Assessment of Effects of Rodent Removal on Arthropods, and Development of Arthropod Monitoring Protocols, on Conservation Lands Under Us Army Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Mariner-Like Elements in Orthoptera Разнообразие Mariner
ЭКОЛОГИЧЕСКАЯ ГЕНЕТИКА Вавиловский журнал генетики и селекции. 2019;23(8):1059-1066 Оригинальное исследование / Original article DOI 10.18699/VJ19.581 Diversity of mariner-like elements in Orthoptera K. Ustyantsev1 , M. Biryukov1, I. Sukhikh1, N.V. Shatskaya1, V. Fet2, A. Blinov1, 3, I. Konopatskaia1 1 Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia 2 Marshall University, Department of Biological Sciences, Huntington, USA 3 Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia e-mail: [email protected] Mariner-like elements (MLEs) are among the most widespread DNA transposable elements in eukaryotes. Insects were the first organisms in which MLEs were identified, however the diversity of MLEs in the insect order Orthoptera has not yet been addressed. In the present study, we explore the diversity of MLEs elements in 16 species of Orthoptera be- longing to three infraorders, Acridoidea (Caelifera), Grylloidea (Ensifera), and Tettigoniidea (Ensifera) by combining data mined from computational analysis of sequenced degenerative PCR MLE amplicons and available Orthoptera genomic scaffolds. In total, 75 MLE lineages (Ortmar) were identified in all the studied genomes. Automatic phylogeny-based classification suggested that the current known variability of MLEs can be assigned to seven statistically well-supported phylogenetic clusters (I–VII), and the identified Orthoptera lineages were distributed among all of them. The majori- ty of the lineages (36 out of 75) belong to cluster I; 20 belong to cluster VI; and seven, six, four, one and one lineages belong to clusters II, IV, VII, III, and V, respectively. Two of the clusters (II and IV) were composed of a single Orthoptera MLE lineage each (Ortmar37 and Ortmar45, respectively) which were distributed in the vast majority of the studied Orthoptera genomes. -
Hemiptera- Heteroptera) En México, Con Un Listado De Las Especies Conocidas Anales Del Instituto De Biología
Anales del Instituto de Biología. Serie Zoología ISSN: 0368-8720 [email protected] Universidad Nacional Autónoma de México México Mayorga MARTÍNEZ, Ma. Cristina Revisión genérica de la familia Cydnidae (Hemiptera- Heteroptera) en México, con un listado de las especies conocidas Anales del Instituto de Biología. Serie Zoología, vol. 73, núm. 2, julio-diciembre, 2002, pp. 157-192 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=45873203 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 73(2): 157-192. 2002 Revisión genérica de la familia Cydnidae (Hemiptera- Heteroptera) en México, con un listado de las especies conocidas MA. CRISTINA MAYORGA MARTÍNEZ* Resumen. Se revisa la familia Cydnidae (Hemiptera-Heteroptera) para México, representada por 12 géneros: Amnestus Dallas, Cyrtomenus Amyot & Serville, Dallasiellus Berg, Ectinopus Dallas, Melanaethus Uhler, Microporus Uhler, Pangaeus Stål, Prolobodes Amyot & Serville, Rhytidoporus Uhler, Tominotus Mulsant & Rey, Scaptocoris Perty, Sehirus Amyot & Serville, pertenecientes a cuatro subfamilias: Amnestinae, Cydninae Scaptocorinae, Sehirinae; se incluyen datos de distribución de cada -
Alan Robert Templeton
Alan Robert Templeton Charles Rebstock Professor of Biology Professor of Genetics & Biomedical Engineering Department of Biology, Campus Box 1137 Washington University St. Louis, Missouri 63130-4899, USA (phone 314-935-6868; fax 314-935-4432; e-mail [email protected]) EDUCATION A.B. (Zoology) Washington University 1969 M.A. (Statistics) University of Michigan 1972 Ph.D. (Human Genetics) University of Michigan 1972 PROFESSIONAL EXPERIENCE 1972-1974. Junior Fellow, Society of Fellows of the University of Michigan. 1974. Visiting Scholar, Department of Genetics, University of Hawaii. 1974-1977. Assistant Professor, Department of Zoology, University of Texas at Austin. 1976. Visiting Assistant Professor, Dept. de Biologia, Universidade de São Paulo, Brazil. 1977-1981. Associate Professor, Departments of Biology and Genetics, Washington University. 1981-present. Professor, Departments of Biology and Genetics, Washington University. 1983-1987. Genetics Study Section, NIH (also served as an ad hoc reviewer several times). 1984-1992: 1996-1997. Head, Evolutionary and Population Biology Program, Washington University. 1985. Visiting Professor, Department of Human Genetics, University of Michigan. 