Inhibitory Effect of Sauchinone on UDP-Glucuronosyltransferase (UGT) 2B7 Activity

Total Page:16

File Type:pdf, Size:1020Kb

Inhibitory Effect of Sauchinone on UDP-Glucuronosyltransferase (UGT) 2B7 Activity molecules Article Inhibitory Effect of Sauchinone on UDP-Glucuronosyltransferase (UGT) 2B7 Activity Byoung Hoon You, Eun Chae Gong and Young Hee Choi * College of Pharmacy and Intergrated Research Institute for Drug Development, Dongguk University-Seoul, 32 Dongguk-lo, Ilsandong-gu, Goyang, Gyonggi-do 10326, Korea; [email protected] (B.H.Y.); [email protected] (E.C.G.) * Correspondence: [email protected]; Tel.: +82-31-961-5212 Received: 4 January 2018; Accepted: 7 February 2018; Published: 9 February 2018 Abstract: Herb–drug interaction (HDI) limits clinical application of herbs and drugs, and inhibition of herbs towards uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) has gained attention as one of the important reasons to cause HDIs. Sauchinone, an active lignan isolated from aerial parts of Saururus chinensis (Saururacease), possesses anti-oxidant, anti-inflammatory, and anti-viral activities. In pharmacokinetics of sauchinone, sauchinone is highly distributed to the liver, forming extensive metabolites of sauchinone via UGTs in the liver. Thus, we investigated whether sauchinone inhibited UGTs to explore potential of sauchinone–drug interactions. In human liver microsomes (HLMs), sauchinone inhibited activities of UGT1A1, 1A3, 1A6, and 2B7 with IC50 values of 8.83, 43.9, 0.758, and 0.279 µM, respectively. Sauchinone also noncompetitively inhibited UGT1A6 and 2B7 with Ki values of 1.08 and 0.524 µM, respectively. In in vivo interaction study using mice, sauchinone inhibited UGT2B7-mediated zidovudine metabolism, resulting in increased systemic exposure of zidovudine when sauchinone and zidovudine were co-administered together. Our results indicated that there is potential HDI between sauchinone and drugs undergoing UGT2B7-mediated metabolism, possibly contributing to the safe use of sauchinone and drug combinations. Keywords: sauchinone; Saururus chinensis; UGT2B7; inhibition; drug interaction 1. Introduction Herb–drug combinations have been steadily increased and encouraged as main medical treatments by the World Health Organization [1,2]. Since herb–drug interactions (HDIs) can limit clinical application of herbs and drugs, inhibition of herbs toward uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) has received attention in association with alternations of drug efficacy or toxicity [3–5]. UGTs are phase II metabolic enzymes that predominantly catalyze glucuronidation of xenobiotics, including approximately 35% of drugs and consequently, facilitating elimination of glucuronidated metabolites through bile and urine [6,7]. Glucuronidation clears drugs because glucuronidated metabolites have more polarity and water solubility. It also detoxifies drugs because glucuronidated metabolites possess less activity or toxicity than their parent forms [8]. Many cases of UGT inhibition-mediated drug interactions have been reported [5,7] including UGT1A1 inhibition by psoralidin that causes irinotecan’ toxicity [9], UGT1A3 inhibition by gemfibrozil that enhances susceptibility of statins [10], UGT1A6 inhibition by silybin that attenuates fenofibrate-induced UGT1A6 [11], UGT1A6 inhibition by phenobarbital and phenytoin that causes hepatotoxicity of acetamoniphen [12,13], UGT1A9 inhibition by mefenamic acid that changes exposure of dapagliflozin’s metabolite [14], and UGT2B7 inhibition by valproic acid that changes efficacy and toxicity of zidovudine [15]. Regulatory agencies have recognized the importance of UGT-mediated drug Molecules 2018, 23, 366; doi:10.3390/molecules23020366 www.mdpi.com/journal/molecules Molecules 2018, 23, 366 2 of 13 Molecules 2017, 22, x FOR PEER REVIEW 2 of 12 interactionsresearch and in patients’ drug discovery safety [2,16,17]. research Moreover, and