — Kocaeli, Turkey, Earthquake Implications for Earthquake Risk Reduction in the U.S. from Kocaeli, of August 17, 1999 T urkey , Earthquake — U.S. Geological Survey Circular 1 U.S. Geological Survey Circular 1193 193 U.S. Department of the Interior U.S. Geological Survey BLEED BLEED BLEED FOLD BLEED FOLD BLEED BLEED Cover: Damage in Korfez, Turkey, following the August 17 Kocaeli earthquake. Photograph by Charles Mueller Cover design by Carol A. Quesenberry Field investigations were coordinated with the U.S. Army Corps of Engineers and National Institute of Standards and Technology BLEED BLEED FOLD FOLD BLEED BLEED Implications for Earthquake Risk Reduction in the United States from the Kocaeli, Turkey, Earthquake of August 17, 1999 By U.S. Geological Survey U.S. Geological Survey Circular 1193 U.S. Department of the Interior U.S. Geological Survey BLEED FOLD BLEED FOLD BLEED BLEED BLEED BLEED U.S. Department of the Interior Contributors Bruce Babbitt, Secretary Thomas L. Holzer, Scientific Editor, U.S. Geological Survey U.S. Geological Survey Aykut A. Barka, Istanbul Technical University, Turkey Charles G. Groat, Director David Carver, U.S. Geological Survey Mehmet Çelebi, U.S. Geological Survey Edward Cranswick, U.S. Geological Survey Timothy Dawson, San Diego State University and Southern California Earthquake Center James H. Dieterich, U.S. Geological Survey William L. Ellsworth, U.S. Geological Survey Thomas Fumal, U.S. Geological Survey John L. Gross, National Institute of Standards and Technology Robert Langridge, U.S. -
An Earthquake Gap South of Istanbul
ARTICLE Received 23 Jan 2013 | Accepted 9 May 2013 | Published 18 Jun 2013 DOI: 10.1038/ncomms2999 An earthquake gap south of Istanbul Marco Bohnhoff1,2, Fatih Bulut1, Georg Dresen1, Peter E. Malin3, Tuna Eken1 & Mustafa Aktar4 Over the last century the North Anatolian Fault Zone in Turkey has produced a remarkable sequence of large earthquakes. These events have now left an earthquake gap south of Istanbul and beneath the Marmara Sea, a gap that has not been filled for 250 years. Here we investigate the nature of the eastern end of this gap using microearthquakes recorded by seismographs primarily on the Princes Islands offshore Istanbul. This segment lies at the western terminus of the 1999 Mw7.4 Izmit earthquake. Starting from there, we identify a 30-km-long fault patch that is entirely aseismic down to a depth of 10 km. Our evidence indicates that this patch is locked and is therefore a potential nucleation point for another Marmara segment earthquake—a potential that has significant natural hazards implications for the roughly 13 million Istanbul residents immediately to its north. 1 Helmholtz-Centre Potsdam German Centre for Geosciences GFZ, Telegrafenberg, 14473 Potsdam, Germany. 2 Department of Earth Sciences, Freie Universita¨t Berlin, Malteser Strasse 74-100, 12249 Berlin, Germany. 3 Institute of Earth Science and Engineering, University of Auckland, Auckland, New Zealand. 4 Kandilli Observatory and Earthquake Research Institute, Bogazici University, 34342 Bebek, Cengelko¨y, Istanbul, Turkey. Correspondence and requests for materials should be addressed to M.B. (email: [email protected]). NATURE COMMUNICATIONS | 4:1999 | DOI: 10.1038/ncomms2999 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. -
Source Rock Potential of Lower-Middle Miocene Lacustrine Deposits: Example of the Küçükkuyu Formation, Nw Turkey
Oil Shale, 2015, Vol. 32, No. 4, pp. 313–334 ISSN 0208-189X doi: 10.3176/oil.2015.4.03 © 2015 Estonian Academy Publishers SOURCE ROCK POTENTIAL OF LOWER-MIDDLE MIOCENE LACUSTRINE DEPOSITS: EXAMPLE OF THE KÜÇÜKKUYU FORMATION, NW TURKEY AYŞE BOZCU* Department of Geological Engineering, Engineering Faculty, Çanakkale Onsekiz Mart University, Terzioğlu Campus, 17100 Çanakkale, Turkey Abstract. The purpose of this study was to examine the geological, strati- graphic and organic geochemical features of the Küçükkuyu Formation out- cropping on Biga Peninsula, NW Turkey. The Lower-Middle Miocene forma- tion crops out around the Gulf of Edremit and near Bayramiç-Çan in