Investigation of Novel Penetration Modifiers As Enhancers and Retardants

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Novel Penetration Modifiers As Enhancers and Retardants INVESTIGATION OF NOVEL PENETRATION MODIFIERS AS ENHANCERS AND RETARDANTS AND HUMAN PHARMACOKINETICS AND PHARMACODYNAMICS OF ORALLY ADMINISTERED QUERCETIN BY DIKSHA KAUSHIK A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Pharmaceutical Science Written under the direction of Professor Bozena B. Michniak-Kohn, Ph.D. And approved by ……………………………………………… ……………………………………………… …………………………………………….. ……………………………………………….. New Brunswick, New Jersey October 2010 ABSTRACT OF THE DISSERTATION INVESTIGATION OF NOVEL PERCUTANEOUS PENETRATION MODIFIERS AS ENHANCERS AND RETARDANTS AND HUMAN PHARMACOKINETICS AND PHARMACODYNAMICS OF ORALLY ADMINISTERED QUERCETIN BY DIKSHA KAUSHIK Dissertation Director: Professor Bozena B. Michniak-Kohn, Ph.D. The delivery of the actives through the outermost layer of the skin, the stratum corneum has posed a challenge for scientists for a very long time. There are compound called “enhancers” that have been developed to enhance drug delivery across skin and at the same time there are compounds referred to as “retardants” that prevent or retard the delivery of actives across the skin. Since both enhancers and retardants are believed to act by modifying the properties of the SC barrier, they are collectively referred to as “penetration modifiers”. The first part of the study aimed at investigating five penetration modifiers that are analogues of laurocapram and iminosulfurane. These penetration modifiers were evaluated initially for their enhancement/retardation potential by computer modeling and investigated for their physical attributes (solubility, lipophilicity, etc.) and formulation effects. The effect of permeation modifier formulations (prepared in commonly used pharmaceutical vehicles) on permeation of model permeants were evaluated and mechanistic studies were performed using thermal, spectral and ii microscopic analyses. The penetration modifiers were also assessed for their in vitro permeation and cytotoxicity using MTS assay. These investigations should lead to a better understanding of the properties, effects and mechanisms of action of penetration modifiers. The second part of the dissertation covers human pharmacokinetics and pharmacodynamics of quercetin. Quercetin is a naturally occurring flavonoid with antioxidant and anti-inflammatory potential. In order to assess some of benefits of quercetin, this investigation examined the pharmacokinetics and pharmacodynamics of orally administered formulations to human healthy volunteers. Initially, we developed and validated a quercetin assay in human plasma and urine followed by selection of suitable oral carrier for pharmacodynamics study based on pharmacokinetic profiles of three nutritional carrier systems. This was followed by determination of the effects of quercetin supplementation on improving maximal oxygen uptake, enhancing exercise performance during heat stress and relief of muscle soreness. We expect to make conclusions regarding effects of quercetin in overall improvement in work performance of human subjects that would in turn enable the U.S. Department of Defense to consider inclusion of quercetin in daily rations for soldiers to further improve their performance. iii Dedication To Almighty God To my husband, Ranajoy and our family Acknowledgements The writing of a dissertation can be a difficult experience which is obviously not possible without the personal and practical support of numerous people. It is impossible to express my gratitude to my Ph.D. advisor, Professor Bozena B. Michniak-Kohn. Without her inspirational guidance, her enthusiasm, her encouragements and her unselfish help, I could never finish my doctoral work in Rutgers University. For me, she is not only a teacher, but also a lifetime friend and advisor. My thanks go also to the members of my advisory committee, Professor Tamara Minko, Dr. Guofeng You and Dr. Nava Dayan for their time, guidance and helpful discussions. I express gratitude to Dr James Chapman (University of South Carolina, Columbia) for providing N-0915 and TBDOC. In addition, I acknowledge the assistance of Drs. A. Joy, D. Bolikal, P. Chandra, J. Khan, S. Murthy and J. Kohn from the NJ Center for Biomaterials for providing technical and professional support. My sincere thanks to Drs. P. Dunne (NSRDEC), K. Conca (NSRDEC), E. Zambraski (USARIEM), P. Clarkson (U. Massachusetts), S. Cheuvront (USARIEM), L. Armstrong (U. Connecticut) and M. Ganio (U. Connecticut) and Kevin O’Fallon for technical and professional assistance. I thank my seniors Drs. R. Thakur and P. Batheja and fellow students Brian Kilfoyle, Vishwas Rai, Sergio D’Silva, L. Hu and P. Zhang for their help and support in my research. iv Finally, my sincere gratitude goes to my husband, Ranajoy, daughter, Aneesha, parents, parents-in-law, sisters, friends and all my colleagues and superiors in the Ernest Mario School of Pharmacy and NJ Center for Biomaterials for their love, support, and patience over the last few years. v TABLE OF CONTENTS Abstract of the dissertation …………………………………………………………….. ii Dedication/Acknowledgement………………………………………………….…….... iv Abbreviations………………………………………………………………………….. xv List of Tables………………………………………………………………………….. xix List of Figures……………………………………………………………………...…xxiii List of Structures………………………………………………………………….…xxvii Part 1……………………………………………………………………………………..1 Chapter 1: Introduction………………………………………………………………………………2 Chapter 2: Background and significance………………………………………............5 2.1 Background.................................................................................................................... 