Hamiltonian Cycles on Symmetrical Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Hamiltonian Path
6.S078 Fine-Grained Algorithms and Complexity MIT Lecture 17: Algorithms for Finding Long Paths (Part 1) November 2, 2020 In this lecture and the next, we will introduce a number of algorithmic techniques used in exponential-time and FPT algorithms, through the lens of one parametric problem: Definition 0.1 (k-Path) Given a directed graph G = (V; E) and parameter k, is there a simple path1 in G of length ≥ k? Already for this simple-to-state problem, there are quite a few radically different approaches to solving it faster; we will show you some of them. We’ll see algorithms for the case of k = n (Hamiltonian Path) and then we’ll turn to “parameterizing” these algorithms so they work for all k. A number of papers in bioinformatics have used quick algorithms for k-Path and related problems to analyze various networks that arise in biology (some references are [SIKS05, ADH+08, YLRS+09]). In the following, we always denote the number of vertices jV j in our given graph G = (V; E) by n, and the number of edges jEj by m. We often associate the set of vertices V with the set [n] := f1; : : : ; ng. 1 Hamiltonian Path Before discussing k-Path, it will be useful to first discuss algorithms for the famous NP-complete Hamiltonian path problem, which is the special case where k = n. Essentially all algorithms we discuss here can be adapted to obtain algorithms for k-Path! The naive algorithm for Hamiltonian Path takes time about n! = 2Θ(n log n) to try all possible permutations of the nodes (which can also be adapted to get an O?(k!)-time algorithm for k-Path, as we’ll see). -
Graph Theory 1 Introduction
6.042/18.062J Mathematics for Computer Science March 1, 2005 Srini Devadas and Eric Lehman Lecture Notes Graph Theory 1 Introduction Informally, a graph is a bunch of dots connected by lines. Here is an example of a graph: B H D A F G I C E Sadly, this definition is not precise enough for mathematical discussion. Formally, a graph is a pair of sets (V, E), where: • Vis a nonempty set whose elements are called vertices. • Eis a collection of twoelement subsets of Vcalled edges. The vertices correspond to the dots in the picture, and the edges correspond to the lines. Thus, the dotsandlines diagram above is a pictorial representation of the graph (V, E) where: V={A, B, C, D, E, F, G, H, I} E={{A, B} , {A, C} , {B, D} , {C, D} , {C, E} , {E, F } , {E, G} , {H, I}} . 1.1 Definitions A nuisance in first learning graph theory is that there are so many definitions. They all correspond to intuitive ideas, but can take a while to absorb. Some ideas have multi ple names. For example, graphs are sometimes called networks, vertices are sometimes called nodes, and edges are sometimes called arcs. Even worse, no one can agree on the exact meanings of terms. For example, in our definition, every graph must have at least one vertex. However, other authors permit graphs with no vertices. (The graph with 2 Graph Theory no vertices is the single, stupid counterexample to many wouldbe theorems— so we’re banning it!) This is typical; everyone agrees moreorless what each term means, but dis agrees about weird special cases. -
The Cubic Groups
The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4]. -
Can Every Face of a Polyhedron Have Many Sides ?
Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1. -
HABILITATION THESIS Petr Gregor Combinatorial Structures In
HABILITATION THESIS Petr Gregor Combinatorial Structures in Hypercubes Computer Science - Theoretical Computer Science Prague, Czech Republic April 2019 Contents Synopsis of the thesis4 List of publications in the thesis7 1 Introduction9 1.1 Hypercubes...................................9 1.2 Queue layouts.................................. 14 1.3 Level-disjoint partitions............................ 19 1.4 Incidence colorings............................... 24 1.5 Distance magic labelings............................ 27 1.6 Parity vertex colorings............................. 29 1.7 Gray codes................................... 30 1.8 Linear extension diameter........................... 36 Summary....................................... 38 2 Queue layouts 51 3 Level-disjoint partitions 63 4 Incidence colorings 125 5 Distance magic labelings 143 6 Parity vertex colorings 149 7 Gray codes 155 8 Linear extension diameter 235 3 Synopsis of the thesis The thesis is compiled as a collection of 12 selected publications on various combinatorial structures in hypercubes accompanied with a commentary in the introduction. In these publications from years between 2012 and 2018 we solve, in some cases at least partially, several open problems or we significantly improve previously known results. The list of publications follows after the synopsis. The thesis is organized into 8 chapters. Chapter 1 is an umbrella introduction that contains background, motivation, and summary of the most interesting results. Chapter 2 studies queue layouts of hypercubes. A queue layout is a linear ordering of vertices together with a partition of edges into sets, called queues, such that in each set no two edges are nested with respect to the ordering. The results in this chapter significantly improve previously known upper and lower bounds on the queue-number of hypercubes associated with these layouts. -
HAMILTONICITY in CAYLEY GRAPHS and DIGRAPHS of FINITE ABELIAN GROUPS. Contents 1. Introduction. 1 2. Graph Theory: Introductory
HAMILTONICITY IN CAYLEY GRAPHS AND DIGRAPHS OF FINITE ABELIAN GROUPS. MARY STELOW Abstract. Cayley graphs and digraphs are introduced, and their importance and utility in group theory is formally shown. Several results are then pre- sented: firstly, it is shown that if G is an abelian group, then G has a Cayley digraph with a Hamiltonian cycle. It is then proven that every Cayley di- graph of a Dedekind group has a Hamiltonian path. Finally, we show that all Cayley graphs of Abelian groups have Hamiltonian cycles. Further results, applications, and significance of the study of Hamiltonicity of Cayley graphs and digraphs are then discussed. Contents 1. Introduction. 1 2. Graph Theory: Introductory Definitions. 2 3. Cayley Graphs and Digraphs. 2 4. Hamiltonian Cycles in Cayley Digraphs of Finite Abelian Groups 5 5. Hamiltonian Paths in Cayley Digraphs of Dedekind Groups. 7 6. Cayley Graphs of Finite Abelian Groups are Guaranteed a Hamiltonian Cycle. 8 7. Conclusion; Further Applications and Research. 9 8. Acknowledgements. 9 References 10 1. Introduction. The topic of Cayley digraphs and graphs exhibits an interesting and important intersection between the world of groups, group theory, and abstract algebra and the world of graph theory and combinatorics. In this paper, I aim to highlight this intersection and to introduce an area in the field for which many basic problems re- main open.The theorems presented are taken from various discrete math journals. Here, these theorems are analyzed and given lengthier treatment in order to be more accessible to those without much background in group or graph theory. -
Chapter 3: Transformations Groups, Orbits, and Spaces of Orbits