the north of the Kazdağ Mountains. The unit is composed of shale, siltstone and sandstone intercalations. The shale is bituminous and represents a potential source rock in the region. Shale samples from the formation were investigated. Rock-Eval pyrolysis, vitrinite reflectance (Ro %), gas chromatography (GC), stable C isotope and total sulfur measurements were carried out. The shale is characterized by high total organic carbon (TOC) values (0.27 to 7.44 wt%, average 1.69 wt%), indicating a good potential source rock. The kerogen types are II and III, indicating the shale to be gas and oil-prone. Tmax values are between 352 and 453 °C, the average value suggesting early catagenesis. The pristane/ phytane (Pr/Ph) values reveal suboxic and anoxic environments. Carbon preference index (CPI) and C isotope values reveal terrestrial OM. Geological and stratigraphic evaluations and total sulfur (TS) figures indicate that the Küçükkuyu Formation was deposited in a suboxic-anoxic, freshwater environment (lacustrine), developing brackish water conditions from time to time. -
Turkey Bird Report 2002–06
Sandgrouse-080723:Sandgrouse 7/23/2008 12:51 PM Page 166 Turkey Bird Report 2002–06 GUY M KIRWAN, METEHAN ÖZEN & BARBAROS DEMIRCI (COMPILERS) This report, covering the years 2002–06, has been produced jointly by GMK, MÖ and BD, and is the second such to be co- edited by an Anglo- Turkish team, following the last report (Sandgrouse 25: 8–31). The increase in the number of in- country birdwatchers submitting records to the report, first noted in the last compilation, encouragingly has been main- tained, as has the number of records of rarities being documented photographically. In contrast, reports from visiting foreign birdwatchers, although frequently posted on the internet, are now rarely submitted. These latter are still welcome, as some areas of the country (and seasons) are still arguably better covered by visiting, rather than resident, observers. Highlights of the present report include the first records in Turkey of the following 12 species: Lesser Flamingo Phoenicopterus minor, Pectoral Sandpiper Calidris melanotos, Lesser Yellowlegs Tringa flavipes (one unconfirmed previous record), Namaqua Dove Oena capen- sis, Siberian Accentor Prunella montanella, Blackstart Cercomela melanura, Black- throated Thrush Turdus ruficollis atrogularis, Plain Leaf Warbler Phylloscopus neglectus (apparently breeding in extreme eastern Turkey), Arctic Warbler P. borealis (one unconfirmed previous record), Iraq Babbler Turdoides altirostris (one unconfirmed previous record), Fan- tailed Raven Corvus rhipidurus and Lapland Longspur Calcarius lapponicus (one unconfirmed pre- vious record). The first reports of the following species— Little Shearwater Puffinus assimilis, Cotton Pygmy Goose Nettapus coromandelianus and Oriental Pratincole Glareola maldivarum— were also received, but insufficient documentation is available to advocate their acceptance onto Turkey’s bird list. -
The Cumulative Offset of North Anatolian Fault in the Marmara Region, Northwest Turkey K
Geophysical Research Abstracts Vol. 14, EGU2012-240, 2012 EGU General Assembly 2012 © Author(s) 2011 The cumulative offset of North Anatolian Fault in the Marmara region, northwest Turkey k. akbayram (1) and a. okay (1,2) (1) Istanbul˙ Teknik Üniversitesi, Avrasya Yerbilimleri Enstitüsü, 80626 Ayazaga,˘ Istanbul, Turkey , (2) Istanbul˙ Teknik Üniversitesi, Jeoloji Mühendisligi˘ Bölümü, 80626 Ayazaga,˘ Istanbul,˙ Turkey The North Anatolian Fault (NAF) is an over 1200 km long dextral strike-slip fault zone in the eastern Mediter- ranean. The cumulative offset of the NAF has long been a controversial issue, former estimates range from 7,5 km to 300 to 400 km. It has been estimated using Cretaceous suture zones, Mesozoic fold structures and young rivers, which are generally subparallel to the suture resulting in poor precision. In this study we used Cretaceous tectonic zones and faults perpendicular to NAF to calculate the cumulative offset along the main branch of NAF west of the Marmara Sea in northwestern