5 2.2 Characteristics of ideal penetration modifiers..............................................................6 2.3 Theory............................................................................................................................ 8 2.4 Enhancement vs. retardation.......................................................................................10 2.4.1 Factors affecting performance of transdermal permeation modifiers.............10 2.4.1.1 Molecular shape and size..............................................................................10 vi 2.4.1.2 Hydrogen bonding potential and polarity.....................................................11 2.4.1.3 Chemical structure........................................................................................12 2.4.1.4. Formulation effect........................................................................................12 2.5 Characterization of penetration modifiers...................................................................14 2.6 Penetration modifiers in drug delivery........................................................................15 2.7 Significance.................................................................................................................. 18 Chapter 3: Specific aims……………………………………………………………….. 20 Chapter 4: Penetration modifiers and formulation effects………………………….. 22 4.1 Introduction..................................................................................................................22 4.2 Materials and methods................................................................................................. 24 4.2.1 Materials.......................................................................................................... 24 4.2.1.1 Chemicals...................................................................................................... 24 4.2.1.2 Skin membranes............................................................................................24 4.2.2 Methods............................................................................................................25 4.2.2.1 Preparation of formulations......................................................................... 25 4.2.2.2 Determination of solubility and available amounts of penetration modifiers in vehicles...................................................................................................... 25 4.2.2.3 Modeling and partition coefficient determination of penetration modifiers........................................................................................................25 vii 4.2.2.4 In vitro skin permeation study...................................................................... 26 4.2.2.5 Analysis of DEET and penetration modifiers............................................... 28 4.2.3 Data and statistical analysis............................................................................28 4.3. Results and discussion................................................................................................ 29 4.3.1 Determination of solubility and available amounts of penetration modifiers in vehicles.............................................................................................................. 29 4.3.2 Modeling and partition coefficient determination of penetration modifiers.............................................................................................................30 4.3.3 In vitro skin permeation study results.............................................................. 31 4.3.3.1 Effect of various formulations of laurocapram on permeation of DEET.............................................................................................................. 32 4.3.3.2 Effect of N-0915
Recommended publications
  • DHEA: Dehydroepiandrosterone
    DHEA: Dehydroepiandrosterone Joseph Pepping, Pharm.D. [Am J Health-Syst Pharm 57(22):2048-2056, 2000. © 2000 ASHP, Inc.] Introduction Dehydroepiandrosterone (DHEA) and its active metabolite, DHEA sulfate (DHEAS), are endogenous hormones synthesized and excreted primarily by the zona reticularis of the adrenal cortex in response to adrenocorticotropic hormone. The exact mechanism of action and clinical role, if any, of DHEA and DHEAS remain unclear. Epidemiological data indicate an inverse relationship between serum DHEA and DHEAS levels and the frequency of cancer, cardiovascular disease (in men only), Alzheimer's disease and other age-related disorders, immune function, and progression of HIV infection. [1] Animal (primarily rodent) studies have suggested many beneficial effects of DHEA, including improved immune function and memory and prevention of atherosclerosis, cancer, diabetes, and obesity. Many of the benefits seen in animal studies have yet to be shown in humans. [1-3] Uses Clinically substantiated (yet still controversial) uses of DHEA include replacement therapy in patients with low serum DHEA levels secondary to chronic disease, adrenal exhaustion, or corticosteroid therapy; treating systemic lupus erythematosus (SLE), improving bone density in postmenopausal women; improving symptoms of severe depression; improving depressed mood and fatigue in patients with HIV infection; and increasing the rate of reepithelialization in patients undergoing autologous skin grafting for burns. [1,4-8] Other possible uses (with some supporting clinical studies) include enhancing the immune response and sense of well-being in the elderly, decreasing certain cardiovascular risk factors, and treating male erectile dysfunction. [4,8-12] Use of DHEA to slow or reverse the aging process, improve cognitive function, promote weight loss, increase lean muscle mass, or slow the progression of Parkinson's disease and Alzheimer's disease is clinically unsubstantiated.