patients’ the safety U.S. FDA [2,16 ,strongly17]. Moreover, recommends the U.S. the FDA evaluation strongly recommendsof UGT-mediated the evaluation interactions of in UGT-mediated HDIs [3,16–18]. interactions in HDIs [3,16–18]. Saururus chinensis Hort. ex Loudon (Saururaceae), commonlycommonly known as Chinese lizard’s tail or Sam-baek-cho inin Korea,Korea, isis aa plantplant withwith aa long historyhistory ofof medical use.use. It has been used to treat hepatitis inin Korea [19,20] [19,20] and and edema, edema, pneumonia, pneumonia, jaundice, jaundice, gonorrhea gonorrhea and and inflammatory inflammatory disease disease in North in North Asia Asia[21]. [Sauchinone21]. Sauchinone is a isbiologically a biologically active active lignan lignan isolated isolated from from aerial aerial parts parts of of S.S. chinensis ,, showing anti-inflammatoryanti-inflammatory and anti-viral activities [[22,23].22,23]. In pharmacokinetic studies, sauchinone is highly distributed to to the the liver liver where where UGTs UGTs can can extensively extensively catalyze catalyze sauchinone sauchinone metabolism metabolism [24,25]. [24 Thus,,25]. Thus,there theremight might be potential be potential of sauchinone–drug of sauchinone–drug interact interactionion through through UGT-mediated UGT-mediated metabolism. metabolism. However, However, currently there isis nono informationinformation regarding inhibitioninhibition of UGTs byby sauchinone.sauchinone. Therefore,Therefore, thethe objectiveobjective of this study was was to to determine determine the the inhibitory inhibitory effect effect of ofsauchinone sauchinone on onUGT1A1, UGT1A1, 1A3, 1A3, 1A4, 1A4, 1A6, 1A6, 1A9, 1A9, and and2B7 2B7activities. activities. Inhibition Inhibition kinetics kinetics of sauchinone of sauchinone was then was theninvestigat investigateded in in invitroin vitrousingusing human human liver livermicrosomes microsomes (HLMs). (HLMs). Pharmacokine Pharmacokinetictic interaction interaction of ofsauchinone sauchinone and and zidovudine, zidovudine, a a substrate substrate of UGT2B7, waswas alsoalso evaluatedevaluated inin vivovivo usingusing mice.mice. 2. Results 2.1. Inhibitory Effects of Sauchinone on UGT ActivitiesActivities The inhibitoryinhibitory effects of sauchinonesauchinone on UGT1A1,UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 were shownshown in Figure1 1 and and their their IC IC5050 values are listed in Table1 1.. When When sauchinone sauchinone concentrations concentrations were were increased increased toto 200200 µμM,M, ICIC5050 valuesvalues ofof UGT1A1-catalyzedUGT1A1-catalyzed ββ-estradiol,-estradiol, UGT1A3-catalyzedUGT1A3-catalyzed CDCA,CDCA, 1A6-catalyzed1A6-catalyzed serotonin,serotonin, andand 2B7-catalyzed 2B7-catalyzed zidovudine zidovudine (8.83, (8.83, 43.9, 43.9, 0.758, 0.758, and and 0.279 0.279µM, μ respectively)M, respectively) were were lower lower than thosethan those of well-known of well-known inhibitors inhibitors such such as chrysin, as chrysin, lithocholic lithocholic acid, acid, 1-naphthol, 1-naphthol, and efavirenzand efavirenz (28.3, (28.3, 69.8, 35.2,69.8, and35.2, 75.4 andµ M75.4 respectively), μM respectively), indicating indicating that sauchione that sauchione inhibited inhibited metabolic metabolic activities ofactivities UGT1A1, of 1A3,UGT1A1, 1A6, and1A3, 2B7 1A6, in HLM.and 2B7 Sauchinone in HLM. also Sauchinone showed negligible also showed inhibitory negligible effect oninhibitory UGT1A4 effect and 1A9 on activitiesUGT1A4 underand 1A9 our activities study conditions. under our study conditions. 