Preprint typeset in JHEP style - HYPER VERSION Chapter 3: Transformations Groups, Orbits, And Spaces Of Orbits Gregory W. Moore Abstract: This chapter focuses on of group actions on spaces, group orbits, and spaces of orbits. Then we discuss mathematical symmetric objects of various kinds. May 3, 2019 -TOC- Contents 1. Introduction 2 2. Definitions and the stabilizer-orbit theorem 2 2.0.1 The stabilizer-orbit theorem 6 2.1 First examples 7 2.1.1 The Case Of 1 + 1 Dimensions 11 3. Action of a topological group on a topological space 14 3.1 Left and right group actions of G on itself 19 4. Spaces of orbits 20 4.1 Simple examples 21 4.2 Fundamental domains 22 4.3 Algebras and double cosets 28 4.4 Orbifolds 28 4.5 Examples of quotients which are not manifolds 29 4.6 When is the quotient of a manifold by an equivalence relation another man- ifold? 33 5. Isometry groups 34 6. Symmetries of regular objects 36 6.1 Symmetries of polygons in the plane 39 3 6.2 Symmetry groups of some regular solids in R 42 6.3 The symmetry group of a baseball 43 7. The symmetries of the platonic solids 44 7.1 The cube (\hexahedron") and octahedron 45 7.2 Tetrahedron 47 7.3 The icosahedron 48 7.4 No more regular polyhedra 50 7.5 Remarks on the platonic solids 50 7.5.1 Mathematics 51 7.5.2 History of Physics 51 7.5.3 Molecular physics 51 7.5.4 Condensed Matter Physics 52 7.5.5 Mathematical Physics 52 7.5.6 Biology 52 7.5.7 Human culture: Architecture, art, music and sports 53 7.6 Regular polytopes in higher dimensions 53 { 1 { 8. -
The Cube of Every Connected Graph Is 1-Hamiltonian
JOURNAL OF RESEARCH of the National Bureau of Standards- B. Mathematical Sciences Vol. 73B, No.1, January- March 1969 The Cube of Every Connected Graph is l-Hamiltonian * Gary Chartrand and S. F. Kapoor** (November 15,1968) Let G be any connected graph on 4 or more points. The graph G3 has as its point set that of C, and two distinct pointE U and v are adjacent in G3 if and only if the distance betwee n u and v in G is at most three. It is shown that not only is G" hamiltonian, but the removal of any point from G" still yields a hamiltonian graph. Key Words: C ube of a graph; graph; hamiltonian. Let G be a graph (finite, undirected, with no loops or multiple lines). A waLk of G is a finite alternating sequence of points and lines of G, beginning and ending with a point and where each line is incident with the points immediately preceding and followin g it. A walk in which no point is repeated is called a path; the Length of a path is the number of lines in it. A graph G is connected if between every pair of distinct points there exists a path, and for such a graph, the distance between two points u and v is defined as the length of the shortest path if u 0;1= v and zero if u = v. A walk with at least three points in which the first and last points are the same but all other points are dis tinct is called a cycle. -
A Survey of Line Graphs and Hamiltonian Paths Meagan Field
University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-7-2012 A Survey of Line Graphs and Hamiltonian Paths Meagan Field Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Field, Meagan, "A Survey of Line Graphs and Hamiltonian Paths" (2012). Math Theses. Paper 3. http://hdl.handle.net/10950/86 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. A SURVEY OF LINE GRAPHS AND HAMILTONIAN PATHS by MEAGAN FIELD A thesis submitted in partial fulfillment of the requirements for the degree of Master’s of Science Department of Mathematics Christina Graves, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2012 Contents List of Figures .................................. ii Abstract ...................................... iii 1 Definitions ................................... 1 2 Background for Hamiltonian Paths and Line Graphs ........ 11 3 Proof of Theorem 2.2 ............................ 17 4 Conclusion ................................... 34 References ..................................... 35 i List of Figures 1GraphG..................................1 2GandL(G)................................3 3Clawgraph................................4 4Claw-freegraph..............................4 5Graphwithaclawasaninducedsubgraph...............4 6GraphP .................................. 7 7AgraphCcontainingcomponents....................8 8Asimplegraph,Q............................9 9 First and second step using R2..................... 9 10 Third and fourth step using R2..................... 10 11 Graph D and its reduced graph R(D).................. 10 12 S5 and its line graph, K5 ......................... 13 13 S8 and its line graph, K8 ......................... 14 14 Line graph of graph P ......................... -
Matchings Extend to Hamiltonian Cycles in 5-Cube 1