    [Show full text]
  • Exerts Anxiolytic-Like Effects Through GABAA Receptors in a Surgical Menopause Model in Rats
    Biomedicine & Pharmacotherapy 109 (2019) 2387–2395 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Original article Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats T ⁎ Juan Francisco Rodríguez-Landaa,b, , Fabiola Hernández-Lópezc, Jonathan Cueto-Escobedoa, Emma Virginia Herrera-Huertad, Eduardo Rivadeneyra-Domínguezb, Blandina Bernal-Moralesa,b, Elizabeth Romero-Avendañod a Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico b Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico c Hospital General de Zona con Medicina Familiar No. 28, Delegación Veracruz Norte, Instituto Mexicano del Seguro Social (H.G.Z. c/mf. No. 28, Delegación Veracruz Norte, IMSS), Martínez de la Torre, Veracruz, Mexico d Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico ARTICLE INFO ABSTRACT Keywords: The present study investigated the effects of the flavonoid chrysin (5,7-dihydroxyflavone) on anxiety-like be- Anxiolytics havior in rats in a model of surgical menopause and evaluated the participation of γ-aminobutyric acid-A Chrysin (GABAA) receptors in these actions. At 12 weeks post-ovariectomy, the effects of different doses of chrysin (0.5, GABAA 1, 2, and 4 mg/kg) were evaluated in the elevated plus maze, light/dark test, and locomotor activity test, and Oophorectomy comparisons were made with the clinically effective anxiolytic diazepam. The participation of GABA receptors Ovariectomy A in the actions of chrysin was explored by pretreating the rats with the noncompetitive GABA chloride ion Surgical menopause A channel antagonist picrotoxin (1 mg/kg). The results showed that chrysin (2 and 4 mg/kg) reduced anxiety-like behavior in both the elevated plus maze and light/dark test, and these effects were similar to diazepam.
    [Show full text]
  • The G Protein-Coupled Glutamate Receptors As Novel Molecular Targets in Schizophrenia Treatment— a Narrative Review
    Journal of Clinical Medicine Review The G Protein-Coupled Glutamate Receptors as Novel Molecular Targets in Schizophrenia Treatment— A Narrative Review Waldemar Kryszkowski 1 and Tomasz Boczek 2,* 1 General Psychiatric Ward, Babinski Memorial Hospital in Lodz, 91229 Lodz, Poland; [email protected] 2 Department of Molecular Neurochemistry, Medical University of Lodz, 92215 Lodz, Poland * Correspondence: [email protected] Abstract: Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology. Citation: Kryszkowski, W.; Boczek, T. The G Protein-Coupled Glutamate Keywords: schizophrenia; metabotropic glutamate receptors; positive allosteric modulators; negative Receptors as Novel Molecular Targets allosteric modulators; drug development; animal models of schizophrenia; clinical trials in Schizophrenia Treatment—A Narrative Review. J. Clin. Med. 2021, 10, 1475. https://doi.org/10.3390/ jcm10071475 1. Introduction Academic Editors: Andreas Reif, Schizophrenia is a common debilitating disease affecting about 0.3–1% of the human Blazej Misiak and Jerzy Samochowiec population worldwide [1].
    [Show full text]
  • 2020 Formulary: List of Covered Drugs
    Neighborhood INTEGRITY (Medicare-Medicaid Plan) 2020 Formulary: List of covered drugs PLEASE READ: THIS DOCUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THIS PLAN If you have questions, please call Neighborhood INTEGRITY at 1-844-812-6896, 8AM to 8PM, Monday – Friday; 8AM to 12PM on Saturday. On Saturday afternoons, Sundays and holidays, you may be asked to leave a message. Your call will be returned within the next business day. The call is free. TTY: 711. For more information, visit www.nhpri.org/INTEGRITY. HPMS Approved Formulary File Submission ID: H9576. We have made no changes to this formulary since 8/2019. H9576_PhmDrugListFinal2020 Populated Template 9/26/19 H9576_PhmDrugList20 Approved 8/5/19 Updated on 08/01/2019 Neighborhood INTEGRITY | 2020 List of Covered Drugs (Formulary) Introduction This document is called the List of Covered Drugs (also known as the Drug List). It tells you which prescription drugs and over-the-counter drugs are covered by Neighborhood INTEGRITY. The Drug List also tells you if there are any special rules or restrictions on any drugs covered by Neighborhood INTEGRITY. Key terms and their definitions appear in the last chapter of the Member Handbook. Table of Contents A. Disclaimers .............................................................................................................................. III B. Frequently Asked Questions (FAQ) ......................................................................................... IV B1. What prescription drugs are on the List of Covered Drugs?