125 UGT1A1 125 UGT1A3 125 UGT1A4 100 100 100 75 75 75 50 50 50 25 25 25 0 0 0 -5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 125 UGT1A6 125 UGT2B7 125 UGT1A9 100 100 100 % of control activity of control % 75 75 75 50 50 50 25 25 25 0 0 0 -5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 Sauchinone (log μM) Figure 1. IC50 curves for the direct inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and Figure 1. IC50 curves for the direct inhibition of UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 in HLMs. The ‘•●’’ representsrepresents thethe remainingremaining percentagepercentage ofof UGT-mediatedUGT-mediated metabolicmetabolic activityactivity withwith sauchinonesauchinone asas anan inhibitorinhibitor versusversus controlcontrol (without(without sauchinone).sauchinone). ((nn == 33 forfor eacheach group).group). Molecules 2018, 23, 366 3 of 13 Table 1. IC50 (µM) values of sauchinone (n = 3 for each UGT isoform) and well-known inhibitors (n = 1 forMolecules each 2017 UGT, 22 isoform), x FOR PEER for REVIEW inhibition of various UGTs in human liver microsomes. Data were expressed3 of 12 as the mean values. The minimum and maximum values of IC50 were expressed in the parentheses. Table 1. IC50 (μM) values of sauchinone (n = 3 for each UGT isoform) and well-known inhibitors (n = 1 for each UGTUGTs isoform) for inhibition Sauchinone of various UGTs Well-Known in human Inhibitorliver microsomes. Data were expressed as the mean values. The minimum and maximum values of IC50 were expressed in the UGT1A1 8.83 (5.40–14.5) Chrysin 28.3 parentheses. UGT1A3 43.9 (18.9–102) Lithocholic acid 69.8 UGT1A4 391 (253–603) Hecogenin 3.99 UGT1A6UGTs 0.758Sauchinone (0.383–1.50) Well-Known 1-Naphthol Inhibitor 35.2 UGT1A9UGT1A1 9198.83 (517–1632) (5.40–14.5) NiflumicChrysin acid 0.75528.3 UGT2B7UGT1A3 0.27943.9 (0.224–0.347) (18.9–102) Lithocholic Efavirenz acid 75.469.8 UGT1A4 391 (253–603) Hecogenin 3.99 2.2. Ki of Sauchinone on UGT1A6UGT1A6 and 0.758 2B7-Mediated (0.383–1.50) Glucuronidation 1-Naphthol Activities 35.2 UGT1A9 919 (517–1632) Niflumic acid 0.755 Based on estimatedUGT2B7 IC50 values 0.279 of(0.224–0.347) sauchinone, enzymeEfavirenz kinetic75.4 assays of sauchinone on inhibition of UGT1A6 and 2B7 activities were
Recommended publications
  • DHEA: Dehydroepiandrosterone
    DHEA: Dehydroepiandrosterone Joseph Pepping, Pharm.D. [Am J Health-Syst Pharm 57(22):2048-2056, 2000. © 2000 ASHP, Inc.] Introduction Dehydroepiandrosterone (DHEA) and its active metabolite, DHEA sulfate (DHEAS), are endogenous hormones synthesized and excreted primarily by the zona reticularis of the adrenal cortex in response to adrenocorticotropic hormone. The exact mechanism of action and clinical role, if any, of DHEA and DHEAS remain unclear. Epidemiological data indicate an inverse relationship between serum DHEA and DHEAS levels and the frequency of cancer, cardiovascular disease (in men only), Alzheimer's disease and other age-related disorders, immune function, and progression of HIV infection. [1] Animal (primarily rodent) studies have suggested many beneficial effects of DHEA, including improved immune function and memory and prevention of atherosclerosis, cancer, diabetes, and obesity. Many of the benefits seen in animal studies have yet to be shown in humans. [1-3] Uses Clinically substantiated (yet still controversial) uses of DHEA include replacement therapy in patients with low serum DHEA levels secondary to chronic disease, adrenal exhaustion, or corticosteroid therapy; treating systemic lupus erythematosus (SLE), improving bone density in postmenopausal women; improving symptoms of severe depression; improving depressed mood and fatigue in patients with HIV infection; and increasing the rate of reepithelialization in patients undergoing autologous skin grafting for burns. [1,4-8] Other possible uses (with some supporting clinical studies) include enhancing the immune response and sense of well-being in the elderly, decreasing certain cardiovascular risk factors, and treating male erectile dysfunction. [4,8-12] Use of DHEA to slow or reverse the aging process, improve cognitive function, promote weight loss, increase lean muscle mass, or slow the progression of Parkinson's disease and Alzheimer's disease is clinically unsubstantiated.