1986. Distinguished Visiting Scientist, Museum of Zoology, University of Michigan. 1986-present. Research Associate of the Missouri Botanical Garden. 1992. Elected Visiting Fellow, Merton College, University of Oxford, Oxford, United Kingdom. 2000. Visiting Professor, Technion Institute of Technology, Haifa, Israel 2001-present. Charles Rebstock Professor of Biology 2001-present. Professor of Biomedical Engineering, School of Engineering, Washington University 2002-present. Visiting Professor, Rappaport Institute, Medical School of the Technion, Israel. 2007-2010. Senior Research Associate, The Institute of Evolution, University of Haifa, Israel. 2009-present. Professor, Division of Statistical Genomics, Washington University 2010-present. -
Zootaxa, a Review of Burrower Bugs (Hemiptera: Heteroptera: Cydnidae
Zootaxa 2523: 57–64 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) A review of burrower bugs (Hemiptera: Heteroptera: Cydnidae sensu lato) of Guam JERZY A. LIS1,3 & RICHARD S. ZACK2 1Department of Biosystematics, Opole University, Oleska 22, 45-052 Opole, Poland 2Department of Entomology, Washington State University, Pullman, Washington 99164-6382, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected], http://www.cydnidae.uni.opole.pl Abstract Five species representing the family Cydnidae sensu lato are recorded from Guam; three of them are reported for the first time from the island: Byrsinus varians (Fabricius, 1803), Fromundus biimpressus (Horváth, 1919), and Rhytidoporus indentatus Uhler, 1877. The widespread species, Fromundus pygmaeus (Dallas), was recorded by Ruckes (1963) and verified by us. The occurrence of a fifth species, previously listed from the island by Ruckes (1963) and Lis (1996), namely Adrisa flavomarginata (Vollenhoven, 1868), is regarded as doubtful. Of four currently known burrower bug species occurring on Guam, three are Oriental and one is American in origin. A key to all burrower bug species known from the island is provided. Additionally, Microporus shiromai Froeschner, 1976 from Hawaii is regarded as a junior synonym of Byrsinus varians (Fabricius, 1803). Key words: Hemiptera, Heteroptera, Cydnidae, Microporus shiromai, Guam, review, faunistics, taxonomy, new records, new synonym, key to species Introduction Although the burrower bug fauna of the Oriental and Australian Regions is relatively well known (see, e.g., Lis 1994, 1996, 1997, 1999a,b,c,d, 2000a,b, 2001; Lis and Heyna 2001), some of the Pacific islands are still unsatisfactorily explored. -
Ecological Effects of Solenopsis Papuana on Invertebrate Communities in Oʻahu Forests
ECOLOGICAL EFFECTS OF SOLENOPSIS PAPUANA ON INVERTEBRATE COMMUNITIES IN OʻAHU FORESTS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENTOMOLOGY MAY 2018 By Cassandra S. Ogura-Yamada Thesis Committee: Paul Krushelnycky, Chairperson William Haines Helen Spafford 1 ACKNOWLEDGEMENTS To my advisor, Dr. Paul Krushelnycky, thank you for accepting me as your grad student; for patiently explaining various statistical concepts multiple times, making sure I don’t get lost in the mountains, being a great role model, and having an amazing sense of humor. Thank you, Dr. William Haines, for always making time for me and sharing your expertise. Your love of entomology is contagious, and I enjoyed learning from you. Thank you, Dr. Helen Spafford, for your guidance and support. There was a time, not too long ago, where entomology was far beyond my comfort zone, and if weren’t for you teaching General Entomology, I would have never known how cool insects are. I am very grateful for the Oʻahu Army Natural Resources Program for funding this amazing adventure, and for helping logistically make it happen. I learned a lot about the different plants in the forests out in Waiʻanae, and the work you folks do is interesting and so important. Hiking out with you guys was unforgettable, especially at Puʻu Hāpapa. Thank you also to the Department of Forestry and Wildlife and the Natural Area Reserve System of the Hawaiʻi Department of Land and Natural Resources for research and access permits. -
Systematics and Acoustics of North American Anaxipha (Gryllidae: Trigonidiinae) by Thomas J