    [Show full text]
  • Dynamic L-Glutamate Signaling in the Prefrontal Cortex and the Effects of Methylphenidate Treatment
    University of Kentucky UKnowledge Theses and Dissertations--Neuroscience Neuroscience 2012 DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT Catherine Elizabeth Mattinson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Mattinson, Catherine Elizabeth, "DYNAMIC L-GLUTAMATE SIGNALING IN THE PREFRONTAL CORTEX AND THE EFFECTS OF METHYLPHENIDATE TREATMENT" (2012). Theses and Dissertations--Neuroscience. 4. https://uknowledge.uky.edu/neurobio_etds/4 This Doctoral Dissertation is brought to you for free and open access by the Neuroscience at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Neuroscience by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies.
    [Show full text]
  • DHEA) and Androstenedione Has Minimal Effect on Immune Function in Middle-Aged Men
    Original Research Ingestion of a Dietary Supplement Containing Dehydroepiandrosterone (DHEA) and Androstenedione Has Minimal Effect on Immune Function in Middle-Aged Men Marian L. Kohut, PhD, James R. Thompson, MS, Jeff Campbell, BA, Greg A. Brown, MS, Matthew D. Vukovich, PhD, Dave A. Jackson, MS, Doug S. King, PhD Department of Health and Human Performance, Iowa State University, Ames, Iowa Key words: aging, cytokines, lymphocyte, hormones, androstenedione, DHEA Objective: This study investigated the effects of four weeks of intake of a supplement containing dehydro- epiandrosterone (DHEA), androstenedione and herbal extracts on immune function in middle-aged men. Design: Subjects consumed either an oral placebo or an oral supplement for four weeks. The supplement contained a total daily dose of 150 mg DHEA, 300 mg androstenedione, 750 mg Tribulus terrestris, 625 mg chrysin, 300 mg indole-3-carbinol and 540 mg saw palmetto. Measurements: Peripheral blood mononuclear cells were used to assess phytohemagglutinin(PHA)-induced lymphocyte proliferation and cytokine production. The cytokines measured were interleukin (IL)-2, IL-4, IL-10, IL-1␤, and interferon (IFN)-␥. Serum free testosterone, androstenedione, estradiol, dihydrotestosterone (DHT) were also measured. Results: The supplement significantly increased serum levels of androstenedione, free testosterone, estradiol and DHT during week 1 to week 4. Supplement intake did not affect LPS or ConA proliferation and had minimal effect on PHA-induced proliferation. LPS-induced production of IL-1beta, and PHA-induced IL-2, IL-4, IL-10, or IFN-gamma production was not altered by the supplement. The addition of the same supplement, DHEA or androstenedione alone to lymphocyte cultures in vitro did not alter lymphocyte proliferation, IL-2, IL-10, or IFN-␥, but did increase IL-4.
    [Show full text]
  • Convergent Pharmacological Mechanisms in Impulsivity And
    British Journal of DOI:10.1111/bph.12787 www.brjpharmacol.org BJP Pharmacology Themed Section: Animal Models in Psychiatry Research Correspondence Jeffrey W Dalley, Department of Psychology, University of REVIEW Cambridge, Downing St, Cambridge CB2 3EB, UK. E-mail: [email protected] Convergent ---------------------------------------------------------------- Received 20 February 2014 pharmacological Revised 2 May 2014 Accepted mechanisms in impulsivity 12 May 2014 and addiction: insights from rodent models B Jupp1,2 and J W Dalley1,3 1Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, UK, 2Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia, and 3Department of Psychiatry, University of Cambridge, Cambridge, UK Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction.