    [Show full text]
  • Exerts Anxiolytic-Like Effects Through GABAA Receptors in a Surgical Menopause Model in Rats
    Biomedicine & Pharmacotherapy 109 (2019) 2387–2395 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Original article Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats T ⁎ Juan Francisco Rodríguez-Landaa,b, , Fabiola Hernández-Lópezc, Jonathan Cueto-Escobedoa, Emma Virginia Herrera-Huertad, Eduardo Rivadeneyra-Domínguezb, Blandina Bernal-Moralesa,b, Elizabeth Romero-Avendañod a Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico b Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, Mexico c Hospital General de Zona con Medicina Familiar No. 28, Delegación Veracruz Norte, Instituto Mexicano del Seguro Social (H.G.Z. c/mf. No. 28, Delegación Veracruz Norte, IMSS), Martínez de la Torre, Veracruz, Mexico d Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico ARTICLE INFO ABSTRACT Keywords: The present study investigated the effects of the flavonoid chrysin (5,7-dihydroxyflavone) on anxiety-like be- Anxiolytics havior in rats in a model of surgical menopause and evaluated the participation of γ-aminobutyric acid-A Chrysin (GABAA) receptors in these actions. At 12 weeks post-ovariectomy, the effects of different doses of chrysin (0.5, GABAA 1, 2, and 4 mg/kg) were evaluated in the elevated plus maze, light/dark test, and locomotor activity test, and Oophorectomy comparisons were made with the clinically effective anxiolytic diazepam. The participation of GABA receptors Ovariectomy A in the actions of chrysin was explored by pretreating the rats with the noncompetitive GABA chloride ion Surgical menopause A channel antagonist picrotoxin (1 mg/kg). The results showed that chrysin (2 and 4 mg/kg) reduced anxiety-like behavior in both the elevated plus maze and light/dark test, and these effects were similar to diazepam.
    [Show full text]
  • 2020 Formulary: List of Covered Drugs
    Neighborhood INTEGRITY (Medicare-Medicaid Plan) 2020 Formulary: List of covered drugs PLEASE READ: THIS DOCUMENT CONTAINS INFORMATION ABOUT THE DRUGS WE COVER IN THIS PLAN If you have questions, please call Neighborhood INTEGRITY at 1-844-812-6896, 8AM to 8PM, Monday – Friday; 8AM to 12PM on Saturday. On Saturday afternoons, Sundays and holidays, you may be asked to leave a message. Your call will be returned within the next business day. The call is free. TTY: 711. For more information, visit www.nhpri.org/INTEGRITY. HPMS Approved Formulary File Submission ID: H9576. We have made no changes to this formulary since 8/2019. H9576_PhmDrugListFinal2020 Populated Template 9/26/19 H9576_PhmDrugList20 Approved 8/5/19 Updated on 08/01/2019 Neighborhood INTEGRITY | 2020 List of Covered Drugs (Formulary) Introduction This document is called the List of Covered Drugs (also known as the Drug List). It tells you which prescription drugs and over-the-counter drugs are covered by Neighborhood INTEGRITY. The Drug List also tells you if there are any special rules or restrictions on any drugs covered by Neighborhood INTEGRITY. Key terms and their definitions appear in the last chapter of the Member Handbook. Table of Contents A. Disclaimers .............................................................................................................................. III B. Frequently Asked Questions (FAQ) ......................................................................................... IV B1. What prescription drugs are on the List of Covered Drugs?
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • DHEA) and Androstenedione Has Minimal Effect on Immune Function in Middle-Aged Men
    Original Research Ingestion of a Dietary Supplement Containing Dehydroepiandrosterone (DHEA) and Androstenedione Has Minimal Effect on Immune Function in Middle-Aged Men Marian L. Kohut, PhD, James R. Thompson, MS, Jeff Campbell, BA, Greg A. Brown, MS, Matthew D. Vukovich, PhD, Dave A. Jackson, MS, Doug S. King, PhD Department of Health and Human Performance, Iowa State University, Ames, Iowa Key words: aging, cytokines, lymphocyte, hormones, androstenedione, DHEA Objective: This study investigated the effects of four weeks of intake of a supplement containing dehydro- epiandrosterone (DHEA), androstenedione and herbal extracts on immune function in middle-aged men. Design: Subjects consumed either an oral placebo or an oral supplement for four weeks. The supplement contained a total daily dose of 150 mg DHEA, 300 mg androstenedione, 750 mg Tribulus terrestris, 625 mg chrysin, 300 mg indole-3-carbinol and 540 mg saw palmetto. Measurements: Peripheral blood mononuclear cells were used to assess phytohemagglutinin(PHA)-induced lymphocyte proliferation and cytokine production. The cytokines measured were interleukin (IL)-2, IL-4, IL-10, IL-1␤, and interferon (IFN)-␥. Serum free testosterone, androstenedione, estradiol, dihydrotestosterone (DHT) were also measured. Results: The supplement significantly increased serum levels of androstenedione, free testosterone, estradiol and DHT during week 1 to week 4. Supplement intake did not affect LPS or ConA proliferation and had minimal effect on PHA-induced proliferation. LPS-induced production of IL-1beta, and PHA-induced IL-2, IL-4, IL-10, or IFN-gamma production was not altered by the supplement. The addition of the same supplement, DHEA or androstenedione alone to lymphocyte cultures in vitro did not alter lymphocyte proliferation, IL-2, IL-10, or IFN-␥, but did increase IL-4.