Turkey. In the Armutlu peninsula west of the Marmara Sea there are three north-south trending metamorphic units, which extend 60 km in an east-west direction south of the NAF; these are a Proterozoic basement, a Cretaceous mélange and a Triassic metasedimentary unit. These metamorphic units are separated by steeply dipping north-south trending thrust contacts. This geometry makes the Cretaceous faults and tectonic zones reliable offset markers. Similar units and similar contacts exist east of Almacık Mountains, north of northern strand of the NAF, which allow a precise correlation. Based on these structures and zones we calculate the cumulative dextral displacement along the main branch of NAF as 55 ± 3 km. -
Paleoseismic Evidence of Characteristic Slip on the Western Segment of the North Anatolian Fault, Turkey by Y
Bulletin of the Seismological Society of America, Vol. 93, No. 6, pp. 2317–2332, December 2003 Paleoseismic Evidence of Characteristic Slip on the Western Segment of the North Anatolian Fault, Turkey by Y. Klinger,* K. Sieh, E. Altunel, A. Akoglu, A. Barka, T. Dawson, T. Gonzalez, A. Meltzner, and T. Rockwell Abstract We have conducted a paleoseismic investigation of serial fault rupture at one site along the 110-km rupture of the North Anatolian fault that produced the Mw 7.4 earthquake of 17 August 1999. The benefit of using a recent rupture to compare serial ruptures lies in the fact that the location, magnitude, and slip vector of the most recent event are all very well documented. We wished to determine whether or not the previous few ruptures of the fault were similar to the recent one. We chose a site at a step-over between two major strike-slip traces, where the prin- cipal fault is a normal fault. Our two excavations across the 1999 rupture reveal fluvial sands and gravels with two colluvial wedges related to previous earthquakes. Each wedge is about 0.8 m thick. Considering the processes of collapse and subse- quent diffusion that are responsible for the formation of a colluvial wedge, we suggest that the two paleoscarps were similar in height to the 1999 scarp. This similarity supports the concept of characteristic slip, at least for this location along the fault. Accelerator mass spectrometry (AMS) radiocarbon dates of 16 charcoal samples are consistent with the interpretation that these two paleoscarps formed during large historical events in 1509 and 1719. -
Gallipoli 1915–1916
Unsuccessful Allied attempt to eliminate the ANZAC forces in the Ottoman Empire from the war Dardanelles GALLIPOLI 1915–1916 Geopolitical Situation At the end of 1914, the Western Front had The Western powers were unable to supply any real military support from Russia by land. This was taken the shape of trench warfare. The possible only by sea, but the Germans blocked the Russian offensive in the east had collapsed. Baltic routes, and their Turkish allies had closed The Russian Tsarist army had suffered seri- the Black Sea straits (Bosphorus and Dardanelles). For Russia, this road was of great economic impor- ous defeats in the conflit with Germany. tance – almost all Russian exports and imports took This was not compensated for by Russian place through the Black Sea Straits. victories over Austria-Hungary. The opening of the front in the area of the straits was mainly to unblock this route and open Russia to Western supplies and open the way for the Allies to capture the capital of the Turkish Ottoman Empire, Constantinople, and eliminate this country Great from the war. Britan Rosja Germany The Allied countries hoped that after the Turkish defeat, Germany would be forced to have to engage Austria-Hungary France significant numbers of their forces to Eastern Romania Europe, weakening their forces significantly on Serbia Bulgaria Italy the Western Front. Ottoman Empire Greece The First Lord of the Admiralty, Winston Churchill, was an avid supporter and chief architect of the plan to create a second front. He believed that the operation in Gulf of Saros the Dardanelles would quickly tip the tide of war in favor of the Allied countries.