    [Show full text]
  • Antidotal Or Protective Effects of Honey and Chrysin, Its Major Polyphenols
    Acta Biomed 2019; Vol. 90, N. 4: 533-550 DOI: 10.23750/abm.v90i4.7534 © Mattioli 1885 Debate Antidotal or protective effects of honey and chrysin, its major polyphenols, against natural and chemical toxicities Saeed Samarghandian1, Mohsen Azimi-Nezhad1, Ali Mohammad Pourbagher Shahri2, 3 Tahereh Farkhondeh 1Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran; 2Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; 3Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran Summary. Objective: Honey and its polyphenolic compounds are of main natural antioxidants that have been used in traditional medicine. The aim of this review was to identify the protective effects of honey and chrysin (a polyphenol available in honey) against the chemical and natural toxic agents. Method: The scientific data- bases such as MEDLINE, PubMed, Scopus, Web of Science and Google Scholar were searched to identify studies on the antidotal effects of honey and chrysin against toxic agents. Results: This study found that honey had protective activity against toxic agents-induced organ damages by modulating oxidative stress, inflam- mation, and apoptosis pathways. However, clinical trial studies are needed to confirm the efficacy of honey and chrysin as antidote agents in human intoxication. Conclusion: Honey and chrysin may be effective against toxic agents. (www.actabiomedica.it) Key words: honey, chrysin, natural toxic agent, chemical toxic agent 1. Introduction the two types of sugar: glucose and fructose. Refined fructose, which is found in sweeteners, is metabolized Nowadays, antioxidants are used for reducing risk by the liver and has been associated with: obesity. Al- of various diseases such as cancer, cardiovascular, neu- though, Sugar is sugar, however, honey is (mostly) sug- rodegenerative, renal failure, gastrointestinal, and res- ar.
    [Show full text]
  • Targeting Group III Metabotropic Glutamate Receptors Produces Complex Behavioral Effects in Rodent Models of Parkinson's
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL AMU Targeting Group III Metabotropic Glutamate Receptors Produces Complex Behavioral Effects in Rodent Models of Parkinson's Disease Sebastien Lopez, Nathalie Turle-Lorenzo, Francine Acher, Elvira De Leonibus, Andrea Mele, Marianne Amalric To cite this version: Sebastien Lopez, Nathalie Turle-Lorenzo, Francine Acher, Elvira De Leonibus, Andrea Mele, et al.. Targeting Group III Metabotropic Glutamate Receptors Produces Complex Behavioral Effects in Rodent Models of Parkinson's Disease. Journal of Neuroscience, Society for Neuro- science, 2007, 27(25):, <10.1523/JNEUROSCI.0299-07.2007>. <hal-00165896> HAL Id: hal-00165896 https://hal.archives-ouvertes.fr/hal-00165896 Submitted on 28 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. The Journal of Neuroscience, June 20, 2007 • 27(25):6701–6711 • 6701 Neurobiology of Disease Targeting Group III Metabotropic Glutamate Receptors Produces Complex Behavioral Effects in Rodent Models of Parkinson’s Disease Sebastien Lopez,1 Nathalie Turle-Lorenzo,1 Francine Acher,2 Elvira De Leonibus,3 Andrea Mele,3 and Marianne Amalric1 1Laboratoire de Neurobiologie de la Cognition, Aix-Marseille Universite´, Centre National de la Recherche Scientifique (CNRS) Unite´ Mixte de Recherche (UMR) 6155, 13331 Marseille, France, 2Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601-CNRS, Universite´ Rene´ Descartes-Paris V, 75270 Paris Cedex 06, France, and 3Dipartimento di Genetica e Biologia Molecolare C.
    [Show full text]
  • A Review of Glutamate Receptors I: Current Understanding of Their Biology
    J Toxicol Pathol 2008; 21: 25–51 Review A Review of Glutamate Receptors I: Current Understanding of Their Biology Colin G. Rousseaux1 1Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada Abstract: Seventy years ago it was discovered that glutamate is abundant in the brain and that it plays a central role in brain metabolism. However, it took the scientific community a long time to realize that glutamate also acts as a neurotransmitter. Glutamate is an amino acid and brain tissue contains as much as 5 – 15 mM glutamate per kg depending on the region, which is more than of any other amino acid. The main motivation for the ongoing research on glutamate is due to the role of glutamate in the signal transduction in the nervous systems of apparently all complex living organisms, including man. Glutamate is considered to be the major mediator of excitatory signals in the mammalian central nervous system and is involved in most aspects of normal brain function including cognition, memory and learning. In this review, the basic biology of the excitatory amino acids glutamate, glutamate receptors, GABA, and glycine will first be explored. In the second part of this review, the known pathophysiology and pathology will be described. (J Toxicol Pathol 2008; 21: 25–51) Key words: glutamate, glycine, GABA, glutamate receptors, ionotropic, metabotropic, NMDA, AMPA, review Introduction and Overview glycine), peptides (vasopressin, somatostatin, neurotensin, etc.), and monoamines (norepinephrine, dopamine and In the first decades of the 20th century, research into the serotonin) plus acetylcholine. chemical mediation of the “autonomous” (autonomic) Glutamatergic synaptic transmission in the mammalian nervous system (ANS) was an area that received much central nervous system (CNS) was slowly established over a research activity.