    [Show full text]
  • |||||||||||||III US005202354A United States Patent (19) (11) Patent Number: 5,202,354 Matsuoka Et Al
    |||||||||||||III US005202354A United States Patent (19) (11) Patent Number: 5,202,354 Matsuoka et al. 45) Date of Patent: Apr. 13, 1993 (54) COMPOSITION AND METHOD FOR 4,528,295 7/1985 Tabakoff .......... ... 514/562 X REDUCING ACETALDEHYDE TOXCTY 4,593,020 6/1986 Guinot ................................ 514/811 (75) Inventors: Masayoshi Matsuoka, Habikino; Go OTHER PUBLICATIONS Kito, Yao, both of Japan Sprince et al., Agents and Actions, vol. 5/2 (1975), pp. 73) Assignee: Takeda Chemical Industries, Ltd., 164-173. Osaka, Japan Primary Examiner-Arthur C. Prescott (21) Appl. No.: 839,265 Attorney, Agent, or Firn-Wenderoth, Lind & Ponack 22) Filed: Feb. 21, 1992 (57) ABSTRACT A novel composition and method are disclosed for re Related U.S. Application Data ducing acetaldehyde toxicity, especially for preventing (63) Continuation of Ser. No. 13,443, Feb. 10, 1987, aban and relieving hangover symptoms in humans. The com doned. position comprises (a) a compound of the formula: (30) Foreign Application Priority Data Feb. 18, 1986 JP Japan .................................. 61-34494 51) Int: C.5 ..................... A01N 37/00; A01N 43/08 52 U.S. C. ................................. ... 514/562; 514/474; 514/81 wherein R is hydrogen or an acyl group; R' is thiol or 58) Field of Search ................ 514/557, 562, 474,811 sulfonic group; and n is an integer of 1 or 2, (b) ascorbic (56) References Cited acid or a salt thereof and (c) a disulfide type thiamine derivative or a salt thereof. The composition is orally U.S. PATENT DOCUMENTS administered, preferably in the form of tablets. 2,283,817 5/1942 Martin et al.
    [Show full text]
  • Antidotal Or Protective Effects of Honey and Chrysin, Its Major Polyphenols
    Acta Biomed 2019; Vol. 90, N. 4: 533-550 DOI: 10.23750/abm.v90i4.7534 © Mattioli 1885 Debate Antidotal or protective effects of honey and chrysin, its major polyphenols, against natural and chemical toxicities Saeed Samarghandian1, Mohsen Azimi-Nezhad1, Ali Mohammad Pourbagher Shahri2, 3 Tahereh Farkhondeh 1Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran; 2Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; 3Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran Summary. Objective: Honey and its polyphenolic compounds are of main natural antioxidants that have been used in traditional medicine. The aim of this review was to identify the protective effects of honey and chrysin (a polyphenol available in honey) against the chemical and natural toxic agents. Method: The scientific data- bases such as MEDLINE, PubMed, Scopus, Web of Science and Google Scholar were searched to identify studies on the antidotal effects of honey and chrysin against toxic agents. Results: This study found that honey had protective activity against toxic agents-induced organ damages by modulating oxidative stress, inflam- mation, and apoptosis pathways. However, clinical trial studies are needed to confirm the efficacy of honey and chrysin as antidote agents in human intoxication. Conclusion: Honey and chrysin may be effective against toxic agents. (www.actabiomedica.it) Key words: honey, chrysin, natural toxic agent, chemical toxic agent 1. Introduction the two types of sugar: glucose and fructose. Refined fructose, which is found in sweeteners, is metabolized Nowadays, antioxidants are used for reducing risk by the liver and has been associated with: obesity. Al- of various diseases such as cancer, cardiovascular, neu- though, Sugar is sugar, however, honey is (mostly) sug- rodegenerative, renal failure, gastrointestinal, and res- ar.