Systematics and acoustics of North American Anaxipha (Gryllidae: Trigonidiinae) by Thomas J. Walker and David H. Funk Journal of Orthoptera Research 23(1): 1-38. 2014. Front cover Back cover In brief: This paper provides valid scientific names for the 13 species known to occur in North America and uses their songs and files to question the prevailing view of how frequency is determined in the songs of most crickets. Supplementary materials: All supplementary materials are accessible here as well as from the Full Text and PDF versions on BioOne. Press “Page Down” to view page 1 of the article. T.J. WALKER AND D.H.Journal FUNK of Orthoptera Research 2014, 23(1): 1-381 Systematics and acoustics of North American Anaxipha (Gryllidae: Trigonidiinae) THOMAS J. WALKER AND DAVID H. FUNK [TW] Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA. Email: [email protected] [DF] Stroud Water Research Center, Avondale, Pennsylvania, 19311, USA. Email: [email protected] Abstract Introduction The genus Anaxipha has at least 13 North American species, eight of which Some 163 species of tiny brownish crickets are nominally in the are described here. Ten species fall into these three species groups: exigua trigonidiine genus Anaxipha (OSFO 2013), but Otte & Perez-Gelabert group (exigua Say, scia Hebard and n. spp. thomasi, tinnulacita, tinnulenta, (2009, p. 127) suggest that the genus is "in serious need of revi- and tinnula); delicatula group (delicatula Scudder and vernalis n. sp.); litarena sion" and that "the taxonomy of the Trigonidiinae as a whole is in a group (litarena Fulton and rosamacula n.sp.). -
Zoosystema 31(3)
New and little known crickets from Espiritu Santo Island, Vanuatu (Insecta, Orthoptera, Grylloidea, Pseudotrigonidium Chopard, 1915, Phaloriinae and Nemobiinae p.p.) Laure DESUTTER-GRANDCOLAS Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR 7205 CNRS, case postale 50, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Desutter-Grandcolas L. 2009. — New and little known crickets from Espiritu Santo Island, Vanuatu (Insecta, Orthoptera, Grylloidea, Pseudotrigonidium Chopard, 1915, Phaloriinae and Nemobiinae p.p.). Zoosystema 31 (3) : 619-659. ABSTRACT Th e cricket fauna of Espiritu Santo Island (Vanuatu) has been sampled during the SANTO 2006 biological survey. About 50 cricket species have been collected and observed in the fi eld. In the present paper, cricket species belonging to KEY WORDS Pseudotrigonidium Chopard, 1915, Phaloriinae and to troglobitic Nemobiinae Insecta, are studied, and their habitat characterized according to specimen observations Orthoptera, Grylloidea, in the fi eld. Six new species are described, Pseudotrigonidium personatum n. sp., Phaloriinae, Phaloria faponensis n. sp., P. nigricollis n. sp., P. pentecotensis n. sp., P. walterlinii Nemobiinae, troglobitic taxa, n. sp. and Cophonemobius faustini n. sp. Podoscirtus chopardi Willemse, 1925 Micronesia, is transferred to the genus Phaloria Stål, 1877 and redescribed, while Phaloria Pacifi c, chopardi (Willemse, 1951) from the Carolines islands is renamed P. willemsei Vanuatu, bioacoustics, Desutter-Grandcolas, 2009 to avoid homonymy. Th e calling song of P. chopardi new species. is described. ZOOSYSTEMA • 2009 • 31 (3) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris. www.zoosystema.com 619 Desutter-Grandcolas L. RÉSUMÉ Grillons nouveaux ou peu connus de l’île d’Espiritu Santo, Vanuatu (Insecta, Orthoptera, Grylloidea, Pseudotrigonidium Chopard, 1915, Phaloriinae and Nemobiinae p.p.). -
Insights Into the Genomic Evolution of Insects from Cricket Genomes
ARTICLE https://doi.org/10.1038/s42003-021-02197-9 OPEN Insights into the genomic evolution of insects from cricket genomes ✉ Guillem Ylla 1 , Taro Nakamura 1,9, Takehiko Itoh 2, Rei Kajitani 2, Atsushi Toyoda 3,4, Sayuri Tomonari 5, Tetsuya Bando6, Yoshiyasu Ishimaru5, Takahito Watanabe5, Masao Fuketa7, ✉ ✉ Yuji Matsuoka5,10, Austen A. Barnett 1,11, Sumihare Noji 5, Taro Mito 5 & Cassandra G. Extavour 1,8 Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA 1234567890():,; methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis.We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Maintien À Long Terme Des Communautés D'insectes Forestiers Dans Un Contexte De Changement Global : Réponses Écologiques D
UNIVERSITE DE LA NOUVELLE-CALEDONIE ECOLE DOCTORALE DU PACIFIQUE (ED 469) Maintien à long terme des communautés d’insectes forestiers dans un contexte de changement global : Réponses écologiques des communautés d'Orthoptères dans une succession forestière et face à la progression d'espèces invasives THESE Pour obtenir le grade de DOCTEUR DE L‘UNIVERSITE DE LA NOUVELLE-CALEDONIE Discipline : Biologie des populations et écologie IMBE UMR CNRS, IRD, UAPV / ISYEB – UMR 7205 CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités Présentée et soutenue publiquement par Jérémy ANSO Le 30 Mars 2016 Direction de thèse : Hervé Jourdan, Laure Desutter-Grandcolas et Eric Vidal JURY M. Olivier DANGLES Directeur de recherche, IRD Rapporteur M. Bruno FOGLIANI Maître de conférences, IAC Rapporteur M. Yves LETOURNEUR Professeur, UNC Examinateur M. Philippe GRANDCOLAS Directeur de recherche, CNRS Examinateur M. Olivier BLIGHT Maître de conférences, Université d’Avignon Examinateur M. Eric VIDAL Directeur de recherche, IRD Co-directeur M. Hervé JOURDAN Ingénieur de recherche, IRD Co-directeur Mme. Laure DESUTTER- GRANDCOLAS Professeure, MNHN Co-directrice Remerciements Je remercie tous les membres du jury qui ont accepté d‘évaluer ce travail de recherche. Merci à MM. Olivier Dangles et Bruno Fogliani, tous deux rapporteurs de ce travail, ainsi qu‘à MM. Philippe Grandcolas, Yves Letourneur et Olivier Blight, tous trois examinateurs. Je remercie Hervé Jourdan qui m‘a épaulé durant tout ce travail au centre IRD de Nouméa. Merci à Hervé de m‘avoir fait confiance dès le départ de cette thèse et de ce long travail que l‘on sait formateur. Hervé est une véritable encyclopédie vivante sur la Nouvelle- Calédonie, et sur pratiquement tous les sujets qui s‘y réfèrent. -
Halona2021r.Pdf
Terrestrial Arthropod Survey of Hālona Valley, Joint Base Pearl Harbor-Hickam, Naval Magazine Lualualei Annex, August 2020–November 2020 Neal L. Evenhuis, Keith T. Arakaki, Clyde T. Imada Hawaii Biological Survey Bernice Pauahi Bishop Museum Honolulu, Hawai‘i 96817, USA Final Report prepared for the U.S. Navy Contribution No. 2021-003 to the Hawaii Biological Survey EXECUTIVE SUMMARY The Bishop Museum was contracted by the U.S. Navy to conduct surveys of terrestrial arthropods in Hālona Valley, Naval Magazine Lualualei Annex, in order to assess the status of populations of three groups of insects, including species at risk in those groups: picture-winged Drosophila (Diptera; flies), Hylaeus spp. (Hymenoptera; bees), and Rhyncogonus welchii (Coleoptera; weevils). The first complete survey of Lualualei for terrestrial arthropods was made by Bishop Museum in 1997. Since then, the Bishop Museum has conducted surveys in Hālona Valley in 2015, 2016–2017, 2017, 2018, 2019, and 2020. The current survey was conducted from August 2020 through November 2020, comprising a total of 12 trips; using yellow water pan traps, pitfall traps, hand collecting, aerial net collecting, observations, vegetation beating, and a Malaise trap. The area chosen for study was a Sapindus oahuensis grove on a southeastern slope of mid-Hālona Valley. The area had potential for all three groups of arthropods to be present, especially the Rhyncogonus weevil, which has previously been found in association with Sapindus trees. Trapped and collected insects were taken back to the Bishop Museum for sorting, identification, data entry, and storage and preservation. The results of the surveys proved negative for any of the target groups. -
A Cricket Gene Index: a Genomic Resource for Studying Neurobiology, Speciation, and Molecular Evolution
A Cricket Gene Index: A Genomic Resource for Studying Neurobiology, Speciation, and Molecular Evolution The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Danley, Patrick D., Sean P. Mullen, Fenglong Liu, Vishvanath Nene, John Quackenbush, and Kerry L. Shaw. 2007. A cricket gene index: a genomic resource for studying neurobiology, speciation, and molecular evolution. BMC Genomics 8:109. Published Version doi:10.1186/1471-2164-8-109 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4551296 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA BMC Genomics BioMed Central Research article Open Access A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution Patrick D Danley*1, Sean P Mullen1, Fenglong Liu2, Vishvanath Nene3, John Quackenbush2,4,5 and Kerry L Shaw1 Address: 1Department of Biology, University of Maryland, College Park, MD 20742, USA, 2Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA, 3The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA, 4Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA and 5Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA Email: Patrick D Danley* - [email protected]; Sean P Mullen - [email protected]; Fenglong Liu - [email protected]; Vishvanath Nene - [email protected]; John Quackenbush - [email protected]; Kerry L Shaw - [email protected] * Corresponding author Published: 25 April 2007 Received: 13 October 2006 Accepted: 25 April 2007 BMC Genomics 2007, 8:109 doi:10.1186/1471-2164-8-109 This article is available from: http://www.biomedcentral.com/1471-2164/8/109 © 2007 Danley et al; licensee BioMed Central Ltd.