    [Show full text]
  • Oreochromis Niloticus)
    Discourse Journal of Agriculture and Food Sciences www.resjournals.org/JAFS ISSN: 2346-7002 Vol. 2(2): 91-99, March, 2014 Dietary Administration of Daidzein, Chrysin, Caffeic Acid and Spironolactone on Growth, Sex Ratio and Bioaccumulation in Genetically All-Male and All-Female Nile Tilapia (Oreochromis niloticus) *Gustavo A. Rodriguez M. de O1, Konrad Dabrowski2 and Wilfrido M. Contreras3 1Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, México. 2The School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, 43210, USA. 3Laboratorio de Acuacultura Universidad Juárez Autónoma de Tabasco, Villahermosa, 86150, México. *E-mail For Correspondence: [email protected] Abstract Aromatase inhibitors can produce monosex populations of fish by blocking estrogen induced ovarian differentiation. Phytochemicals such as flavonoids and other phenolic compounds can exhibit aromatase inhibitor-like characteristics as reported for many of these compounds. Two experiments were conducted with genetically all-female or genetically all-male first feeding Nile tilapia to evaluate the potential in vivo aromatase inhibitory activity of three selected phytochemicals in parallel with synthetic steroidal compound treatments. Experimental diets were the following: control, 17α- methyltestosterone (MT); 1,4,6-androstatrien-3-17-dione (ATD); spironolactone (SPIRO); daidzein (DAID); chrysin (CHR) and caffeic acid (CAFF) at different inclusion levels. Fish were fed for 6 weeks (all-male) and 8 weeks (all-female). Survival, final individual body weight and specific growth rate and final sex ratios were recorded. All phytochemicals were effectively detected using HPLC analyses. No differences were observed in survival, final mean weight, SGR between treatments in all-male tilapia. For all-female tilapia, MT and ATD groups showed significantly smaller final mean weights (p<0.05); still, survival or SGR were not significantly different.
    [Show full text]
  • Product Update Price List Winter 2014 / Spring 2015 (£)
    Product update Price list winter 2014 / Spring 2015 (£) Say to affordable and trusted life science tools! • Agonists & antagonists • Fluorescent tools • Dyes & stains • Activators & inhibitors • Peptides & proteins • Antibodies hellobio•com Contents G protein coupled receptors 3 Glutamate 3 Group I (mGlu1, mGlu5) receptors 3 Group II (mGlu2, mGlu3) receptors 3 Group I & II receptors 3 Group III (mGlu4, mGlu6, mGlu7, mGlu8) receptors 4 mGlu – non-selective 4 GABAB 4 Adrenoceptors 4 Other receptors 5 Ligand Gated ion channels 5 Ionotropic glutamate receptors 5 NMDA 5 AMPA 6 Kainate 7 Glutamate – non-selective 7 GABAA 7 Voltage-gated ion channels 8 Calcium Channels 8 Potassium Channels 9 Sodium Channels 10 TRP 11 Other Ion channels 12 Transporters 12 GABA 12 Glutamate 12 Other 12 Enzymes 13 Kinase 13 Phosphatase 14 Hydrolase 14 Synthase 14 Other 14 Signaling pathways & processes 15 Proteins 15 Dyes & stains 15 G protein coupled receptors Cat no. Product name Overview Purity Pack sizes and prices Glutamate: Group I (mGlu1, mGlu5) receptors Agonists & activators HB0048 (S)-3-Hydroxyphenylglycine mGlu1 agonist >99% 10mg £112 50mg £447 HB0193 CHPG Sodium salt Water soluble, selective mGlu5 agonist >99% 10mg £59 50mg £237 HB0026 (R,S)-3,5-DHPG Selective mGlu1 / mGlu5 agonist >99% 10mg £70 50mg £282 HB0045 (S)-3,5-DHPG Selective group I mGlu receptor agonist >98% 1mg £42 5mg £83 10mg £124 HB0589 S-Sulfo-L-cysteine sodium salt mGlu1α / mGlu5a agonist 10mg £95 50mg £381 Antagonists HB0049 (S)-4-Carboxyphenylglycine Competitive, selective group 1
    [Show full text]