    [Show full text]
  • Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes
    Article AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5′-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes Ju-Hyun Kim 1, Soon-Sang Kwon 1, Tae Yeon Kong 1, Jae Chul Cheong 2, Hee Seung Kim 2, Moon Kyo In 2 and Hye Suk Lee 1,* 1 Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea; [email protected] (J.-H.K.); [email protected] (S.-S.K.); [email protected] (T.Y.K.) 2 Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor’s Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea; [email protected] (J.C.C.); [email protected] (H.S.K.); [email protected] (M.K.I.) * Correspondence: [email protected]; Tel.: +82-2-2164-4061 Academic Editor: Diego Muñoz-Torrero Received: 22 February 2017; Accepted: 8 March 2017; Published: date Abstract: AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 µM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 µM.
    [Show full text]
  • Biliary Bile Acid Composition of the Human Fetus in Early Gestation
    0031-3998/87/2102-0197$02.00/0 PEDIATRIC RESEARCH Vol. 21, No.2, 1987 Copyright© 1987 International Pediatric Research Foundation, Inc. Printed in U.S.A. Biliary Bile Acid Composition of the Human Fetus in Early Gestation C. COLOMBO, G. ZULIANI, M. RONCHI, J. BREIDENSTEIN, AND K. D. R. SETCHELL Department q/Pediatrics and Obstetrics, University q/ Milan, Milan, Italy [C. C., G.Z., M.R.j and Department q/ Pediatric Gastroel1/erology and Nwrition, Children's Hospital Medical Center, Cincinnati, Ohio 45229 [J.B., K.D.R.S.j ABSTRACf. Using analytical techniques, which included the key processes of the enterohepatic circulation of bile acids capillary column gas-liquid chromatography and mass ( 16-19). As a result of physiologic cholestasis, the newborn infant spectrometry, detailed bile acid profiles were obtained for has a tendency to develop a true neonatal cholestasis when 24 fetal bile samples collected after legal abortions were subjected to such stresses as sepsis, hypoxia, and total parenteral performed between the 14th and 20th wk of gestation. nutrition ( 15). Qualitatively, the bile acid profiles of all fetal bile samples Abnormalities in bile acid metabolism have been suggested to were similar. The predominant bile acids identified were be a factor in the development of certain forms of cholestasis in chenodeoxycholic and cholic acid. The presence of small the newborn (20) and in animal models the hepatotoxic nature but variable amounts of deoxycholic acid and traces of of bile acids has been well established (21-24). A greater under­ lithocholic acid suggested placental transfer of these bile standing of the etiology of these conditions requires a better acids from the maternal circulation.
    [Show full text]
  • TRANSPARENCY COMMITTEE Opinion 19 February 2014
    The legally binding text is the original French version TRANSPARENCY COMMITTEE Opinion 19 February 2014 ORPHACOL 50 mg, hard capsule B/30 (CIP 34009 416 886 0 7) B/60 (CIP 34009 416 887 7 5) ORPHACOL 250 mg, hard capsule B/30 (CIP: 34009 416 890 8 6) Applicant: CTRS INN cholic acid ATC Code (2012) A05AA03 (Bile acid preparations) Reason for the Inclusion request List concerned Hospital use (French Public Health Code L.5123-2) "Treatment of inborn errors in primary bile acid synthesis due to 3β-hydroxy-∆5-C -steroid oxidoreductase deficiency or ∆4-3-oxosteroid- Indication concerned 27 5β-reductase deficiency in infants, children and adolescents aged 1 month to 18 years and adults." HAS - Medical, Economic and Public Health Assessment Division 1/20 Actual Benefit Substantial. The benefits of using cholic acid in the treatment of inborn errors in primary 5 bile acid synthesis due to 3 β-hydroxy-∆ -C27 -steroid oxidoreductase deficiency or ∆4-3-oxosteroid-5β-reductase deficiency as soon as they are diagnosed have been established since 1993, when the first hospital preparation was made available in France by the AP-HP [Paris public hospital system], followed by temporary authorisations for use by a named patient [ATU nominative in French] since 2007. In particular, none of the 20 patients followed in France and treated with cholic acid since this date have needed a liver transplant, the only other treatment option. Treatment Improvement in with cholic acid allows postponing liver transplantation and improving Actual Benefit overall symptomatology, normalising lab work results and improving histological liver lesions, with good safety.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2006) – Supplement 1 (Rev. 1) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]