Discussiones Mathematicae Graph Theory 38 (2018) 217–231 doi:10.7151/dmgt.2010 MATCHINGS EXTEND TO HAMILTONIAN CYCLES IN 5-CUBE 1 Fan Wang 2 School of Sciences Nanchang University Nanchang, Jiangxi 330000, P.R. China e-mail: [email protected] and Weisheng Zhao Institute for Interdisciplinary Research Jianghan University Wuhan, Hubei 430056, P.R. China e-mail: [email protected] Abstract Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink con- firmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5. Keywords: hypercube, Hamiltonian cycle, matching. 2010 Mathematics Subject Classification: 05C38, 05C45. 1This work is supported by NSFC (grant nos. 11501282 and 11261019) and the science and technology project of Jiangxi Provincial Department of Education (grant No. 20161BAB201030). 2Corresponding author. 218 F. Wang and W. Zhao 1. Introduction Let [n] denote the set {1,...,n}. The n-dimensional hypercube Qn is a graph whose vertex set consists of all binary strings of length n, i.e., V (Qn) = {u : u = u1 ··· un and ui ∈ {0, 1} for every i ∈ [n]}, with two vertices being adjacent whenever the corresponding strings differ in just one position. The hypercube Qn is one of the most popular and efficient interconnection networks. -
Are Highly Connected 1-Planar Graphs Hamiltonian? Arxiv:1911.02153V1 [Cs.DM] 6 Nov 2019
Are highly connected 1-planar graphs Hamiltonian? Therese Biedl Abstract It is well-known that every planar 4-connected graph has a Hamiltonian cycle. In this paper, we study the question whether every 1-planar 4-connected graph has a Hamiltonian cycle. We show that this is false in general, even for 5-connected graphs, but true if the graph has a 1-planar drawing where every region is a triangle. 1 Introduction Planar graphs are graphs that can be drawn without crossings. They have been one of the central areas of study in graph theory and graph algorithms, and there are numerous results both for how to solve problems more easily on planar graphs and how to draw planar graphs (see e.g. [1, 9, 10])). We are here interested in a theorem by Tutte [17] that states that every planar 4-connected graph has a Hamiltonian cycle (definitions are in the next section). This was an improvement over an earlier result by Whitney that proved the existence of a Hamiltonian cycle in a 4-connected triangulated planar graph. There have been many generalizations and improvements since; in particular we can additionally fix the endpoints and one edge that the Hamiltonian cycle must use [16, 12]. Also, 4-connected planar graphs remain Hamiltonian even after deleting 2 vertices [14]. Hamiltonian cycles in planar graphs can be computed in linear time; this is quite straightforward if the graph is triangulated [2] and a bit more involved for general 4-connected planar graphs [5]. There are many graphs that are near-planar, i.e., that are \close" to planar graphs. -
New Perspectives on Polyhedral Molecules and Their Crystal Structures Santiago Alvarez, Jorge Echeverria
New Perspectives on Polyhedral Molecules and their Crystal Structures Santiago Alvarez, Jorge Echeverria To cite this version: Santiago Alvarez, Jorge Echeverria. New Perspectives on Polyhedral Molecules and their Crystal Structures. Journal of Physical Organic Chemistry, Wiley, 2010, 23 (11), pp.1080. 10.1002/poc.1735. hal-00589441 HAL Id: hal-00589441 https://hal.archives-ouvertes.fr/hal-00589441 Submitted on 29 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Physical Organic Chemistry New Perspectives on Polyhedral Molecules and their Crystal Structures For Peer Review Journal: Journal of Physical Organic Chemistry Manuscript ID: POC-09-0305.R1 Wiley - Manuscript type: Research Article Date Submitted by the 06-Apr-2010 Author: Complete List of Authors: Alvarez, Santiago; Universitat de Barcelona, Departament de Quimica Inorganica Echeverria, Jorge; Universitat de Barcelona, Departament de Quimica Inorganica continuous shape measures, stereochemistry, shape maps, Keywords: polyhedranes http://mc.manuscriptcentral.com/poc Page 1 of 20 Journal of Physical Organic Chemistry 1 2 3 4 5 6 7 8 9 10 New Perspectives on Polyhedral Molecules and their Crystal Structures 11 12 Santiago Alvarez, Jorge Echeverría 13 14 15 Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, 16 Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain).